Photocatalytic decomposition of acetic acid on TiO₂

Darrin S. Muggli, Sarah A. Keyser and John L. Falconer*

Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA E-mail: john.falconer@colorado.edu

Received 8 August 1998; accepted 25 September 1998

During room-temperature transient experiments, acetic acid decomposes photocatalytically on TiO_2 in an inert atmosphere by two parallel pathways. One pathway forms CO_2 and C_2H_6 in a 2:1 ratio, and H_2O forms with lattice oxygen that was extracted from the surface. The other pathway forms CO_2 and CH_4 in a 1:1 ratio.

Keywords: photocatalytic decomposition, TiO2, acetic acid

1. Introduction

Heterogeneous photocatalytic oxidation (PCO) has potential applications for the complete oxidation of organic pollutants in dilute systems. A wide range of organics can be oxidized to CO₂ and H₂O *at room temperature* on TiO₂ catalysts in the presence of UV or near-UV illumination. The UV light excites electrons from the valence to the conduction band of the semiconductor catalyst, leaving holes behind. The electron–hole pairs can then initiate redox reactions with surface species.

Recently, we used transient reaction at room temperature to study the photocatalytic reaction of formic acid in the absence of gas-phase O2 in order to clarify the relative importance of adsorbed and lattice oxygen during PCO [1]. Even without O₂ in the gas phase, a monolayer of formic acid readily decomposed photocatalytically to form CO₂ and H₂O. This reaction was referred to as photocatalytic decomposition (PCD) to distinguish it from PCO, which takes place when gas-phase O₂ is present. During PCD, the CO₂ contained the oxygen that was originally in the formic acid, but the H₂O product formed with lattice oxygen that was extracted from the TiO₂ surface. At longer reaction times, diffusion of bulk oxygen to the surface limited the reaction, and thus the reaction rate decreased rapidly with time. However, the PCD rate increased dramatically after the TiO₂ was held in the dark, because oxygen diffused to the surface during the dark time and was available for reaction when the UV lights were turned on.

In the current study, the products that form during transient PCD of acetic acid on TiO_2 at room temperature are determined, and PCD and PCO are compared. Acetic acid is of interest for comparison to formic acid PCD. Of particular interest is the fate of the CH_3 group in acetic acid since no H_2 was detected during PCD of formic acid, and

neither CH₄ nor C₂H₆ are detected during PCO of acetic acid. In addition, PCD of acetic acid is of interest because both acetic and formic acids are surface intermediates during PCO of ethanol and acetaldehyde, and the CH₃ group in acetic acid is oxidized through a formate intermediate [1]. Transient experiments are preferred over steady-state experiments for reactions where the catalyst surface changes as lattice oxygen is removed. Similar to the formic acid PCD experiments [1], the TiO₂ surface was saturated with acetic acid, and neither O₂ nor acetic acid were in the gas phase. The products were detected by mass spectrometer. Because CO₂, CH₄, and C₂H₆ are weakly adsorbed on TiO₂, their appearance in the gas phase during transient reaction is limited by the surface reaction rate

Another reason that PCD of acetic acid is of interest is because of the interesting results reported by Sclafani et al. [2]. They observed that acetic acid decomposed photocatalytically to CH₄, CO₂, and small amounts of C₂H₆. For the two types of TiO2 catalysts studied, the steadystate ratios of CO₂ to CH₄ were 1.7 and 20.6, and the rate of C₂H₆ formation was less than 0.3% of the CH₄ rate. Since the CO₂: CH₄ ratios were not one, as expected for the stoichiometry, water must have also formed during their reaction but it could not be detected by their analysis. Moreover, since their product distributions were measured after long reaction times (40-70 h) that corresponded to steady state, some O2 may have been present in their feed. They reported similar results for the other oxides studied; the CO₂/CH₄ ratio was greater than one, and the C₂H₆ rates were small. They concluded that their PCD occurred by excitation of an adsorbed species rather than by generation of electron/hole pairs in TiO₂. Also, in contrast to previous PCO studies [3-5], Sclafani et al. observed that CH₄ still formed when O₂ was added to the feed. Thus, both PCO and PCD of acetic acid are presented in the current study for comparison to the results by Sclafani et al.

^{*} To whom correspondence should be addressed.

2. Experimental methods

The apparatus used for PCD, PCO, and temperatureprogrammed desorption (TPD) was described previously [6]. Approximately 30 mg of Degussa P-25 TiO₂ catalyst were coated as a thin layer (average thickness $<0.5 \mu m$) on the inside of an annular Pyrex reactor so that all the TiO₂ was exposed to UV light for PCO. The annular reactor had a 1 mm annular spacing so that high gas flow rates could be maintained across the catalyst to minimize mass transfer effects and rapidly flush gas-phase products from the reactor. The outside diameter of the reactor was 2 cm and the reactor was 13 cm high, so that sufficient catalyst mass was present to allow detection of reaction products by the mass spectrometer. Six UV lamps (GE, 4 W) surrounded the photocatalytic reactor, and the light intensity at the catalyst surface, measured with a radiometer, was approximately 0.3 mW/cm². The maximum light intensity was near 360 nm [4].

Before each experiment, the reactor was held at 723 K for 30 min in approximately 20% O₂ in He and then cooled to room temperature to create a reproducible surface. Two 1 μ l pulses of acetic acid (Sigma, 99.99%) saturated the catalyst in the dark at 300 K prior to PCD or PCO, and all experiments started with the surface saturated. After exposure to acetic acid, the reactor was flushed for 2 h to remove all gas-phase acetic acid, so that only reaction of the adsorbed monolayer was studied. Photocatalytic decomposition was studied by illuminating the TiO₂ in 100 cm³ (STP) of He flow per min, and PCO was carried out in 0.2% O₂ flow. The He stream did not have a detectable O_2 impurity. A small m/e 32 signal was detected by the mass spectrometer, but this signal did not change when the lights were turned on. Since low concentrations of O₂ are readily detected when the lights are turned on [3], the small m/e 32 signal was due to a background signal in the mass spectrometer vacuum chamber. We estimate the O₂ concentration in the He stream to be less than 0.3 ppm. Metal shields were placed between the reactor and the UV lights, and the shields were removed after the lights attained a steady-state output to illuminate the catalyst and initiate transient reaction at room temperature. To understand the role of lattice oxygen, the lights were turned off during PCD, and the effect of dark time on the subsequent rates of product formation were measured. After PCO or PCD, TPD was performed by heating the catalyst at 1 K/s to 723 K in He flow and holding at this temperature until no desorption products were detected.

A Balzers QMA 125 quadrupole mass spectrometer monitored the reactor effluent immediately downstream of the reactor. The mass spectrometer was interfaced to a computer to record multiple mass peaks simultaneously. The mass spectrometer signals were calibrated by injecting known volumes of gases into the flow downstream of the reactor, and signals were corrected for cracking in the mass spectrometer.

3. Results and discussion

During PCO, acetic acid oxidizes on TiO2 to form gasphase CO₂ and H₂O, and formic acid and formaldehyde intermediates remain on the surface [3]. In contrast, during UV illumination in an inert gas stream, a monolayer of adsorbed acetic acid photocatalytically decomposes on TiO₂ to form CO₂, CH₄, and C₂H₆ in the gas phase. Figure 1 shows the rates of formation of products as a function of time when a monolayer of acetic acid was exposed to UV irradiation in the absence of gas-phase O₂. Upon UV illumination, the rate of CO₂ production quickly reached a maximum of 0.11 μ mol/g-cats, quickly decreased to $0.06 \ \mu \text{mol/g-cat s}$, and then decreased more slowly. The rate of C₂H₆ formation also decreased quickly after reaching its initial maximum of 0.04 μ mol/g-cats, but then decreased more slowly. The CH₄ formation rate did not exhibit a sharp maximum and decreased slowly throughout the PCD. All signals dropped to zero when the lights were turned off. When UV illumination resumed after 3600 s in the dark, the CO₂ rate was twice and the C₂H₆ rate was 4.3 times that measured before the lights were turned off. The increase in the CO₂ rate was approximately twice the increase in the C₂H₆ rate. In contrast, the rate of CH₄ production was the same as that before the dark

During PCD of $CH_3^{13}COOH$, only $^{13}CO_2$, $^{12}C_2H_6$, and $^{12}CH_4$ were detected. That is, α -carbons were exclusively oxidized to CO_2 and β -carbons formed CH_4 and C_2H_6 . These results suggest two parallel pathways for acetic acid decomposition during PCD:

$$CH_3COOH \rightarrow CO_2 + CH_4$$
 (1)

$$2CH_3COOH + O_{(1)} \rightarrow C_2H_6 + 2CO_2 + H_2O$$
 (2)

Note that H_2O is written as one of the products of reaction (2), but the H atoms may be present on the surface as OH groups. For these reactions, the rate of CO_2 formation should equal the sum of the CH_4 rate plus twice the C_2H_6 rate, and that is what was observed for the entire time interval. These signals are coincident when plotted this way. The differences between the CO_2 rate and the sum of $(CH_4 + 2C_2H_6)$ rates were centered around zero, and the average difference was 6% of the signal.

Note that reaction (1) does not require oxygen whereas reaction (2) does. Presumably lattice oxygen is extracted in reaction (2) since no gas-phase oxygen was present during PCD. Thus, the rates of C_2H_6 and CO_2 formation are greater after the dark time, because lattice oxygen diffuses from the bulk to replenish the surface oxygen vacancies in the dark, as was seen for PCD of formic acid [1]. The greater concentration of surface oxygen after the dark time increases the rate of reaction (2). Indeed, the rate increase for CO_2 after the dark time in figure 1 was approximately twice that for C_2H_6 , as expected for reaction (2). Also, the rates of C_2H_6 and CO_2 formation drop rapidly from their initial rates as the lattice oxygen is removed from the

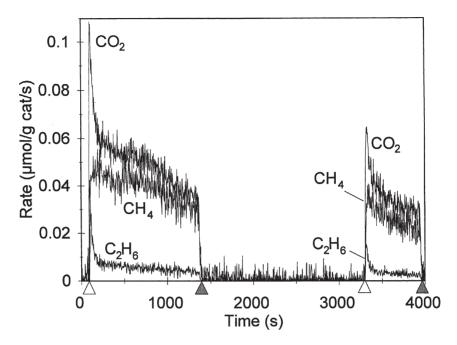


Figure 1. Formation rates of CO_2 , CH_4 , and C_2H_6 during photocatalytic decomposition of a monolayer of acetic acid on TiO_2 in He flow at room temperature. The UV lights were turned on (open triangles) and off (solid triangles) as indicated.

surface. In contrast, the CH_4 rate after a dark time was the same as the rate before the lights were turned off since reaction (1) does not require lattice oxygen. For the same reason, the CH_4 rate drops slower with time than the C_2H_6 rate. During acetic acid PCD, acid hydrogens combine with CH_3 groups to form CH_4 , whereas for formic acid PCD, acid hydrogens do not combine with each other nor with the hydrogen originally bound to the carbon. Similarly, no H_2 forms during PCD of acetic acid by combining two acid hydrogens.

A TPD performed after PCD detected acetic acid and acetone, CO₂, and H₂O, which are products of bimolecular ketonization of acetic acid, indicating that acetic acid was on the surface when PCD was stopped. This suggests that methyl groups formed during PCD do not remain on the surface, but quickly react to form CH₄ and C₂H₆. These alkane products do not remain on the surface because they are too weakly adsorbed on TiO2 to have significant coverages at room temperature. The H₂O seen during TPD can be from both the ketonization reaction and reaction (2), since H₂O that forms during PCD adsorbs strongly on TiO2. During PCO of a monolayer of acetic acid, both formaldehyde and formate are on the surface [3], but neither was detected during a TPD after PCD. That is, the lattice oxygen does not oxidize the CH₃ groups. Thus, during PCO adsorbed oxygen may be necessary for some oxidation steps, whereas lattice oxygen is used in others.

During PCO of a monolayer of $CH_3^{13}COOH$, $^{13}CO_2$ formation rapidly reaches a maximum rate after the catalyst is exposed to UV irradiation, whereas the rate of $^{12}CO_2$ formation increases slowly to a maximum after 1050 s of illumination, as shown in figure 2. The α -carbon in acetic acid preferentially oxidizes to $^{13}CO_2$, and only at long times

are the rates of ¹²CO₂ and ¹³CO₂ comparable, and eventually the ¹²CO₂ rate is higher. For the time interval in figure 2, the rate of CO₂ formation is greater during PCO than during PCD. The initial rate of CO₂ formation during PCO was twice that during PCD. The rate of CO₂ formation decreased more rapidly after initial illumination during PCD. After 250 s, the PCD rate was 58% of the initial rate, whereas the PCO rate was 83% of the initial rate. As shown in figure 2, ¹²C-formaldehyde is also seen during PCO, but because of calibration difficulties, the scale for formaldehyde is arbitrary. Neither C₂H₆ nor CH₄ are observed during PCO. This suggests that during PCO, methyl groups may form on the surface but they react preferentially with oxygen before they react with either H to form CH₄ or another CH₃ to form C₂H₆.

Both our PCD and PCO transient results are in sharp contrast to the steady-state results of Sclafani et al. [2]. They saw CO₂ and CH₄ as the main products during PCD; their C₂H₆ rates were less than 0.3% of their CH₄ rates. In contrast, our C₂H₆ and CH₄ rates are similar at short times, and the C₂H₆ rate is approximately 10% of the CH₄ rate at longer times. Since they ran for 40-70 h, they may have depleted the lattice oxygen sufficiently that reaction (2) was slower than in our experiments. We cannot explain why their CO₂: CH₄ ratios are so much greater than one, however, unless they had an O2 impurity or an O2 leak, but such a leak would have replenished the lattice oxygen and should have caused C₂H₆ to form. They did not obtain mass balances for their experiments, whereas our results are consistent with the stoichiometry of reactions (1) and (2). Similarly, during PCO they saw CH₄, whereas neither our transient experiments nor other previous studies have seen CH₄ formation during PCO.

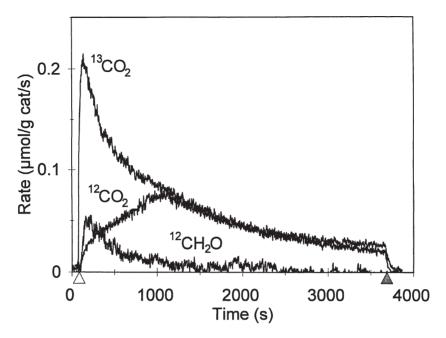


Figure 2. Product formation rates during photocatalytic oxidation of a monolayer of CH₃¹³COOH on TiO₂ in 0.2% O₂ at room temperature. The UV lights were turned on (open triangles) and off (solid triangles) as indicated.

4. Conclusions

Acetic acid decomposes photocatalytically to CO_2 , CH_4 , and C_2H_6 on TiO_2 by two pathways. The first pathway does not require lattice oxygen ($CH_3COOH \rightarrow CH_{4(g)} + CO_{2(g)}$), but the second pathway does ($2CH_3COOH + O_{(1)} \rightarrow C_2H_6 + 2CO_2 + H_2O$). Lattice oxygen diffuses from the bulk during dark times to replenish reduced TiO_2 surfaces. The α -carbon forms CO_2 whereas the β -carbon forms CH_4 and C_2H_6 . No long-lived intermediates are produced during PCD. During PCO, CH_4 and C_2H_6 are not produced because methyl groups react preferentially with oxygen to form formaldehyde, which then oxidizes to formate and eventually CO_2 .

Acknowledgement

We gratefully acknowledge support by the National Science Foundation, Grant #CTS-9714403, and SAK grate-

fully acknowledges support from NSF-REU Grant EEC-9531361.

References

- [1] D.S. Muggli and J.L. Falconer, J. Phys. Chem. (1998), submitted.
- [2] A. Sclafani, L. Palmisano, M. Schiavello, V. Augugliaro, S. Coluccia and L. Marchese, New J. Chem. 12 (1988) 129.
- [3] D.S. Muggli, J.T. McCue and J.L. Falconer, J. Catal. 173 (1998) 470.
- [4] M.R. Nimlos, E.J. Wolfrum, M.L. Brewer, J.A. Fennell and G. Bintner, Environ. Sci. Technol. 30 (1996) 3102.
- [5] M.L. Sauer and D.F. Ollis, J. Catal. 158 (1996) 570.
- [6] S.A. Larson, J.A. Widegren and J.L. Falconer, J. Catal. 157 (1995) 611.