Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of $TiO_2/SiO_2/\gamma$ -Fe₂O₃

Feng Chen and Jincai Zhao*

Institute of Photographic Chemistry, Chinese Academy of Science, Beijing 100101, PR China E-mail: jczhao@ipc.ac.cn

Received 4 January 1999; accepted 9 March 1999

A novel kind of loaded photocatalyst of $TiO_2/SiO_2/\gamma$ - Fe_2O_3 (TSF) that can photodegrade effectively organic pollutants in the dispersion system and can be recycled easily by a magnetic field is reported in this paper. The γ - Fe_2O_3 cores in TiO_2/γ - Fe_2O_3 are found to reduce the activity of the TiO_2 photocatalyst in the photodegradation of dyes under either UV or visible light irradiation. Addition of a SiO_2 membrane between the γ - Fe_2O_3 core and the TiO_2 shell weakens efficiently the influence of the γ - Fe_2O_3 cores on the TiO_2 photocatalytic activity and leads to a highly active and magnetically separable photocatalyst on TSF. Comparison of the photodegradation processes of dyes under UV and visible irradiation is also carried out.

Keywords: loaded photocatalyst, magnetically separable photocatalyst, TiO2

Irradiated TiO_2 shows an enormous potential for the destruction of organic pollutants under either UV [1–4] or visible light [5–8] irradiation. Many studies have been carried out on the application and modification of this semiconductor. TiO_2 -coated hollow glass beads [9], TiO_2/TCO membranes [10,11], and fiberglass loaded with titania [12] have been prepared and used in fixed beds. However, the activity of the photocatalyst in the fixed-bed system is significantly reduced due to the immobility of titania.

In the present paper, a novel kind of loaded photocatalyst $\text{TiO}_2/\text{SiO}_2/\gamma\text{-Fe}_2\text{O}_3$ (TSF), which can photodegrade effectively organic pollutants in the dispersion system and can be recycled easily by a magnetic field, is reported. The photocatalyst is made up of a $\gamma\text{-Fe}_2\text{O}_3$ core, a SiO_2 membrane, and a TiO_2 shell. In this photocatalyst, the TiO_2 shell is the photocatalyst, the $\gamma\text{-Fe}_2\text{O}_3$ core is for separation by the magnetic field and the SiO_2 membrane between titania shell and $\gamma\text{-Fe}_2\text{O}_3$ core is used to weaken the bad influence of the $\gamma\text{-Fe}_2\text{O}_3$ core on the photocatalysis of the TiO_2 shell. The photodegradation of dyes on TSF under UV irradiation is also examined compared with that under visible irradiation.

 γ -Fe₂O₃ (F, particle size \sim 200 nm) was supplied by Tianjin Ferric Oxide Pigment Factory of China. Titania was obtain from Degussa Co. (P25, ca. 80% anatase, 20% rutile, particle size \sim 35 nm). Titania-coated γ -Fe₂O₃ (TF) was prepared by the following method: γ -Fe₂O₃ was mixed with titania at a mass ratio of 1:1, abraded, then after addition of a small quantity of water sonificated, and at last, dried and annealed at 500 °C for 30 min. Silica-coated γ -Fe₂O₃ core with a titania shell (TSF) was prepared by the same way as TF prepared, except that γ -Fe₂O₃ was replaced by silica-coated γ -Fe₂O₃. The silica membrane around the

 γ -Fe₂O₃ core was prepared by stirring γ -Fe₂O₃ cores in a sodium silicate solution (Fenghuangshan Chemical Plant of China) at a fitting pH value for 48 h under sonification, the pH value of the solution was controlled by adding ion exchange resin (732 type, particle size \sim 1 mm, Shanghai Chemical Reagent Stock-Supply Station) to the stirred solution, the SiO₂/ γ -Fe₂O₃ powder formed was washed with water, then dried and finally annealed at 450 °C for 30 min. The photocatalyzed degradation of a dye Fluorescein under UV and visible light irradiation was done to examine the activity of the photocatalyst. The photodegradation of Fluorescein under UV irradiation with a Hg lamp (λ > 330 nm, Toshiba SHLS-1002A, 100 W) is presented in figure 1. As a control experiment, a mixture catalyst (T+F, equal mass

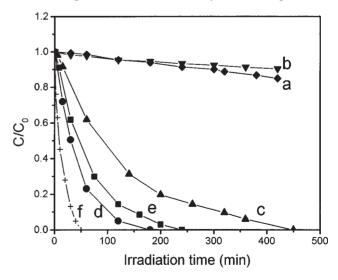


Figure 1. Degradation of Fluorescein (0.39 mmol dm $^{-3}$) with different photocatalysts under UV irradiation: (a) blank, (b) F (1 g dm $^{-3}$), (c) TF (2 g dm $^{-3}$), (d) TSF (2 g dm $^{-3}$), (f) P25 (1 g dm $^{-3}$), (e) T+F (2 g dm $^{-1}$).

^{*} To whom correspondence should be addressed.

mixture of γ -Fe₂O₃ and TiO₂) was also used in our experiments. Curve (a) shows that γ -Fe₂O₃ has no photocatalytic activity under UV irradiation. Among the curves (b)-(e) the same amount of titania was used, but great differences in the degradation of the Fluorescein were observed. Comparing with P25, the photocatalytic activity of TF is markedly depressed. The apparent first-order photodegradation rate constant of P25 is 4.9×10^{-2} min⁻¹ while that of TF is $7.4 \times 10^{-3} \text{ min}^{-1}$. The photodegradation rate by the mixture catalyst T + F is a litle lower than that of P25, the apparent first-order photodegradation rate constant is 1.1×10^{-2} min⁻¹. On the other hand, addition of a SiO₂ membrane between the γ -Fe₂O₃ core and the titania shell can effectively increase the photocatalytic activity of the loaded photocatalyst. The apparent first-order photodegradation rate constant of TSF is 1.65×10^{-2} min⁻¹, markedly higher than that of TF and a little higher than that of T + F. TSF can be well separated by a magnetic field from the degraded solution and the recycled photocatalyst shows a mostly uncharged photocatalytic activity.

Photodegradation rates of Fluorescein under visible light irradiation are illustrated in figure 2. Visible irradiation experiments were carried out using a halogen lamp (Institute of Electric Light Source of Beijing, 500 W) as a visible light source and a light filter was used to cut completely light below 450 nm to guarantee irradiation with visible light. The photodegradation rates of these photocatalysts obey the following order: P25 > T + F > TSF > TF > F. The bad influence of the γ -Fe₂O₃ cores and the function of the silica partition under visible light irradiation are similar to those under UV irradiation.

In order to explain the above phenomena, especially to explain the difference in the photodegradation characteristics on TSF under UV and visible irradiation, a model of TSF is established (scheme 1).

Strong light absorption of the γ -Fe₂O₃ cores under either UV or visible irradiation is one of the important reasons for the lower photocatalytic activity of the loaded catalyst. Because of the strong absorption of the γ -Fe₂O₃ cores, the self-photosensitization of the dye was markedly weakened, and the discoloration of the dye under visible irradiation by F (curve (b)) was much slower than that in the blank reaction (curve (a)). Another important reason is related to the photocatalytic mechanism by UV and visible irradiation. Under visible illumination (note that the TiO₂ particles cannot be excited by visible light), the photodegradation of Fluorescein proceeds by two concurrent routes: (i) a route implicating ¹O₂ [13], which was generated by energy transfer from excited dye to ground state oxygen; and (ii) a route involving electron transfer from an excited state of Fluorescein to photocatalyst particles [5,14,15]. The excited dyes inject electrons to the conduction band (CB) of the titania, then the injected electrons react with the preadsorbed oxygen to form oxidizing species $(O_2^{\bullet -}, \cdot OOH, and$ then •OH radicals) that can bring about the photooxidiation of dyes. After well-knitting of the titania nanoparticles with the γ -Fe₂O₃ cores (photocatalyst TF), a competitive

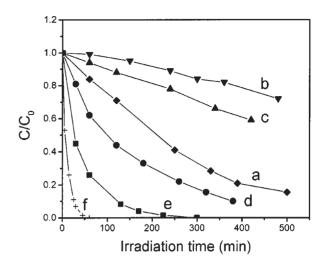
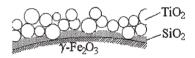



Figure 2. Degradation of Fluorescein (0.39 mmol dm⁻³) with different photocatalysts under visible irradiation: (a) blank, (b) $F(1 \text{ g dm}^{-3})$, (c) TF $(2 \text{ g dm}^{-3}), (d) \text{ TSF } (2 \text{ g dm}^{-3}), (f) \text{ P25 } (1 \text{ g dm}^{-3}), (e) \text{ T+F } (2 \text{ g dm}^{-1}).$

Scheme 1.

process happens in which the generated CB electrons not only react with the oxygen but also inject into the conduction band of the γ -Fe₂O₃, because the CB energy of γ -Fe₂O₃ is lower than that of titania ($E_{CB}(TiO_2) = -0.5 \text{ V}$ vs. NHE at pH 7, $E_{CB}(\gamma - Fe_2O_3) = 0.1 \text{ V vs. NHE at pH 7}$. Because of little activity of γ -Fe₂O₃, the photocatalytic activity of TiO₂/γ-Fe₂O₃ is depressed. Under UV illumination, titania absorbs photons with energy larger than the band gap of the titania to produce electron-hole couples. The produced CB electrons can also inject rapidly into the CB of the γ -Fe₂O₃ cores; and the produced valence band (VB) holes not only inject into the VB of the γ-Fe₂O₃ cores since the VB energy of the γ -Fe₂O₃ is higher than that of the titania ($E_{CR}(titania) = 2.7 \text{ V vs. NHE at pH } 7$, $E_{\rm CB}(\gamma\text{-Fe}_2{\rm O}_3)=2.3~{\rm V}$ vs. NHE at pH 7), but also cause photocatalytic reaction of the substrate. As a good electronhole recombination center [16,17], γ -Fe₂O₃, which has little photocatalytic activity (as shown by curve (b) in figure 1), greatly depressed the photocatalytic activity of the loaded photocatalyst.

Some initial processes for the photocatalytic reaction on TiO₂ have been established, and characteristic times for the various steps in the mechanism under UV and visible irradiation are given as follows:

Under UV irradiation [4,18,19]:

$$TiO_2 + h\nu \rightarrow h_{vb}^+ + e_{cb}^- \quad (fs)$$
 (1)

$$TiO_2 + h\nu \rightarrow h_{vb}^+ + e_{cb}^-$$
 (fs) (1)
 $e_{cb}^- + O_2 \rightarrow > Ti^{IV}OH + O_2^{\bullet -}$ (ms) (2)

$$h_{vb}^{+} + > Ti^{IV}OH \leftrightarrow \left\{> Ti^{IV}OH^{*}\right\}^{+}$$
 (10 ns) (3)
 $\left\{> Ti^{IV}OH^{*}\right\}^{+} + Red \rightarrow$

$$>$$
Ti^{IV}OH + Red^{•+} (100 ns) (4)

Under visible irradiation [4,20–22]:

$$Dye + h\nu \to Dye^* \quad (fs) \tag{5}$$

$$Dye^* + TiO_2 \rightarrow e_{cb}^- + Dye^{++}$$
 (10 ps) (6)

$$e_{cb}^- + O_2 \rightarrow > Ti^{IV}OH + O_2^{\bullet -} \quad (ms)$$
 (2)

The time of the e_{cb}^- and h_{vb}^+ transit to the surface in a nanometer TiO_2 particle is about 1 ps [23,24], the characteristic time of the injection of the e_{cb}^- and h_{vb}^+ from TiO_2 to γ -Fe₂O₃ is shorter than 10 ns [25,26].

For the photocatalyst TF, the mechanism hereinbefore leads to the following relationship:

(1) Under UV irradiation:

$$k_{\rm ei} \gg k_{\rm er}, \qquad k_{\rm hi} \approx k_{\rm hr}.$$

 $k_{\rm ei}$ and $k_{\rm hi}$ are the rate constants of injecting processes of an electron and hole from TiO₂ to γ -Fe₂O₃, respectively; $k_{\rm er}$ and $k_{\rm hr}$ are the rate constant of the reacting process of an electron with preadsorbed oxygen and of a hole with OH⁻ and H₂O, etc.

Because of the injection of charge carriers and the great light absorption of the γ -Fe₂O₃ core, the rate of photodegradation under UV irradiation is depressed greatly.

(2) Under visible irradiation:

$$k_{\rm ei} > k_{\rm er}$$
.

The CB electron in the TiO_2 particle formed by an electron transfer process from the excited dyes can inject to the CB of the γ -Fe₂O₃, which ceases the reaction of the CB electron with oxygen and slows down the photodegradation of dyes. The photocatalytic activity of TF under visible irradiation is strongly depressed due to the prominent advantage of $k_{\rm ei}$ in the competition over $k_{\rm er}$ and the great light absorption of the γ -Fe₂O₃ core. Because the reaction of an electron with oxygen is three orders of magnitude lower than the reaction of a hole with OH⁻ and H₂O, the bad influence of γ -Fe₂O₃ under visible irradiation is expected and found to be much more notable than that under UV light irradiation.

For the photocatalyst TSF, because of the obstruction of the SiO_2 membrane, the values of the k_{ei} and k_{hi} are greatly reduced, the competition between the injecting process and the reacting process of h_{vb}^+ and e_{cb}^- is more favorable to the latter one. Compared with TF, TSF has a much higher photocatalytic activity under either UV or visible irradiation.

It is found that the photocatalytic activity of TSF was a little higher under UV irradiation and lower under visible irradiation than that of T+F. We think this relates to the different mechanism of generation and subsequent reaction of electron and the hole.

In summary, the loaded photocatalyst $TiO_2/SiO_2/\gamma$ - Fe_2O_3 which can be separated easily from the dispersion system by a magnetic field has a high photocatalytic activity. The partition of SiO_2 effectively weakens the bad influence of the γ - Fe_2O_3 cores on the photocatalysis TiO_2 shell. Differences in photocatalytic mechanisms under UV and vis-

ible irradiation lead to the differences in photodegradation characteristics of dyes on TSF.

Acknowledgement

This work was supported financially by the National Natural Science Foundation of China (Nos. 59772033, 29677019 and 29725715), the Foundation of the Chinese Academy of Sciences.

References

- [1] D.F. Ollis and H. Al-Ekabi, eds., *Photocatalytic Purification and Treatment of Water and Air* (Elsevier, Amsterdam, 1993).
- [2] H. Hidaka, J. Zhao, E. Pellizzetti and N. Serpone, J. Phys. Chem. 96 (1992) 2226.
- [3] H. Hidaka, Y. Asai, J. Zhao, E. Pellizzetti and N. Serpone, J. Phys. Chem. 99 (1995) 8244.
- [4] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995) 69.
- [5] J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka and N. Serpone, Environ. Sci. Technol. 32 (1998) 2394.
- [6] J. Zhao, K. Wu, T. Wu, H. Hidaka and N. Serpone, J. Chem. Soc. Faraday Trans. 94 (1998) 673.
- [7] T. Wu, G. Liu, J. Zhao, H. Hidaka and N. Serpone, J. Phys. Chem. B 102 (1998) 5845.
- [8] K. Vinodgopal, D.E. Wynkoop and P.V. Kamat, Environ. Sci. Technol. 30 (1996) 1660.
- [9] N.B. Jackson, C.W. Wang, Z. Luo, J. Schwitzgebel, J.G. Ekerdt, J.R. Brock and A. Heller, J. Electrochem. Soc. 138 (1991) 3660.
- [10] H. Tada and M. Tanaka, Langmuir 13 (1997) 360.
- [11] K. Vindgopal, S. Hotchandani and P.V. Kamat, J. Phys. Chem. 97 (1993) 9040.
- [12] M. Murabayashi, K. Itoh, K. Kawashima, R. Masuda and S. Suzuki, in: *Photocatalytic Purification and Treatment of Water and Air*, eds. D.F. Ollis and H. Al-Ekabi (Elsevier, Amsterdam, 1993) p. 783.
- [13] J.A. Barltrop and J.D. Coyle, eds., Principles of Photochemistry (Wiley, Chichester, 1975).
- [14] L. Zang, P. Qu, J. Zhao, T. Shen and H. Hidaka, Chem. Lett. (1997) 791.
- [15] J. He, J. Zhao, T. Shen, H. Hidaka and N. Serpone, J. Phys. Chem. B 101 (1997) 9027.
- [16] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng and J.Z. Zhang, J. Phys. Chem. 102 (1998) 770.
- [17] M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett and P.R. Trevellick, J. Chem. Soc. Faraday Trans. I 79 (1983) 2027.
- [18] S.T. Martin, H. Herrmann, W. Choi and M.R. Hoffmann, Trans. Faraday Soc. 90 (1994) 3315.
- [19] S. Martin, H. Herrmann and M.R. Hoffmann, Trans. Faraday Soc. 90 (1994) 3323.
- [20] P.V. Kamat, S. Das, K.G. Thomas and M.V. George, Chem. Phys. Lett. 178 (1991) 75.
- [21] F. Willig, R. Eichberger, N.S. Sundaresan and B.A. Parkinson, J. Am. Chem. Soc. 112 (1990) 2702.
- [22] R.W. Fessenden and P.V. Kamat, J. Phys. Chem. 99 (1995) 12902.
- [23] M. Graetzel and A. Frank, J. Phys. Chem. 86 (1982) 2964.
- [24] J. Lantz and R. Corn, J. Phys. Chem. 98 (1994) 9387.
- [25] K.R. Gopidas, M. Bohorquez and P.V. Kamat, J. Phys. Chem. 94 (1990) 6435.
- [26] A.M. Chaparro and H. Tributsch, J. Phys. Chem. B 101 (1997) 7428.
- [27] W. Choi, A. Termin and M.R. Hoffmann, J. Phys. Chem. 98 (1994) 13669.