Oxidative dehydrogenation of ethane by carbon dioxide over sulfate-modified Cr₂O₃/SiO₂ catalysts

Shaobin Wang, K. Murata, T. Hayakawa, S. Hamakawa and K. Suzuki

Department of Surface Chemistry, National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305-8565, Japan E-mail: swang@nimc.go.jp

Received 21 May 1999; accepted 2 September 1999

The oxidative dehydrogenation of ethane into ethylene by carbon dioxide over unsupported Cr_2O_3/SiO_2 and a series of Cr_2O_3/SiO_2 catalysts modified by sulfate was investigated. The results show that Cr_2O_3/SiO_2 is an effective catalyst for dehydrogenation of ethane and CO_2 in the feed promotes the catalytic activity. Sulfation of silica will influence the catalytic behavior of Cr_2O_3/SiO_2 in dehydrogenation of ethane with carbon dioxide depending on the amount of sulfate. $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 catalysts exhibit an excellent performance for this reaction, giving an ethylene yield of 55% at 67% ethane conversion at 650 °C. Characterizations indicate that addition of sulfate changes the bulk and surface properties of Cr_2O_3/SiO_2 , promoting the reduction of Cr^{6+} to Cr^{3+} and favoring the catalytic conversion.

Keywords: ethane dehydrogenation, ethylene, CO₂, Cr₂O₃, sulfated silica

1. Introduction

The oxidative dehydrogenation of ethane by oxygen into ethylene has been proposed as an alternative to the process of thermal cracking of ethane. In the last decade, a great variety of catalysts have been developed for this reaction [1–3]. However, due to the exothermic characteristic of this reaction, it is necessary to remove heat and avoid overoxidation of ethylene to carbon oxides so as to give high selectivity towards ethylene. Therefore, it is required to develop more selective catalysts which can depress the deep oxidation or to explore weak oxidants replacing oxygen in this process.

Carbon dioxide as one of the major greenhouse gases has been recently considered as a source of carbon. Catalytic hydrogenation of carbon dioxide into several organic compounds has been intensively studied. Carbon dioxide can also act as a mild oxidant. Utilization of carbon dioxide in some partial oxidation reactions, such as CO2 reforming of methane [4], oxidative coupling of methane [5], and oxidative dehydrogenation of ethane [6] and propane [7], has been reported. Wang et al. [8] investigated the effect of CO₂ on the selectivities in partial oxidation of methane and ethane over Li/MgO catalysts and reported that CO₂ either formed during reaction or added to the system increased the selectivity for the desired hydrocarbon products in the two reactions. CO₂ has a poisonous effect on the secondary reactions of alkyl radicals with the surface thus inhibiting deep oxidation. Nakagawa et al. [6] studied the dehydrogenation of ethane by carbon dioxide over several metal oxides and found that gallium oxide is an effective catalyst for this reaction, giving 18.6% ethylene yield with a selectivity of 94.5% at 650 °C. Takahara and Saito [7] investigated the effect of CO₂ on the hydrogenation of propane over supported Cr_2O_3 catalysts. They found that carbon dioxide exerted a promoting effect only on the SiO_2 -supported Cr_2O_3 catalyst. Zhaorigetu et al. [9] also reported the promoting effect by carbon dioxide over rare earth vanadates in the oxidative dehydrogenation of propane.

Cr₂O₃-based catalysts have been proved active for the dehydrogenation of alkanes. Ashmawy [10] studied ethane dehydrogenation over Cr₂O₃/Al₂O₃ catalysts. Lugo and Lunsford [11] also investigated the dehydrogenation of ethane over Cr₂O₃/SiO₂. Recently, El-Idrissi et al. [12] investigated the effect of phosphorus introduction in Cr₂O₃/TiO₂ for the oxidative dehydrogenation of ethane with oxygen and found that addition of phosphorus improved the global conversion and ethylene selectivity. We have found that sulfation of zirconia enhanced the catalytic activities of ZrO2 supported catalysts in the oxidative dehydrogenations of ethane [13] and propane [14]. We also studied several supported chromium catalysts in the oxidative dehydrogenation of ethane in the presence of CO₂ and found that Cr₂O₃/SiO₂ catalysts exhibited excellent performance for this reaction [15]. It is well known that catalytic properties of supported chromium catalysts are strongly influenced by the acidity/basicity of the oxide support. Modification of support will probably promote the catalytic conversion. In this work, we studied the effect of sulfation of silica on the activity of supported Cr₂O₃ catalysts in the oxidative dehydrogenation of ethane with carbon dioxide.

2. Experimental

A commercial silica gel obtained from Wako Chemicals was used as a support and raw material for the preparation

of sulfated silica. Sulfated silica samples were prepared by wetness impregnation of ammonium sulfate solution, drying at $105\,^{\circ}\text{C}$ and then calcination at $700\,^{\circ}\text{C}$ for 3 h. Cr_2O_3 -based catalysts were prepared by impregnating chromium nitrate (Wako Chemicals) on the silica and sulfated silica supports, drying under constant stirring and calcination at $700\,^{\circ}\text{C}$ for 3 h. The loading of Cr_2O_3 was kept at 5 wt%. A pure Cr_2O_3 sample obtained from Soekawa Chemicals was also used as a catalyst for a reference.

BET surface areas of the support and catalysts were determined by nitrogen adsorption at $-196\,^{\circ}\text{C}$ on a Micromeritics volumetric equipment provided by Shimadzu. XRD patterns of catalysts were obtained on a Philips PW 1800 X-ray diffractometer at 40 kV and 40 mA. XPS measurements were carried out in a PHI 5500 ESCA system (Perkin–Elmer) with Mg K α as radiation source. Temperature-programmed reduction (TPR) experiments were conducted in a fixed-bed reactor loaded with 0.5 g samples. The samples were reduced in 10% H₂/Ar flow at a rate of 30 ml/min from ambient temperature to 700 °C at a heating rate of 3 °C/min. Before TPR the samples were treated under Ar gas flow of 30 ml/min to 700 °C at the heating rate of 5 °C/min and then further treated at the same temperature for 30 min.

The selective oxidative dehydrogenation of ethane was performed at atmospheric pressure in a fixed-bed vertical-flow reactor constructed from a high-purity alumina tube (i.d. = 6 mm) packed with 1 g catalysts and 2 g quartz sand and mounted inside a tube furnace. The reactant stream consisting of 10% ethane, 50% carbon dioxide and 40% nitrogen (or $C_2H_6:He:N_2=10:50:40$) was introduced into the reactor at the flow rate of 60 ml/min. The reaction temperature ranged between 500 and 650 °C. Samples were taken for analysis after 10 min flow at each temperature. The products were analyzed by two gas chromatographs (Shimadzu, GC-8A) equipped with a Porapak Q column using FID for hydrocarbons and a 5A molecular sieve column for CO, CO₂, CH₄, O₂, N₂, and H₂ using TCD. Water produced in the reaction was collected using a cold-trap.

3. Results

3.1. Dehydrogenation of ethane over Cr₂O₃/SiO₂ in the absence or in the presence of CO₂

The dehydrogenations of ethane in the absence and presence of carbon dioxide over Cr_2O_3/SiO_2 were firstly investigated under similar conditions. Figure 1 presents the results of catalytic performance as a function of temperature in the two processes. It is shown that Cr_2O_3/SiO_2 exhibits high ethane conversion and ethylene selectivity in the dehydrogenation of ethane and ethane conversion increases with increasing temperature. As the conversion increases, ethylene selectivity shows a decreasing trend. At 650 °C, 50% ethane conversion with 90% ethylene selectivity can be obtained. Addition of CO_2 in the feed enhances not only

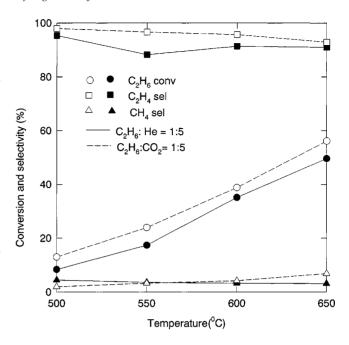


Figure 1. Catalytic performance of Cr_2O_3/SiO_2 catalysts as a function of temperature in dehydrogenation of ethane in absence or presence of carbon dioxide. Reaction conditions: 1 g catalyst, C_2H_6 : $He(CO_2) = 1:5$, flow rate = 60 ml/min.

the ethane conversion but also the ethylene selectivity. In this reaction $\text{Cr}_2\text{O}_3/\text{SiO}_2$ exhibits 93% ethylene selectivity at 56% ethane conversion with 52% ethylene yield at 650 °C. In the two processes, however, it was found that there were carbon deposits formed on the used catalysts in the process of dehydrogenation of ethane without carbon dioxide. No carbon was deposited on catalysts when CO_2 was present in the flow. This suggests that CO_2 favors the dehydrogenation of ethane and inhibits carbon deposition.

3.2. Catalytic performance over various sulfate-modified supported Cr₂O₃/SiO₂ catalysts

Table 1 lists the catalytic conversion and product distributions in the oxidative dehydrogenation of ethane with carbon dioxide over silica, Cr₂O₃, unmodified Cr₂O₃/SiO₂, and Cr₂O₃/6 wt% SO₄²⁻-SiO₂ catalysts at various temperatures. It is seen that catalytic conversion increases with increasing temperature for all catalysts. Silica gel shows little activity in CO₂ oxidative dehydrogenation of ethane below 600 °C. It exhibits only 2% ethane conversion at 650 °C, indicating that the homogeneous reaction and the support will not make significant contributions to the activity of the supported Cr₂O₃/SiO₂ catalysts in this heterogeneous reaction. The products are only ethylene, methane and hydrogen. No CO and water formed in the reaction. Cr₂O₃ is an active and selective catalyst in the oxidative dehydrogenation of ethane by CO₂, presenting ethane conversion as high as 22% with 87% ethylene selectivity at 650 °C. It is noted that CO2 conversions are higher than ethane conversions at all temperatures, suggesting that Cr₂O₃ is very active for CO₂ activation. The Cr₂O₃/SiO₂ catalyst shows high activity and selectivity to ethylene. C₃H₈ and ethanol

Catalyst	T	Conversion (%)		Selectivity (%)				C ₂ H ₄ yield	
	(°C)	C ₂ H ₆	CO ₂	C_2H_4	CH ₄	C_3H_8	EtOH	CO/H ₂	(%)
SiO ₂	500	0.03	0.01	92.3	7.7	0	0	0	0.03
	550	0.09	0.02	94.5	5.5	0	0	0	0.08
	600	0.3	0.05	96.2	3.8	0	0	0	0.29
	650	2.2	0.8	97.2	2.8	0	0	0	2.1
Cr ₂ O ₃	500	1.1	4.5	94.4	5.6	0	0	19.2	1.0
	550	6.2	9.5	97.7	2.3	0	0	9.9	6.0
	600	12.1	16.8	95.4	4.6	0.03	0	4.8	11.6
	650	22.5	29.4	87.0	12.9	0.06	0	3.2	19.6
Cr ₂ O ₃ /SiO ₂	500	13.0	3.2	98.0	1.95	0.05	0	1.1	12.7
	550	23.9	5.9	96.7	3.3	0.07	0	1.2	23.1
	600	38.8	9.6	95.7	4.2	0.1	0	1.4	37.1
	650	56.1	14.6	92.9	6.8	0.2	0.08	1.8	52.1
$Cr_2O_3/6$ wt% SO_4^{2-} - SiO_2	500	16.8	7.5	95.8	4.1	0.06	0	1.9	16.1
	550	30.4	11.0	93.2	6.6	0.11	0.09	2.1	28.3
	600	48.6	15.8	88.7	11.0	0.17	0.13	2.6	43.1
	650	67.2	21.9	81.8	17.8	0.26	0.14	2.9	55.0

Table 1 Catalytic activities of various supported Cr2O2 catalysts at 650 °C

can be produced over Cr₂O₃/SiO₂ catalysts besides ethylene and methane. Although ethylene selectivity decreases as ethane conversion increases, ethylene selectivities are still over 92% at all temperatures. Ethane conversion can reach 56% and 52% ethylene yield can be attained at 650 °C. As seen from the table, ethane and CO2 conversions as well as ethylene yield are all enhanced when Cr₂O₃/SiO₂ catalysts are modified by sulfation. However, methane selectivity is also increased, suggesting that sulfation favors the dissociation of ethane because of the increase in acidity. When ethane conversion increases, ethylene selectivity decreases. As compared with Cr_2O_3/SiO_2 , $Cr_2O_3/6$ wt% SO_4^{2-} - SiO_2 exhibits 67% ethane conversion and 55% ethylene yield, respectively, at 650 °C.

Figure 2 shows the effect of sulfate content in the Cr₂O₃/ SO_4^{2-} –SiO₂ system on catalytic performance at 650 °C. It is seen that ethane and CO₂ conversions increase with increasing sulfate content and reach the highest levels at 6-10 wt% sulfate in Cr_2O_3/SO_4^{2-} –SiO₂ catalysts. However, ethylene selectivity decreases with the increasing ethane conversion. From the viewpoint of ethylene yield, 2-6 wt% sulfate will be the optimum at which catalysts can produce an ethylene yield around 55%.

The catalytic stabilities of the Cr₂O₃/SiO₂ and Cr₂O₃/ 6 wt% $SO_4^{2-}\text{--SiO}_2$ catalysts at 650 °C are shown in figure 3. One can see that the two catalysts exhibit slight deactivations with similar variation patterns, however, the deactivation rates are all very low. With the decrease in ethane conversion, ethylene selectivity increases. After 6 h, ethane conversions over Cr₂O₃/SiO₂ and Cr₂O₃/6 wt% SO₄²-SiO₂ decrease from 56 and 67% to 45 and 57%, respectively.

3.3. Catalyst characterization

BET surface areas of the support and supported Cr₂O₃ catalysts are listed in table 2. One can see that impregnation

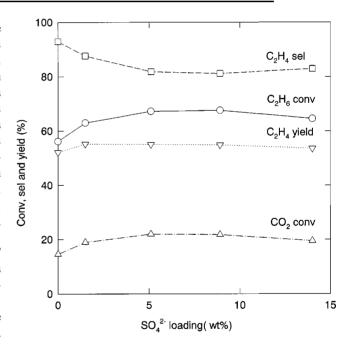


Figure 2. Effect of sulfate loading in Cr₂O₃/SiO₂ system on catalytic activity. Reaction conditions: 1 g catalyst, C2H6:CO2 = 1:5, flow rate = 60 ml/min, T = 650 °C.

of Cr₂O₃ did not significantly reduce the surface area of the support SiO₂. Modification of Cr₂O₃/SiO₂ can affect its surface area depending on the sulfate content. Only at high sulfate loading, the surface area of Cr₂O₃/SiO₂ will be reduced but at low extent.

The XRD patterns of the SiO₂ support, and the Cr₂O₃/ SiO_2 and $Cr_2O_3/6$ wt% $SO_4^{2-} - SiO_2$ catalysts are shown in figure 4. SiO₂ gel is present as an amorphous phase. Cr₂O₃ reflectance peaks are appearing on the two Cr₂O₃-based catalysts. However, peak intensities of Cr2O3 are reduced and shifted on $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 , indicating a better dispersion and structure change occurring for Cr₂O₃ in SiO₂.

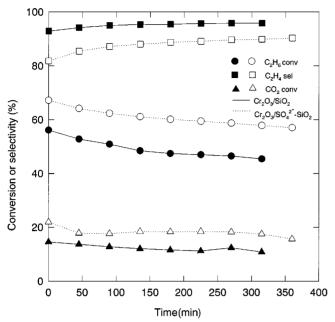


Figure 3. Stability of Cr_2O_3/SiO_2 and $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 catalysts at 650 °C. Reaction conditions: 1 g catalyst, $C_2H_6:CO_2=1:5$, flow rate = 60 ml/min.

 $\begin{tabular}{lll} Table 2 \\ Surface areas of the support and various Cr_2O_3-based catalysts. \end{tabular}$

Catalyst	$S_{ m BET}$ $({ m m}^2/{ m g})$
SiO ₂	338
Cr_2O_3/SiO_2	334
$Cr_2O_3/2$ wt% SO_4^{2-} - SiO_2	333
$Cr_2O_3/6$ wt% SO_4^{2-} - SiO_2	337
$Cr_2O_3/10$ wt% SO_4^{2-} - SiO_2	314
$Cr_2O_3/15$ wt% SO_4^{2-} – SiO_2	303

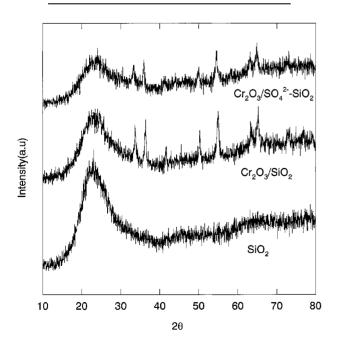


Figure 4. XRD patterns of the SiO₂ support and Cr₂O₃/SiO₂ catalysts.

 $\label{eq:Table 3} Table \ 3$ Surface concentration of chemical elements on $Cr_2O_3\text{-based}$ catalysts.

				-
Catalyst	Cr (%)	Cr ³⁺ BE (eV)	Cr ⁶⁺ BE (eV)	Cr ⁶⁺ /Cr ³⁺
Cr ₂ O ₃ /SiO ₂	3.59	576.8	579.3	0.54
$Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2	3.16	576.2	578.2	0.61

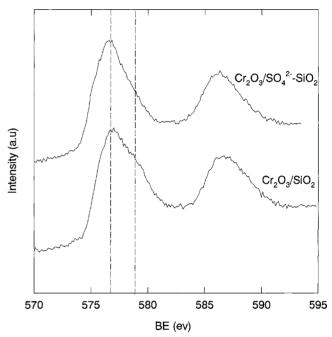


Figure 5. XPS spectra of Cr 2p over Cr_2O_3/SiO_2 and $Cr_2O_3/6$ wt% $SO_4^{2-}-SiO_2$ catalysts.

The surface concentrations of Cr species determined by XPS measurements are given in table 3 and Cr 2p spectra are shown in figure 5. It is seen from the table that the surface concentrations of Cr on $\text{Cr}_2\text{O}_3/\text{SiO}_2$ and $\text{Cr}_2\text{O}_3/6$ wt% $\text{SO}_4^{2-}\text{-SiO}_2$ are similar. However, their XPS spectra appear somewhat different. The peaks in $\text{Cr}_2\text{O}_3/6$ wt% $\text{SO}_4^{2-}\text{-SiO}_2$ spectrum show a shift to lower binding energy. Two Cr species can be found by curve fitting and they are assigned to Cr^{3+} and Cr^{6+} , whose binding energies (BE) are given in table 3. The ratios of the two Cr species on the two catalysts also show different values. Sulfation of silica increases the ratio of high valence Cr species on the catalyst surface.

The TPR profiles of SiO_2 , Cr_2O_3 , Cr_2O_3/SiO_2 and $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 are presented in figure 6. No reduction peaks occur for the silica support while a weak reduction peak appears between 200 and 300 °C in the TPR profile of pure Cr_2O_3 . There is one peak at 460 °C in the TPR profile of Cr_2O_3/SiO_2 . Two peaks appear at 440 and 660 °C, respectively, for the sulfated-silica-supported Cr_2O_3 . It is noted that a shoulder peak at 400 °C is also observed on $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 . This suggests that sulfation of silica decreased the interaction between support and metal oxide, resulting in the higher reducibility of Cr_2O_3 . The comparison between the two TPR profiles also

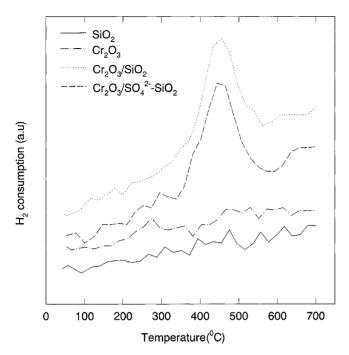


Figure 6. TPR profiles over the support SiO2, Cr_2O_3 , and Cr_2O_3/SiO_2 catalysts.

shows that there is a slight increase in the peak area on $Cr_2O_3/6$ wt% SO_4^{2-} – SiO_2 , indicating that there is a higher amount of reducible oxygen species in this sample.

4. Discussion

Both supported chromium and α -Cr₂O₃ are known to be active catalysts for the dehydrogenation of alkanes. However, there is a debate on the active sites. In the opinion of some authors the dehydrogenation active species is Cr³⁺ while others suggested both Cr²⁺ and Cr³⁺ or solely Cr²⁺ as active sites. Ashmawy [10] studied the dehydrogenation of ethane over Cr₂O₃/Al₂O₃ catalysts and proposed that both Cr2+ and Cr3+ are active for the reaction and Cr²⁺ is the more active ion. Lugo and Lunsford [11] investigated the oxidative dehydrogenation of ethane over α -Cr₂O₃, Cr₂O₃/Al₂O₃, Cr₂O₃/SiO₂ and Cr₂O₃/Y-zeolite and reported that Cr²⁺ ions acted as active sites. Konig and Tétényi [16] have explored the dehydrogenation of ethane on α -Cr₂O₃, and have identified coordinatively unsaturated Cr³⁺ ions as the active sites. El-Idrissi et al. [12] studied the oxidative dehydrogenation of ethane over Cr₂O₃/TiO₂ and found the catalytic activity could be attributed to the isolated Cr³⁺ species on the support. Loukah et al. also reported that the activity on layered zirconium phosphate exchanged with Cr3+ ions catalysts was to be attributed to Cr³⁺ ions in specific environments or/and to small Cr³⁺ clusters [17,18]. In this investigation it is found that two surface Cr species, Cr3+ and Cr6+, exist on the Cr2O3based catalysts. TPR experiments also show that reduction of Cr₂O₃-based catalysts will occur at lower temperatures, which can be the process of $Cr^{6+} \rightarrow Cr^{3+}$. Similar process can occur when ethane is introduced in the reactor. Thus it is proposed that Cr³⁺ ions will be the active sites for the dehydrogenation of ethane.

In this investigation it has been found that addition of carbon dioxide in the feed enhanced the catalytic activity of ethane dehydrogenation and a large amount of water and CO were formed. This suggests that CO₂ molecules could be dissociated into CO and surface oxygen species, which could abstract hydrogen from ethane and prevent the deposition of coke, and that the redox property of chromium species on catalysts will play an important role for the oxidative dehydrogenation. XPS results revealed the presence of Cr⁶⁺/Cr³⁺ couples on the fresh Cr₂O₃-based catalysts. Measurements also show the existence of Cr⁶⁺ and Cr³⁺ species on catalysts after reaction. It is logical to assume that the reaction pathways involve the reduction of Cr⁶⁺ groups by ethane at the initial stage and H₂ produced thereafter and reoxidation of Cr³⁺ ions by surface oxygen species produced by CO₂ or CO₂ itself. Therefore, the reaction paths occurring in the dehydrogenation of ethane by carbon dioxide can be proceeded as follows:

$$C_2H_6 \to C_2H_4 + H_2$$
 (1)

$$H_2 + CO_2 \rightarrow CO + H_2O \tag{2}$$

$$3C_2H_6 + 2CrO_3 \rightarrow 3C_2H_4 + Cr_2O_3 + 3H_2O$$
 (3)

$$Cr_2O_3 + 3CO_2 \rightarrow 3CO + 2CrO_3$$
 (4)

The different activity of Cr₂O₃-based catalysts can be attributed to the varying chromium structure and redox properties of the catalysts prepared. It has been reported that bulk Cr₂O₃ showed lower activity than those of supported Cr₂O₃ catalysts because crystalline Cr³⁺ species in Cr₂O₃ were less active than the amorphous Cr³⁺ in the supported Cr₂O₃ catalysts in the dehydrogenation of alkanes [11,19,20]. TPR has shown that a weak reduction can occur on unsupported Cr₂O₃. These probably account for the lower activity of unsupported Cr₂O₃. XPS results demonstrate that there is no significant difference of chromium content on Cr_2O_3/SiO_2 and $Cr_2O_3/6$ wt% SO_4^{2-} -SiO₂. However, Cr⁶⁺/Cr³⁺is higher on sulfated-silica-supported catalyst. This is believed to increase the redox potential and has been reflected in the TPR profile. Cr₂O₃/6 wt% SO₄²-SiO₂ exhibits three larger reduction peaks between 300 and 700 °C, indicating the high reducibility of the catalyst. In addition, XRD shows a higher Cr dispersion and a shift in diffraction peak suggesting the crystalline defect which can induce dehydrogenation reaction.

5. Conclusions

In this investigation it is found that Cr_2O_3/SiO_2 catalysts are effective and selective for ethane dehydrogenation into ethylene in the absence and presence of carbon dioxide. Addition of CO_2 promotes the ethylene yield and prevents carbon deposition. Addition of sulfate to Cr_2O_3/SiO_2 catalysts changes the surface properties of Cr_2O_3/SiO_2 and

affects the redox property of Cr oxides, resulting in high activity and stability of the sulfated-silica-supported Cr_2O_3 catalysts. Cr^{3+} species and Cr^{6+}/Cr^{3+} couples are believed to be the active sites for the dehydrogenation reaction.

References

- [1] T. Blasco and J.M. Lopez-Nieto, Appl. Catal. 157 (1997) 117.
- [2] F. Cavani and F. Trifirò, Catal. Today 24 (1995) 307.
- [3] E.A. Mamedov and V. Cortes-Corberan, Appl. Catal. 127 (1995) 1.
- [4] S. Wang, G.Q. Lu and G.J. Millar, Energy Fuels 10 (1996) 896.
- [5] T. Nishiyama and K. Aika, J. Catal. 122 (1990) 346.
- [6] K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki and T. Kobayashi, J. Chem. Soc. Chem. Commun. (1998) 1025.
- [7] I. Takahara and M. Saito, Chem. Lett. (1996) 973.
- [8] D. Wang, M. Xu, C. Shi and J.H. Lunsford, Catal. Lett. 18 (1993) 323
- [9] B. Zhaorigetu, R. Kieffer and J.-P. Hindermann, Stud. Surf. Sci. Catal. 101 (1996) 1049.

- [10] F.M. Ashmawy, J. Chem. Soc. Faraday Trans. I 76 (1980) 2096.
- [11] H.J. Lugo and J.H. Lunsford, J. Catal. 91 (1985) 155.
- [12] J. El-Idrissi, M. Kacimi, F. Bozon-Verduraz and M. Ziyad, Catal. Lett. 56 (1998) 221.
- [13] S. Wang, K. Murata, T. Hayakawa, S. Hamakawa and K. Suzuki, J. Chem. Soc. Chem. Commun. (1999) 103.
- [14] S. Wang, K. Murata, T. Hayakawa, S. Hamakawa and K. Suzuki, Chem. Lett. (1999) 27.
- [15] S. Wang, K. Murata, T. Hayakawa, S. Hamakawa and K. Suzuki, Appl. Catal. A, submitted.
- [16] P. Konig and P. Tétényi, Acta Chim. Acad. Sci. Hung. 89 (1976) 123.
- [17] M. Loukah, G. Coudurier, J.C. Vedrine and M. Ziyad, Micropor. Mater. 4 (1995) 345.
- [18] M. Loukah, G. Coudurier, J.C. Vedrine and M. Ziyad, Stud. Surf. Sci. Catal. 72 (1992) 191.
- [19] L.R. Mentasty, O.F. Gorriz and L.E. Cadus, Ind. Eng. Chem. Res. 38 (1999) 396.
- [20] S. de Rossi, M.P. Casaletto, G. Ferraris, A. Cimino and G. Minelli, Appl. Catal. 167 (1998) 257.