Pd/polyaniline as the catalysts for 2-ethylanthraquinone hydrogenation. The effect of palladium dispersion

A. Drelinkiewicz^a, M. Hasik^b and M. Kloc^a

^a Department of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
^b Department of Materials Science and Ceramics, Academy of Mining and Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland

Received 25 May 1999; accepted 28 October 1999

By doping of polyaniline (PANI) in $PdCl_2$ aqueous and ethanol solutions the catalysts containing crystalline and colloidal Pd particles of different sizes were prepared. The size of palladium particles present in Pd/PANI catalysts (characterised by SEM and XRD methods) influenced the course of 2-ethylanthraquinone (eAQ) hydrogenation, a key step in the industrial production of H_2O_2 . The presence of large palladium particles promotes reactions leading to the formation of the so-termed "degradation products" not capable of hydrogen peroxide formation.

Keywords: 2-ethylanthraquinone, polyaniline, palladium catalyst, hydrogenation

1. Introduction

Catalytic hydrogenation of 2-ethylanthraquinone (eAQ) is the key reaction in the anthraquinone method of H₂O₂ production [1,2] (scheme 1). However, 2-ethylanthrahydroquinone (eAQH₂), the primary product of eAQ reduction, is partly hydrogenated to different products. among which only 2-ethyltetrahydroanthrahydroaquinone (H₄eAQH₂) is desired (scheme 2) because it can participate in the oxidation reaction leading to H₂O₂ formation (similar to scheme 1). Therefore, eAQ and H₄eAQ are termed "active quinones" while all other products formed (2-ethyloctahydroanthraquinone, 2-ethylanthrone, 2-ethylanthracene, 2-ethyloxanthrone, dimers [1–4]) not capable of H₂O₂ formation are termed "degradation products". From a technological point of view the formation of low amount of degradation products is required. In the hydrogenation stage of the anthraquinone method palladium catalysts supported on Al₂O₃, SiO₂ and silica-alumina are commonly applied [1,2]. Data presented in patent literature [5] show that also Pd²⁺-polyethylenimine systems have recently been applied. Therefore, it seems interesting to investigate the possibility of using a palladium catalyst supported on another polymer - polyaniline (PANI) - because PANI was successfully used as a support for Pd and Pt catalysts exhibiting interesting behaviour in hydrogena-

Scheme 1.

tion of unsaturated hydrocarbons [6] as well as nitrobenzene [7].

On the basis of our previous investigations concerning the nature of interaction in Pd²⁺–PANI systems [8,9], catalysts with different metal dispersion were prepared. PANI is a conjugated polymer whose repeating unit is represented by the formula

It consists of y reduced and (1-y) oxidized units. Since the value of y lies in the range of $0 \le y \le 1$, the polymer can continuously change its oxidation state from the fully reduced (y=1) to the fully oxidized (y=0) one. Additionally, owing to basic properties (presence of nitrogen atoms) PANI undergoes easily protonation reactions with acids giving PANI salts. Thus, PANI reacts readily in the redox as well as acid-base reactions.

It has been found earlier [8] that depending on the type of Pd²⁺ chlorocomplexes existing in the PdCl₂–H₂O–HCl solution (influenced mainly by HCl concentration [8]) the doping process of PANI via an acid–base or redox mechanism was realised. The former was the major one in the PdCl₂ solutions of high acidity containing significant amounts of [PdCl₄]²⁻ complexes [10]. In the solutions of low acidity in which the electrically neutral [PdCl₂(H₂O)₂] complexes were the major species [10] the redox reaction was involved resulting in the reduction of Pd²⁺ to Pd⁰ accompanied by oxidation of the PANI chain (partial transformation of –NH– to =N– groups [9]). Palladium created in this process was present in the form of large crystalline particles. This latter procedure of catalysts preparation was used in the present investigations. By changing the concen-

Scheme 2.

Table 1
The conditions of catalysts preparation and catalysts properties.

Catalyst	Solvent	PdCl ₂ (mol/dm ³)	HCl (mol/dm ³)	Pd (%)	Pd ⁰ (%)	Pd ²⁺ (%)	Pd ⁰ /Pd (%)
L	H ₂ O	1.15×10^{-3}	0.33×10^{-3}	6	3.73	2.27	62.2
M	H_2O	2.3×10^{-3}	0.66×10^{-3}	6	4.35	1.65	72.5
\mathbf{S}	H_2O	6.9×10^{-3}	2.0×10^{-3}	6	4.5	1.5	75
E	Ethanol	0.14	_	6	4.25	1.75	70.8

tration of $[PdCl_2(H_2O)_2]$ in the doping solution Pd/PANI catalysts containing palladium crystalline particles of various size were prepared. Additionally, using a solution of $PdCl_2$ in ethanol PANI-supported colloidal Pd was obtained.

The aim of the present research was to study the change of the amount of active quinones (eAQ, H₄eAQ) in the course of eAQ hydrogenation over Pd/PANI catalysts with different palladium dispersion.

2. Experimental

2.1. Preparation procedure

Polyaniline in its polyemeraldine base form (y=0.5, PANI) (BET surface area 46 m²/g) was prepared according to a standard procedure [11]. Aniline was oxidized with $(NH_4)_2S_2O_8$ in hydrochloric acid followed by deprotonation in an aqueous solution of ammonia.

The conditions of catalysts preparation are given in table 1. Two types of $PdCl_2$ solutions were used, aqueous containing HCl for catalysts \mathbf{L} , \mathbf{M} and \mathbf{S} preparation, and ethanol for catalyst \mathbf{E} preparation.

In aqueous solutions the concentration of $PdCl_2$ ranged from 1.15×10^{-3} to 6.9×10^{-3} mol/dm³, while the concentration of HCl was chosen in such a way that the molar ratio HCl: $PdCl_2$ was equal to 0.28 in all solutions. Under such conditions the dominating palladium complex $[PdCl_2(H_2O)_2]$ was the same in all solutions, while its concentration was different. It was the highest in the solution used for the preparation of catalyst **S**. This was spectroscopically (UV-vis) confirmed in our earlier investigation [8]. Doping of PANI by Pd^{2+} ions was performed by exposure of PANI powder at room temperature to the appropriate volume of $PdCl_2$ solution to obtain the same total content of palladium in the final sample equal to 6 wt% (table 1).

The suspension was stirred up to the complete disappearance of Pd^{2+} ions in solution. This was achieved after 24 h in solution **S**, while in solution **L** this time period was two times longer. In ethanol solution sorption of palladium was complete after 60 h.

The colorimetric method (based on the reaction between palladium ions and KI leading to the formation of $[PdI_4]^{2-}$ ions [13]) was used for controlling the presence of Pd^{2+} ions in solution during catalysts preparation and for determining the amount of Pd^{2+} in the catalysts. In the latter case the unreduced palladium present in the catalysts was extracted several times with a 2 M solution of HCl. The extraction procedure was repeated until a portion of washing solution free from palladium was obtained. The amount of Pd^0 in the catalysts was calculated as the difference between the total amount of Pd (known from the amount of the solution used for catalyst preparation) and the amount of Pd^{2+} colorimetrically determined.

2.2. Catalysts characterisation

The catalysts were characterised using SEM (Philips XL-30) and X-ray diffraction (HZG 4 diffractometer with Cu K_{α} radiation) studies. SEM was equipped with an X-ray microprobe which made it possible to carry out Pd element distribution studies.

2.3. Catalytic experiments

2-ethylanthraquinone (eAQ) hydrogenation was carried out under stirred batch reactor conditions at constant atmospheric pressure of hydrogen, temperature 64 °C using as the solvent a mixture of xylene–octanol-2 (1:1 volume ratio) [14]. The course of hydrogenation was followed by measuring the volume of hydrogen consumed as a function of reaction time. During the reaction the samples of solution were taken from the reactor, oxidized with air and the

amount of H_2O_2 formed was determined by titration (using KMnO₄). The concentration of eAQ and H_4eAQ in the oxidized solution was determined by HPLC [4,14]. Since the oxidation of eAQH₂ and H_4eAQH_2 is rapid and quantitative it was assumed that the number of moles of eAQH₂ and H_4eAQH_2 in the hydrogenated solution was equal to the number of moles of eAQ and H_4eAQ determined with HPLC analysis.

In a typical experiment 40 cm 3 of eAQ solution (eAQ 40 g/dm 3) and 0.2 g of catalyst were used. Pristine samples of all catalysts **S**, **M**, **L** and **E** were used in hydrogenation experiments. It was colorimetrically controlled that no change in Pd 0 and Pd $^{2+}$ content occurred during the hydrogenation tests.

3. Results

In all investigated samples **S**, **M**, **L** and **E**, Pd^0 was formed during catalyst preparation, and its content was practically the same equal to about 4 wt% (table 1). In the catalysts (**S**, **M** and **L**) prepared in aqueous solution of a $PdCl_2$, Pd^0 was formed as the result of a Pd^{2+} – PANI reduction—oxidation process [9]. As the data in table 1 show, about 70% of Pd^{2+} ions were reduced in this process and this amount only slightly increased with the increasing of $PdCl_2$ concentration in the doping solutions. These findings confirmed our earlier XPS studies [8,9] which showed the presence of two peaks: the major one (70%) corresponding to Pd^0 (BE Pd $3d_{5/2} = 335.5$ eV) and the less intensive one characteristic of Pd^{2+} (BE Pd $3d_{5/2} = 337.7$ eV).

Figure 1 presents X-ray diffraction patterns of the catalysts studied. In the spectra of catalysts S, M and L the sharp and narrow peaks at $2\theta = 40.1^{\circ}$ and 46.6° evidently prove the presence of crystalline palladium in the form of large crystals. Palladium peaks are easily detectable above the relatively low background originating from PANI, which exhibits a broad "halo" centred around $2\theta = 20^{\circ}$. Figure 2 presents the surface morphology of catalysts prepared in aqueous solution of PdCl₂. In both samples S and L distinct Pd particles in the form of white almost spherical spots, exhibiting high contrast against the support, are seen. In both catalysts the distribution of Pd particles seems to be practically uniform. The X-ray microprobe analysis of Pd element (spot, line and surface analyses), carried out in different surface points, indicated that in white spots the content of palladium was in fact the highest. On the other hand, in the analysed points, located beyond the white spots palladium did not practically appear (figure 3). In view of the XRD results it can be supposed that the white spots in the SEM micrographs correspond to the crystalline palladium particles.

SEM micrographs showed also that palladium particles in catalyst **L** (prepared in solution of the lowest PdCl₂ concentration) are relatively larger, while their density on the surface of the polymer was lower. Therefore, basing on

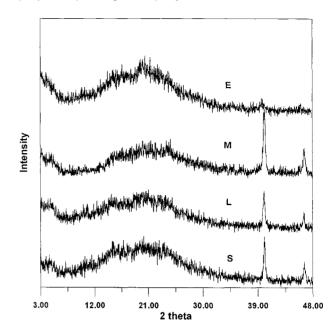


Figure 1. X-ray diffraction patterns of catalysts S, M, L and E.

SEM results, palladium particles size distributions for catalysts **S**, **M** and **L** were calculated (table 2). In the calculations a total number of 174 (catalyst **L**), 535 (catalyst **M**) and 870 (catalyst **S**) individual particles registered by SEM were taken into account. It was found that palladium particles were practically within the same range 60–400 nm in size in all catalysts. However, the detailed analysis indicates that the % contribution of smaller particles 60–240 nm in size increases from 70.7% for catalyst **L** up to 91.9% for catalyst **S**. Additionally, only in the catalyst **L** prepared in solution of the lowest PdCl₂ concentration the existence of particles as large as 540–600 nm in size was detected.

A different surface morphology was observed for catalyst **E** prepared in ethanol solution of PdCl₂. In the SEM image of this catalyst (figure 4) palladium particles in the form of irregular aggregates of various shape and size were seen. Their distribution on the polymer surface was not uniform. It seems that the surface covered by Pd agglomerates is low as compared with the total polymer surface. In the XRD spectrum of sample **E** (figure 1) only a small perturbation on the background line at positions corresponding to Pd peaks was visible.

Thus, results of SEM and XRD investigations indicate that conditions of catalysts preparation affected not only the course of Pd²⁺ reduction but also the type and the size of palladium particles existing in the final samples. A plausible explanation for this effect is given below.

When an aqueous solution of PdCl₂ was used, as in the preparation of catalysts **L**, **M** and **S**, the PANI chain (–NH–groups) was the only reducing agent. Under such conditions the concentration of PdCl₂ in the doping solution and consequently the concentration of [PdCl₂(H₂O)₂] influences the size of Pd crystalline particles formed. The number of palladium crystals formed was small at low concentration

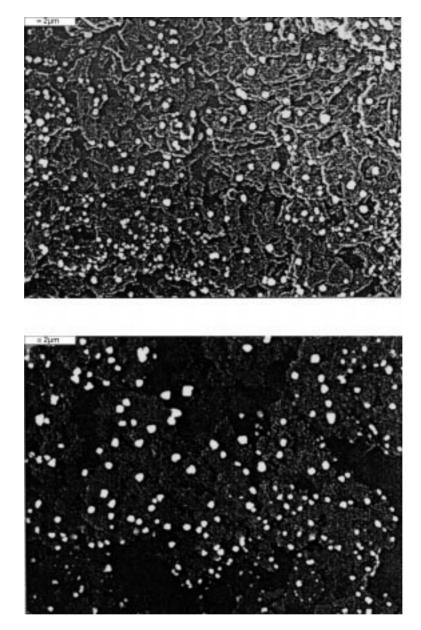
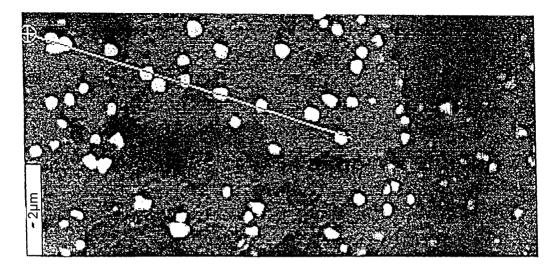


Figure 2. Scanning electron micrographs of catalysts S (top) and L (bottom) (magnification 8000).


of $[PdCl_2(H_2O)_2]$ in the doping solution (catalyst **L** preparation), large at higher concentration of this complex. This resulted in the formation of larger Pd^0 crystalline particles in catalyst **L** than in catalyst **S**. However, it is not possible to decide whether palladium species were supplied to the reduction centres from the polymer surface as a result of surface migration or from the solution.

It may be supposed that the course of the doping process in the ethanol solution of PdCl₂ was different. In this system two reducing agents were present: PANI and ethanol. The presence of the latter decided on the peculiarity of the reduction process. SEM micrographs (figure 4) showed the formation of continuous palladium areas. The bright areas were present only on some polymer grains, while other grains remain completely uncovered by palladium. These effects suggest that colloidal Pd⁰ particles were formed in

the solution with the participation of ethanol. They sticked to the polymer surface due to adhesion forces.

4. Catalytic activity

In spite of the fact that the size of Pd⁰ particles in all samples was larger than that in commonly used palladium supported catalysts, the catalytic ability of prepared Pd/PANI in eAQ hydrogenation was examined. Since all the samples contained the same amount of Pd⁰ (4%) it was possible to study the effect of the size of Pd⁰ particles on the course of eAQ hydrogenation and, especially, on the change of the amount of active quinones (eAQ, H₄eAQ). It was assumed in these investigations that SEM micrographs were representative for the whole surface of the catalysts and that the total amount of palladium acting in hydrogena-

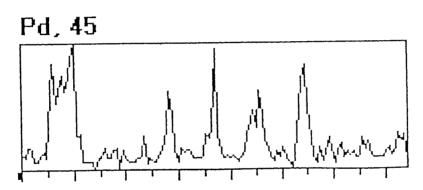


Figure 3. Pd concentration profile, catalyst M.

Table 2 Contribution of palladium particles (%) in catalysts.

Particles size (nm)	L	M	S
Up to 61	2.9	11.8	14.7
61–121	22.4	33.6	30.7
121-182	25.3	29.2	27
182-242	20.1	12.3	19.5
242-303	19.5	7.5	6.6
303-364	5.7	4.7	1.3
364-424	1.4	0.4	0.2
424-485	1.2	0.5	_
485-545	0.9	_	_
545-606	0.6	_	-

tion is palladium detected by SEM in the form of distinct particles.

All catalytic results were expressed as a function of parameter β which represents the number of hydrogen moles consumed ($n^t(H_2)$) per one mole of eAQ initially present in the reactor ($n^0(eAQ)$):

$$\beta = n^t(H_2)/n^0(eAQ).$$

Figure 5 presents the change of the rate of hydrogen uptake $(r(H_2), \text{ mol } H_2/\text{min})$ in the course of hydrogenation. It is seen, that from the very beginning of the reaction up to $\beta = 1.2-1.4$ the rate of hydrogenation is high. In this

first reaction stage the reduction of eAQ to eAQH2 is the main process [1,2,4]. After consumption of 1.2-1.4 mol of H_2 per 1 mol of eAQ ($\beta = 1.2-1.4$) the rate of hydrogen consumption (r(H₂)) decreased thus indicating that hydrogenation of eAQ into eAQH₂ was almost complete. The second stage ($\beta > 1.2$ –1.4) proceeding at distinctly lower rate comprises usually the processes in which the primary product eAQH2 is hydrogenated to H4eAQH2 and other side products (degradation products, scheme 2). As figure 5 shows, the highest was the rate over the catalyst containing the smallest Pd^0 particles (S), the lowest over catalyst E in which the irregular, large Pd⁰ particles were present. As has already been said, the main reaction proceeding from the very beginning is reduction of eAQ to eAQH₂. In the situation that only this reduction proceeds, the highest possible number of H_2O_2 moles detected at $\beta = 1$ would be equal to the initial number of eAQ moles. This number of H₂O₂ moles was assumed as 100%. In the case of selective hydrogenation of eAQH₂ to H₄eAQH₂ (active quinone) also 100% of H_2O_2 would be reached, but at values of β somewhat higher than 1. The change of % H₂O₂ as a function of β is presented figure 6. From the beginning of reaction % H₂O₂ distinctly increased as a result of eAQ to eAQH2 reduction (the main reaction) but at a certain value of β (higher than 1) it reached the maximum value. The β value of reaching the maximum value of % H₂O₂ corre-

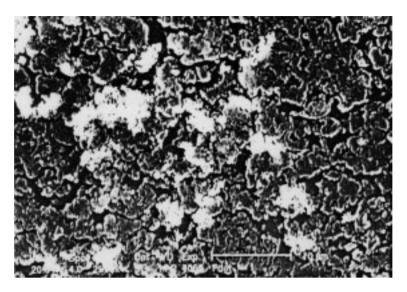


Figure 4. Scanning electron micrograph of catalyst E (magnification 2500).

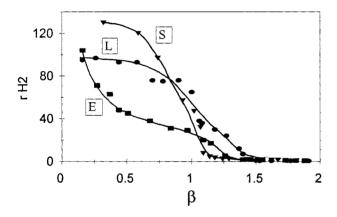


Figure 5. The rate of hydrogen uptake $r({\rm H_2})$ (10⁻⁵ mol ${\rm H_2/min}$) as the function of β .

sponded to the moment of the decreasing of the hydrogenation rate (figure 5). In the second stage of hydrogenation % H₂O₂ decreased as a consequence of active quinone hydrogenation to degradation products. As figure 6 shows, at the presence of all catalysts still before reaching a β value equal to 1, eAQH₂ was consumed in an undesired reaction, because in none of the cases the value 100% H₂O₂ was reached. The maximum % H₂O₂ values were obtained at a β value higher than 1 thus indicating that in fact from the beginning of the reaction a part of hydrogen consumed was used for the formation of products other than eAQH2. The highest maximum value of % H₂O₂ (80%) was reached in the presence of catalyst S, containing smaller Pd⁰ particles, while the progress of undesired reactions was the most intensive over catalyst **E** containing large Pd⁰ agglomerates (figure 6).

Figures 7 and 8 present the change of eAQH₂ conversion and the number of H_4 eAQH₂ moles formed in the course of reaction. At the same value of β the highest number of H_4 eAQH₂ moles was formed over catalyst **E**, and in addition the formation of H_4 eAQH₂ was observed even at $\beta < 1$. Hence the process of aromatic ring hydrogenation

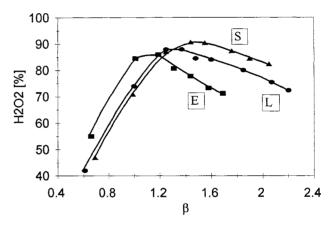


Figure 6. The change of % H_2O_2 as the function of β .

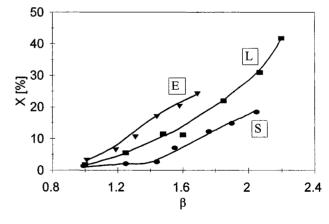


Figure 7. The change of eAQH₂ conversion (X) as the function of β .

proceeded most intensively over catalyst \mathbf{E} . The conversion of eAQH₂ was also the highest over catalyst \mathbf{E} . However, in the presence of this catalyst undesired reactions proceeded the most intensively because the selectivity of H₄eAQH₂ formation was the lowest (figure 9). On the other hand, the highest selectivity and simultaneously the lowest eAQH₂

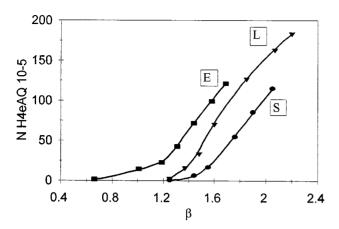


Figure 8. The change of the number of H_4eAQH_2 moles (N $H_4eAQH_2 \times 10^{-5}$) as a function of β .

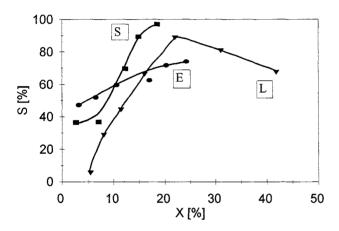


Figure 9. Selectivity of H_4eAQH_2 formation in the course of hydrogenation.

conversion was detected over catalyst S in which % contribution of smaller Pd^0 particles was relatively high (table 2).

The results of the catalytic investigations indicate that the presence of large Pd⁰ crystalline particles and especially large colloidal palladium agglomerates (catalyst E) facilitates aromatic ring hydrogenation as well as the other undesired reactions in which degradation products are formed. This conclusion is in good agreement with our earlier results [9] which showed that distinctly lower ability of eAQH₂ degradation exhibited Pd/PANI catalysts prepared in the PdCl₂ aqueous solution of strong acidity. In such catalysts uniformly dispersed very small Pd⁰ particles of size below the XRD detection limit were presumably present.

References

- [1] C.S. Cronan, Chem. Eng. (1959) 118
- [2] Ulmans Encyclopedia of Industrial Chemistry, Vol. 13A (VCH, Weinheim, 1989) p. 443.
- [3] E. Santacecaria, M. Di Serio, R. Velotti and U. Leone, J. Mol. Catal. 94 (1994) 37.
- [4] A. Drelinkiewicz, J. Mol. Catal. 101 (1995) 61.
- [5] Ger. Offen DE 3,538,816 (1987).
- [6] J.W. Sobczak, B. Lesiak, A. Jabłoński, A. Kosinski and W. Palczewska, Pol. J. Chem. 69 (1995) 1732.
- [7] S.W. Huang, K.G. Neoh, C.W. Shih, D.S. Lim, E.T. Kang, H.S. Han and K.L. Tan, Synth. Met. 96 (1998) 117.
- [8] A. Drelinkiewicz, M. Hasik and M. Choczynski, Mater. Res. Bull. 33 (1998) 739.
- [9] M. Hasik, A. Drelinkiewicz, M. Choczynski, S. Quilard and A. Pron, Synth. Met. 84 (1997) 93.
- [10] H.A. Droll, B.P. Block and W.C. Fernelius, J. Phys. Chem. 61 (1957)
- [11] Y. Cao, A. Andreatta, A.J. Heeger and P. Smith, Polymer 30 (1989) 230.
- [12] L. Rasmusen and Chr.K. Jorgensen, Acta Chem. Scand. 22 (1968) 2313.
- [13] J.G. Fraser, F.E. Beamish and W.A. McBryde, Anal. Chem. 26 (1954) 495.
- [14] A. Drelinkiewicz, Bull. Pol. Acad. Sci. Ser. Sci. Chim. 39 (1991) 63