Poly(pyridine-2,5-diyl)–CuCl₂ catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol: catalytic activity and corrosion influence

Yasushi Sato a,d,*, Takakazu Yamamoto and Yoshie Souma c,d

^a Daicel Chemical Industries, Ltd. Research Center, 1239, Shinzaike, Abosi-ku, Himeji 671-1283, Japan
^b Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8053, Japan
^c Osaka National Research Institute, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
^d Kobe University, Graduate School of Science and Technology, Division of Molecular Science, Nada-ku, Kobe 657-8501, Japan

Received 18 October 1999; accepted 6 January 2000

A π -conjugated polymer, poly(pyridine-2,5-diyl) (PPy) was investigated as a support for CuCl₂ in the synthesis of dimethyl carbonate by oxidative carbonylation of methanol. The PPy–CuCl₂ adduct had high catalytic activity which was comparable to that of the homogeneous CuCl₂ catalyst. The adduct caused corrosion of stainless-steel vessels only to minor extent, compared with the homogeneous CuCl₂ catalyst. This PPy–CuCl₂ catalyst was easily recycled by filtration and showed a similar catalytic activity in the third time use. The presence of the π -conjugated system in PPy, through which electrons can move, may bring about the high catalytic activity for the oxidative carbonylation of methanol, which involves Cu(II)/Cu(I) redox processes.

Keywords: dimethyl carbonate (DMC), oxidative carbonylation, CuCl₂ immobilization, corrosion resistance

1. Introduction

Dimethyl carbonate (DMC) has been given much attention as a replacement for toxic phosgene and dimethyl sulfate, and various routes to synthesize DMC have been found. Among them, the oxidative carbonylation of methanol (equation (1)) over a copper chloride catalyst is especially effective and industrially adopted. However, deactivation of the catalyst by ligand exchange with OH⁻ and by oxidation with O₂ is unavoidable during the reaction. It requires a catalyst regeneration procedure by adding HCl into the reactor [1].

$$CO + 2CH_3OH + (1/2)O_2 \rightarrow (CH_3O)_2CO + H_2O$$
 (1)

The existence of Cl⁻ in aqueous media, under the condition of the redox of Cu, is considered to induce severe corrosion to metallic materials [2]. The industrial process uses a slurry liquid-phase system, and efforts have been made to suppress a high corroding effect of Cl⁻ toward the equipment made of metals.

Supported copper chloride catalysts are less corrosive, and have been used for the DMC synthesis, especially in vapor-phase systems [3,4]. High catalytic activities were attained by choosing activated carbon as a support [5]. On the other hand, polymers containing pyridine units as a coordinating group for CuCl₂ were found to be effective supports for the DMC synthesis in liquid phase. The severe corrosion effect was appreciably suppressed. For exam-

ple, poly(vinylpyridine) [6] has been reported to be a good support for CuCl₂. However, the high catalytic activity of CuCl₂ is considerably decreased by the complex formation with poly(vinylpyridine).

Several π -conjugated polymers are known to be effective as supports, particularly, for Pd and Cu in Wacker-type reactions, to promote the redox of coordinated metals through the π -conjugated spacer [7–10]. Recently, we prepared a novel type of polymer-supported CuCl₂ catalysts [12–14] for the DMC synthesis. Among them, a CuCl₂ complex of π -conjugated poly(2,2'-bipyridine-5,5'-diyl) (PBpy) [11] had higher catalytic activity and stability than the poly-(vinylpyridine)–CuCl₂ catalyst [14]. The presence of the π -conjugated system in the polymer is considered to facilitate the redox reaction of copper involved in the catalytic reaction [14,15].

$$(N)$$
 (N) (N)

We have found that a CuCl₂ complex of poly(pyridine-2,5-diyl), PPy (scheme 1) [11], which has a similar π -conjugated system, also shows high catalytic activity in the

Scheme 1. Immobilization of CuCl₂ by PPy.

^{*} To whom correspondence should be addressed, at Daicel Chemical Industries.

DMC synthesis. Herein we report the preparation of the PPy–CuCl $_2$ complex, its catalytic activity, and its corrosive effect to stainless steels. Revealing of usefulness of such π -conjugated polymers as supports of metal catalysts will be important for developing new catalytic systems.

2. Experimental

PPy was synthesized as follows. 2,5-dibromopyridine (400 g, 1.69 mol) purchased from Tokyo Kasei Co., Ltd. was polymerized by using Ni(PPh₃)₄ as a debrominating reagent [11]. Ni(PPh₃)₄ was prepared *in situ* from NiCl₂ (263 g, 2.03 mol), Zn powder (133 g, 2.03 mol), and triphenylphosphine (PPh₃) (2130 g, 8.11 mol) in DMF (8.40 l). After several times of washing in a manner described in [11], PPy was obtained as an orange-yellow powder (117 g, 90% yield). It was reprecipitated from a HCOOH/NH₃ aqueous solution and dried under vacuum before the preparation of the PPy–CuCl₂ complex described below.

Inherent viscosity (η) of the obtained PPy was 0.27 dl g⁻¹ in HCOOH, which indicated that the polymer had a molecular weight of about 2000 or lower, as judged from the η value of 0.85 dl g⁻¹ obtained for PPy with a molecular weight of 3800 [11]. It was reported that use of Ni(PPh₃)₄ gave PPy with a molecular weight of 1600 [11].

The PPy powder and the 2 equivalent of CuCl₂ in methanol were allowed to react for 5 h under reflux, and the PPy–CuCl₂ catalyst was obtained as a greenish-yellow powder which was not soluble in methanol. A part of CuCl₂ will take a chelating coordination mode of a head-to-head unit (2,2′-bipyridine-like unit) of the polymer [11]. X-ray fluorescence spectrometry (XRF) revealed that the obtained complex contained 18.7 wt% of Cu and 18.9 wt% of Cl. After the first use in the catalytic reaction, 15.5 wt% of Cu and 15.4 wt% of Cl were found, and after the three times recycled use, 13.9 wt% of Cu and 13.8 wt% of Cl were found.

The DMC synthesis was performed according to the following procedure. In an autoclave, 10 ml (7.75 g) of methanol, which served as the substrate and solvent, and PPy–CuCl₂ powder (719 mg) were added ([Cu] = 150 mM). Then, CO (23 kgf cm⁻²), and O₂ (2 kgf cm⁻²) were introduced in the autoclave. After the reaction at 140 °C for 2 h, concentrations of DMC, methanol, CO₂, and O₂ were analyzed by gas chromatography. CH₃OH conversion (%) (= produced DMC/(introduced CH₃OH/2)), DMC yield (%) (= produced DMC/(introduced O₂ × 2)), and DMC selectivity (%) (= DMC/(DMC + CO₂)) were calculated from the gas chromatographic data.

The rate of corrosion (in mg h⁻¹) during the reaction was measured separately. The test pieces (about 15 mm \times 6 mm \times 2 mm) of SUS316 (Cr 18%, Mo 2%, Ni 10%, C 0.08%, Fe base, weight = 2.0 \pm 0.2 g) and Hastelloy C(HC)276 (Cr 16%, Mo 16%, Fe 5%, C 0.01%, Ni base, made by Mitsubishi Material, weight = 3.0 \pm 0.3 g) were

introduced into the reactor. Reaction time was 2 h for each run. The weight loss of the test pieces was measured after the first and third catalytic reactions.

3. Results and discussion

The catalytic activity (DMC yield and DMC selectivity) of the PPy–CuCl₂ catalyst (e.g., PPy–CuCl₂ (1st use) in table 1) was compared with those of the homogeneous CuCl₂ catalyst and the PBpy–CuCl₂ catalyst at a CH₃OH conversion of about 3%, and the results are shown in table 1. Under the reaction conditions, no by-product other than CO₂ was detected by gas chromatography, and the DMC selectivity was calculated from the following equation: DMC/(DMC + CO₂).

Recently, we reported that PBpy gave higher catalytic activity in the CuCl₂-promoted DMC synthesis than poly(vinylpyridine), which is one of the most generally used supports for CuCl₂ (cf. the last line in table 1) [14]. A reaction mechanism involving Cu(II)/Cu(I) redox processes has been proposed for the DMC synthesis using the copper chloride catalyst [16]:

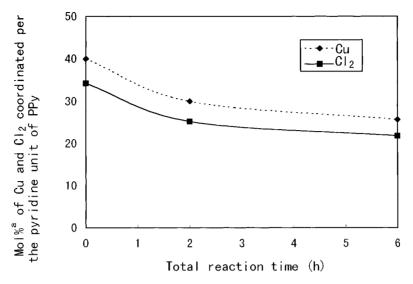
$$2CuCl_2 + 2CH_3OH \rightarrow 2CuCl(OCH_3) + 2HCl$$
 (2)

$$2CuCl(OCH_3) + CO \rightarrow 2CuCl + DMC$$
 (3)

$$2\text{CuCl} + (1/2)\text{O}_2 + 2\text{HCl} \rightarrow 2\text{CuCl}_2 + \text{H}_2\text{O}$$
 (4)

The presence of the π -conjugated system in PBpy was suggested to make occurrence of the Cu(II)/Cu(I) redox processes easier by providing electrons or holes through the π -conjugated system [14].

The molar ratio of Cu per the pyridine unit was 40 mol% before the catalytic reaction (just after the preparation) in the PPy–CuCl₂ catalyst. The amount of Cl₂ per the pyridine unit was 34 mol% (or 68 mol% of Cl) which is lower than that of Cu, indicating that all of the coordinated Cu species did not exist as CuCl₂. Similar results were reported for the activated carbon-supported CuCl₂ catalyst [17], and it


 $\label{eq:table 1} Table \ 1$ Catalytic activity of the PPy–CuCl\$_2\$ catalyst in comparison with those of the PBpy–CuCl\$_2\$ catalyst, the poly(vinylpyridine)–CuCl\$_2\$ catalyst, and the homogeneous CuCl\$_2\$ catalyst.\$^a\$}

Catalyst ^b	CH ₃ OH conv. ^c	DMC violate	DMC sel.c
Catalyst	(%)	(%)	(%)
PPy-CuCl ₂ (1st use)	2.96	71.3	94.4
PPy-CuCl ₂ (2nd use)	2.69	65.0	93.3
PPy-CuCl ₂ (3rd use)	2.71	66.4	93.9
PBpy-CuCl2d	2.72	68.1	94.2
Homogeneous CuCl2 ^d	2.76	70.0	97.4
Poly(vinylpyridine)–CuCl ₂ ^d	1.84	47.1	91.4

^a [Cu] = 150 mM, CH₃OH = 10 ml, CO = 23 kgf cm⁻², O₂ = 2 kgf cm^{-2} , temp. = $140 \,^{\circ}\text{C}$, reaction time = 2 h.

^b In the 2nd and 3rd uses, freshly prepared catalyst was added to adjust [Cu] = 150 mM.

^c CH₃OH conv. = produced DMC/(introduced CH₃OH/2), DMC yield = produced DMC/(introduced $O_2 \times 2$), DMC sel. = DMC/(DMC+CO₂). ^d Reported in [14].

 $^{\rm a}$ Mol% is calculated from Cu, Cl contents in the PPy-CuCl $_2$ catalyst.

Figure 1. Leaching of CuCl₂ (Cu and Cl₂) from PPy.

was suggested that $CuCl_2$ was partly reduced to CuCl or received ligand replacement reactions (e.g., that to form CuCl(OH) by a reaction with H_2O).

As shown in table 1, the DMC yield and DMC selectivity of the PPy–CuCl $_2$ catalyst were comparable to those of the PBpy–CuCl $_2$ catalyst and the homogeneous CuCl $_2$ catalyst. The high yield and selectivity are also ascribed to the presence of the π -conjugated system in PPy. The PPy–CuCl $_2$ catalyst could be recycled, and high yield and selectivity were found in the third use (cf. the data of PPy–CuCl $_2$ (2nd use) and PPy–CuCl $_2$ (3rd use) in table 1), although the initial catalytic activity was somewhat decreased.

Some CuCl₂ leaching from the PPy support was observed during the catalytic reaction, and an argument that the released CuCl₂ exhibited some catalytic activity, is existing. The CuCl₂ leaching was also observed for the poly-(vinylpyridine)–CuCl₂ catalyst [14], however, the catalyst apparently exhibited a lower activity than the PPy–CuCl₂ catalyst (table 1). Thus, the contribution of the released CuCl₂ to the DMC yield and selectivity is considered to be of insignificant level for comparing the data in table 1.

The amount of coordinated $CuCl_2$ was estimated before the reaction (0 h), after the first reaction (2 h), and after the third reaction (total reaction time = 6 h). The results are shown in figure 1, where mol% values of $CuCl_2$ (Cu and Cl_2) supported by the pyridine unit of PPy are plotted versus the total reaction time.

During the first catalytic reaction (0–2 h), the amounts of Cu and Cl_2 per the pyridine unit were decreased to 30 and 25 mol%, respectively. During the second and third catalytic reactions (2–6 h), the amounts of Cu and Cl_2 were eventually decreased to 26 and 22 mol%, respectively. PBpy has higher coordinating ability to Cu due to its having chelating units, and it was reported that only a negligible amount of Cu was lost from the PBpy support (18% of the initially supported Cl^- was lost after 6 h) [14].

 $\label{eq:Table 2} Table \ 2$ Rate of corrosion a caused by the PPy–CuCl $_2$ catalyst in comparison with the homogeneous CuCl $_2$ catalyst.

Catalyst	Rate of corros	Rate of corrosion (mg h ^{−1})		
	SUS316 ^b	HC276 ^b		
PPy-CuCl ₂ (1st use)	0.5	0.3		
PPy-CuCl ₂ recycled (3rd use)	0.3	<0.1 ^c		
Homogeneous CuCl2 ^d	39.6	8.3		

^a Weight loss (mg h^{−1}) of test piece during the catalytic reaction.

Leaching of Cl⁻ to a larger extent was also observed during the initial step of the catalytic reaction using the activated carbon-supported CuCl₂ catalyst [5], and it was suggested that the ligand exchange of Cl⁻ with OH⁻ partly took place. The X-ray photoelectron spectroscopy study has been made for the poly(4-methyl-4'-vinyl-2,2'-bipyridine)-supported CuCl₂ catalyst [12]. It was confirmed that some reduction of Cu(II) took place at the catalyst preparation, and the reduction proceeded during the catalytic reaction with CuCl₂ leaching. However, these reduced chemical species have not been identified. We are trying to identify the reduced Cu element from the Auger electron spectroscopy measurement.

The rate of corrosion (in mg h⁻¹, cf. section 2) due to Cl⁻ was determined for the PPy–CuCl₂ catalyst, and the data are given in table 2. The data for the homogeneous CuCl₂ catalyst are also listed as the reference. The corroding influence to stainless steels was dramatically improved by the immobilization of CuCl₂ by the PPy support. However, pitting corrosion was still observed on the metal surface, similar to cases of the PBpy–CuCl₂ and poly-(vinylpyridine)–CuCl₂ catalysts [14]. The corroding effect at the first catalytic use was larger than that at the recycled

b SUS316 (stainless steel): standard No. 316 (AISI), HC276 (stainless steel): standard No. B575 (ASTM).

^c Within the limit of detection.

^d Reported in [14].

(third) use. This is consistent with the data shown in figure 1, which reveals that the Cl⁻ leaching takes place to a larger extent at the first use.

As described above, PPy seems useful as a support for CuCl₂ in the DMC synthesis. However, further improvement of the catalytic system is required. For example, prevention of the CuCl₂ leaching necessitates finding out of better reaction conditions (temperature, pressure, etc.). Modification of the PPy synthetic method may give PPy with stronger binding force toward CuCl₂. Elaboration of the procedure for making the PPy–CuCl₂ complex will also be important.

4. Conclusion

The new heterogeneous π -conjugated PPy–CuCl $_2$ catalyst showed high catalytic activity for the DMC synthesis from methanol, CO, and O $_2$. The catalyst was able to be recycled at least three times, keeping its initial catalytic activity. The catalytic activity was much higher than that of the poly(vinylpyridine)–CuCl $_2$ catalyst. The PPy–CuCl $_2$ catalyst showed excellent corrosion resistance toward stainless steels, compared with the homogeneous CuCl $_2$ catalyst.

References

- [1] F. Rivetti and U. Romano, EP 534545 (1993).
- [2] A. Moreau, Electrochim. Acta 26 (1981) 1609.
- [3] G.L. Curnutt, US Patent 5004827 (1980).
- [4] S.T. King, Catal. Today 33 (1997) 173.
- [5] K. Tomishige, T. Sakaihori, S. Sakai and K. Fujimoto, Appl. Catal. A 181 (1999) 95.
- [6] G. Cipriani and E. Gioacchino, IT Patent 27388 (1973).
- [7] F. Garnier, Angew. Chem. Int. Ed. Engl. 28 (1989) 513.
- [8] H.G. Tang and D.C. Shirrington, J. Mol. Catal. 94 (1994) 7.
- [9] T. Hirao, M. Higuchi, B. Hatano and I. Ikeda, Tetrahedron Lett. 36 (1995) 5925.
- [10] T. Hirao, S. Yamaguchi and S. Fukuhara, Synth. Met. 106 (1999) 67.
- [11] T. Yamamoto, T. Maruyama, Z.-H. Zhou, T. Ito, T. Fukuda, Y. Yoneda, F. Begum, T. Ikeda, S. Sasaki, H. Takezoe, A. Fukuda and K. Kubota, J. Am. Chem. Soc. 116 (1994) 1832.
- [12] Y. Sato, M. Kagotani and Y. Souma, J. Jpn. Petrol. Inst. 43 (2000) 75.
- [13] Y. Sato, M. Kagotani and Y. Souma, J. Mol. Catal. A, in press.
- [14] Y. Sato, M. Kagotani, T. Yamamoto and Y. Souma, Appl. Catal. A 185 (1999) 219.
- [15] T. Maruyama and T. Yamamoto, J. Phys. Chem. B 101 (1997) 3806.
- [16] U. Romano, R. Tesel, M.M. Mauri and P. Rebora, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 396.
- [17] Y. Yamamoto, T. Matsuzaki, K. Ohdan and Y. Okamoto, J. Catal. 161 (1996) 577.