Simultaneous removal of N₂O and CH₄ as the strong greenhouse-effect gases over Fe-BEA zeolite in the presence of excess O₂

S. Kameoka a,*, K. Kita a, T. Takeda a, S. Tanaka a, S. Ito a, K. Yuzaki a, T. Miyadera b and K. Kunimori a,*

^a Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan ^b National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Received 9 May 2000; accepted 8 September 2000

Simultaneous catalytic removal of N_2O and CH_4 as the strong greenhouse-effect gases was found to be possible over an Fe-ion-exchanged BEA zeolite (Fe-BEA) by the selective catalytic reduction (SCR) of N_2O with CH_4 . The direct decomposition of N_2O ($2N_2O \rightarrow 2N_2 + O_2$) and the oxidation of CH_4 ($CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$) over Fe-BEA zeolite required high temperature above 400 and 450 °C, respectively. Nevertheless, the catalytic reduction of N_2O by adding CH_4 over Fe-BEA zeolite readily occurred at much lower temperatures (ca. 250–350 °C) whether in the presence of O_2 or not. No oxidation of CH_4 by O_2 took place at these temperatures. On the basis of these results and the kinetic studies, it was concluded that CH_4 reacted selectively with N_2O to produce N_2 , CO_2 and N_2O over Fe-BEA zeolite even in the presence of excess O_2 . Overall stoichiometry of the SCR of N_2O with CH_4 was determined as follows: $4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O$.

Keywords: SCR of N2O, CH4, greenhouse-effect gas, simultaneous removal, Fe-BEA zeolite

1. Introduction

Nitrous oxide (N2O) and methane (CH4) are strong greenhouse-effect gases with a global warming potential (GWP) per molecule of about 300 and 30 times that of carbon dioxide (CO₂), respectively [1]. N₂O is also identified as a contributor to the destruction of ozone in the stratosphere [2]. From the point of view of environment, therefore, it is interesting that a selective catalytic reduction (SCR) of N₂O by CH₄ is applied to simultaneous removal of N₂O and CH₄ in the emission gases. Recently, we reported that the SCR of N₂O by CH₄ took place effectively over an Fe-ion-exchanged BEA zeolite (Fe-BEA) below 400 °C even in the presence of excess oxygen [3]. The Fe-BEA zeolite was more active for this reaction than Fe-MFI and Co-MFI reported in the literature [4,5]. The SCR of N₂O with CH₄ readily proceeded at much lower temperatures, compared with the direct decomposition of N₂O $(2N_2O \rightarrow 2N_2 + O_2)$. However, fundamental issues in the SCR of N₂O with CH₄ over the Fe-BEA zeolite such as the overall stoichiometry and the kinetics parameters (i.e., apparent activation energies, reaction orders) in the presence or in the absence of O2 have not been elucidated so far. In this work, we examined the difference in the stoichiometry and the kinetics in the aforementioned reaction between the presence of O_2 and the absence of O_2 .

2. Experimental

Fe-BEA ($SiO_2/Al_2O_3 = 27.3$) catalyst was prepared by ion-exchange with a dilute solution of FeSO4 at 50 °C for 20 h under nitrogen atmosphere, and calcined in air for 12 h at 500 °C [3]. The zeolite support (H-BEA) was supplied by TOSOH Co. The loading weight of Fe on BEA support was 0.77 wt% (25% exchanged with Fe²⁺, 1.3×10^{-4} mol-Fe-ion g-cat⁻¹). The reaction was carried out in a standard fixed-bed flow reactor by passing a gaseous mixture of N2O (0-2000 ppm), CH₄ (0-500 ppm) and O₂ (0-10%) in He flow at a total flow rate of 50 cm³ min⁻¹ over 50 mg of catalyst (total pressure 1 atm, space velocity (SV) $60\,000\,h^{-1}$). The sample was pretreated at 500 °C with O₂ for 1 h in a flow reactor, followed by a He purge at the initial reaction temperature. The products were monitored by an on-line gas chromatograph (Shimadzu GC-8A) equipped with Molecular Sieve 5A (N2, CH4, CO) and Porapak Q (N2O, CO2, H₂O). The catalytic activity for the reduction of N₂O with CH₄ was evaluated by the percentage conversion of N₂O and CH₄ to N₂ and CO₂, respectively. The data in the catalytic activity measurements were recorded when the reaction reached steady state after 30 min.

3. Results and discussion

3.1. Reduction of N_2O by CH_4 in the absence of O_2 $(N_2O + CH_4 \text{ system})$

Figure 1 (a) and (b) shows the dependence of the composition of CH_4 (0–500 ppm) for the N_2O conversion into

^{*} To whom correspondence should be addressed.

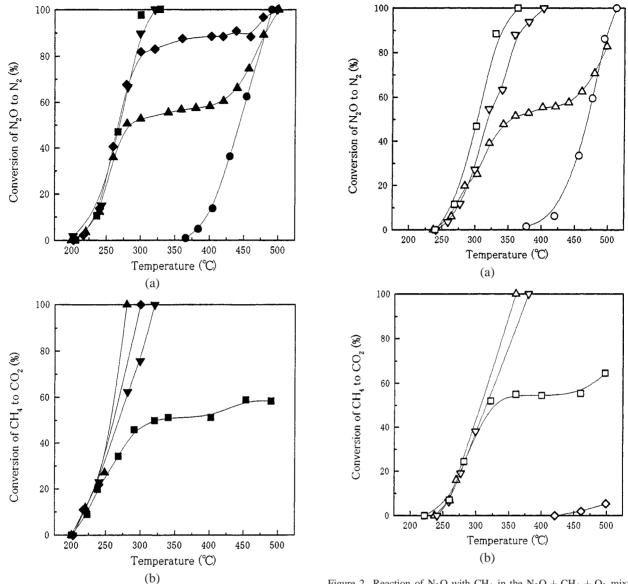


Figure 1. Reaction of N_2O with CH_4 in the $N_2O + CH_4$ mixture: the conversion of (a) N_2O into N_2 and (b) of CH_4 into CO_2 . (\bullet) N_2O (950 ppm), (\blacktriangle) N_2O (950 ppm) + CH_4 (130 ppm), (\blacklozenge) N_2O (950 ppm) + CH_4 (200 ppm), (\blacktriangledown) N_2O (950 ppm) + CH_4 (240 ppm) and (\blacksquare) N_2O (950 ppm) + CH_4 (500 ppm).

Figure 2. Reaction of N_2O with CH_4 in the $N_2O + CH_4 + O_2$ mixture: the conversion of (a) N_2O into N_2 and (b) of CH_4 into CO_2 . (\circ) N_2O (950 ppm) + O_2 (10%), (\triangle) N_2O (950 ppm) + O_3 (10%), (\bigcirc) N_2O (950 ppm) + O_3 (10%), (\bigcirc) N_2O (950 ppm) + O_3 (10%), (\bigcirc) O_3 (950 ppm) + O_3 (10%), (\bigcirc) O_3 (10%).

 N_2 and the CH_4 conversion into CO_2 , respectively. The catalytic activity of N_2O decomposition on Fe-BEA catalyst was significantly promoted by the presence of CH_4 . Increasing of N_2O conversions correlated well with that of CH_4 conversions. As shown in figure 1(a), N_2O conversions were hardly influenced by the composition of CH_4 (130–500 ppm) in the N_2O/CH_4 reaction gas at the low N_2O conversion range (<40%). N_2 , H_2O and CO_2 were detected as the products in these catalytic experiments. The plateaus in the N_2O conversion curves (in 130 and 200 ppm CH_4) and the CH_4 conversion curve (in 500 ppm CH_4) were observed after the CH_4 conversion or the N_2O conversion reached at 100% (figure 1). This is due to the fact that CH_4 or N_2O in the mixture gas was completely consumed

by the reaction with N_2O or CH_4 at these temperatures. The result suggests that N_2O reacts with CH_4 to produce N_2 , CO_2 and H_2O under the N_2O/CH_4 mixture flow. As shown in figure 1, the stoichiometry between N_2O and CH_4 in this reaction over Fe-BEA zeolite was 4:1 (950 ppm N_2O :240 ppm CH_4). Therefore, the overall reaction is represented by

$$4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O$$
 (1)

3.2. Reduction of N_2O by CH_4 in the presence of excess O_2 ($N_2O + CH_4 + O_2$ system)

Figure 2 (a) and (b) shows the dependence of the composition of the N_2O (950 ppm) + CH_4 (0–500 ppm) + O_2

 $\label{thm:control} Table \ 1$ Turnover rates and apparent activation energies for various reaction systems over Fe-BEA.

Reaction system ^a	Turnover rate (>	(10 ⁻⁴ mol s ⁻¹ Fe-ion ⁻¹)	Activation energy (kcal mol ⁻¹)		
	N ₂ formation	CO ₂ formation	N ₂ formation	CO ₂ formation	
N_2O^b	16.8	_	44 ± 3	_	
$N_2O+CH_4{}^c\\$	25.7	4.8	21 ± 1	24 ± 1	
$N_2O + O_2^b$	7.8	_	49 ± 3	_	
$N_2O + CH_4 + O_2^c$	9.2	2.3	23 ± 1	25 ± 1	
$CH_4 + O_2^{d}$	_	1.4	_	52 ± 4	

 $^{^{}a}$ The composition of the reactants: $N_{2}O$ (950 ppm), CH_{4} (240 or 500 ppm) and O_{2} (10%) in He balance.

(10%) reaction system for the N₂O conversion into N₂ and the CH₄ conversion into CO₂, respectively. Although the catalytic activities of the direct decomposition of N₂O and the reduction of N₂O by CH₄ were inhibited slightly by the presence of O2, the same catalytic behavior of N2O reduction by CH₄ as in figure 1 was observed in these experimental conditions (promoting effect by CH₄). As shown in figure 2, the N₂O conversion was influenced by the concentration of CH₄ (in 130-500 ppm CH₄). However, the N₂O conversion hardly depended on the concentration range above 500 ppm CH₄, since the same N₂O conversion curve as in the 500 ppm CH₄ was obtained even at 3000 ppm CH₄ [3]. It is interesting that the same behavior of the plateaus in the CH₄ conversion curve (in 500 ppm CH₄) and the N₂O conversion curve (in 130 ppm CH₄) as in figure 1 were observed even in the presence of excess O₂ after the N₂O or CH₄ conversion (ca. 350-450 °C) reached at 100% (figure 2). The same products (i.e., N_2 , CO_2 and H_2O) as in the $N_2O + CH_4$ reaction were observed in these experiments. It should be noted that the oxidation of CH₄ by O₂ over the Fe-BEA catalyst began above 450 °C (figure 2(b)). These results indicate that the reduction of N₂O by CH₄ and the oxidation of CH₄ by N₂O are scarcely influenced by the presence of O₂ (10%). Moreover, these reactions took place at much lower temperatures (250-350 °C) than each of the original reaction temperatures in the direct N₂O decomposition (>400 °C) and the CH₄ oxidation (>450 °C). Previously, Panov et al. [6] reported that an O atom from a N2O molecule, which cannot be produced by O2, readily reacted with CH₄ to produce CH₃OH over a Fe/ZSM5 catalyst even at room temperature. This finding implies that the O atom from the N₂O molecule is much more active and efficient in activating CH₄ than that from the O₂ molecule. Therefore, it is strongly supported that N2O reacts selectively with CH₄ to produce N₂, CO₂ and H₂O at the low temperatures (<400 °C) even in the presence of excess O₂. In the case of the presence of O2, the stoichiometry between N2O and CH_4 was also 4:1 (950 ppm $N_2O:240$ ppm CH_4). The overall stoichiometry of this reaction could be represented by the same formula as in the case of the absence of O₂ (equation (1)).

3.3. Kinetic studies

In order to understand in more detail the SCR of N2O with CH₄ over Fe-BEA zeolite, we examined the kinetic parameters of this reaction. Turnover rates ($mol s^{-1} Fe-ion^{-1}$) of N2 and CO2 formation, which were based on figures 1 and 2, were estimated by assuming that all of loaded Fe (exchanged with Fe²⁺) play as active sites. The apparent activation energies and the typical turnover rates of N2 formation and CO₂ formation are given in table 1. The activation energy of N₂ formation for the direct decomposition of N₂O (N₂O alone) was almost similar to that of N₂O in the presence of O_2 ($N_2O + O_2$). The activation energy of N₂ formation for the reduction of N₂O by CH₄ was much lower than that for the direct decomposition of N₂O (in the $N_2O + CH_4$ and $N_2O + CH_4 + O_2$ systems). Reduction of N₂O by CH₄ (in N₂ formation) and oxidation of CH₄ by N₂O (in CO₂ formation) also proceeded with almost the same activation energies. Moreover, these activation energies hardly depended on the presence of O₂. The activation energy of CO₂ formation for the oxidation of CH₄ by O₂ was much higher than that for the oxidation of CH₄ by N₂O in both the $N_2O + CH_4$ and the $N_2O + CH_4 + O_2$ system. These results support that the reduction of N₂O by CH₄ and the oxidation of CH₄ by N₂O in the reaction between N₂O and CH₄ concomitantly occur whether in the presence of O_2 or not.

Figure 3 shows ln-ln plots of the turnover rates of N₂ formation and CO₂ formation against the partial pressure of N₂O, CH₄ and O₂ in the N₂O/CH₄ and N₂O/CH₄/O₂ reactions. Kinetic orders with respect to N₂O, CH₄ and O₂ were determined by following the turnover rates of formation of N_2 and CO_2 . It should be noted that the turnover rates were calculated based on the conversions of reactants (N₂O and CH₄) in the range between 5 and 20%. As shown in figure 3, good linear correlations in the ln-ln plots were obtained with these experimental conditions. The empirical reaction orders are given in table 2, which was estimated from figure 3. The turnover rates of N₂ formation were found to be first order with respect to N2O, and zero order with respect to CH₄ whether in the presence of O₂ or not. The turnover rates of CO₂ formation were 0.6 order with respect to N₂O, and first order with respect to CH₄

^b Reaction $(N_2O \rightarrow N_2 + \frac{1}{2}O_2)$ at 430 °C.

^c Reaction $(N_2O + \frac{1}{4}CH_4 \rightarrow N_2 + \frac{1}{4}CO_2 + \frac{1}{2}H_2O)$ in 240 ppm CH₄ at 275 °C.

^d Reaction (CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O) in 500 ppm CH₄ at 500 °C.

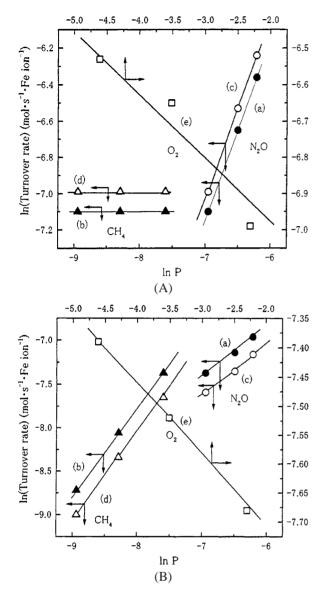


Figure 3. Dependence of the turnover rates of (A) N_2 formation and (B) of CO_2 formation in the N_2O+CH_4 and $N_2O+CH_4+O_2$ mixture systems on the partial pressures of the reactants. The composition of reaction mixture: (a) N_2O (950, 1500 and 2000 ppm) + CH_4 (500 ppm), (b) N_2O (950 ppm) + CH_4 (130, 240 and 500 ppm), (c) N_2O (950, 1500 and 2000 ppm) + CH_4 (500 ppm) + O_2 (10%), (d) O_2O (950 ppm) + O_3O (10%), (d) O_3O (950 ppm) + O_3O (10%) and (e) O_3O (950 ppm) + O_3O (10%), (d) O_3O (10%) and (e) O_3O (10%) (10%) (10%).

whether in the presence of O_2 or not. Both the turnover rates of N_2 formation and of CO_2 formation were slightly negative order with respect to O_2 . The difference in the reaction order with respect to CH_4 between N_2 formation

(zero order) and CO2 formation (first order) may reflect substantially the difference in the reaction pathways between the N2O decomposition and the CH4 oxidation (in the SCR of N₂O by CH₄). In general, N₂ formation from N₂O decomposition is attained by simply the dissociation of a N-O bond over catalyst surface, while CO2 formation from CH₄ oxidation requires several steps, e.g., dissociation of a C-H bond and formation of a C-O bond. It has been reported in the literature that the reaction rate of the N_2O decomposition is first order in N_2O and -0.5 order in O₂ [2,7]. The reaction rate of the CH₄ oxidation over noble metal catalysts is well known to be first order in CH₄ and zero order in O₂ [8–10]. The empirical reaction orders in table 2 (positive orders with respect to N₂O for both N₂ and CO₂ formation and first order with respect to CH₄ for CO₂ formation) show that the reaction rate of the CO₂ formation during the SCR of N₂O by CH₄ is determined by both the formation of an O atom from N2O and the activated adsorption of CH₄ over the Fe-BEA catalyst, while the reaction rate of the N2 formation is determined by only the activation of N₂O. Although the reaction order for the N₂ formation with respect to CH₄ is zero, CH₄ plays an important role in the N2O reduction (i.e., formation of active sites on the Fe-BEA surface), because the catalytic activities in N2O conversion were drastically enhanced by the presence of CH₄ (figures 1(a) and 2(a)). It is also indicated that O2 during the SCR of N2O by CH4 acts to some extent as inhibiting species on the active sites for both N2 and CO2 formation. We are currently undertaking further investigation in our laboratory with respect to the detailed mechanism in the SCR of N2O with hydrocarbons (e.g., CH₄, C₂H₆, C₃H₆, etc.) on Fe-zeolite catalysts [11].

4. Conclusion

The present study has demonstrated that simultaneous removal of N_2O and CH_4 as the strong greenhouse-effect gases is effectively performed by the SCR of N_2O with CH_4 over a Fe-BEA catalyst even in the presence of excess O_2 . The kinetics parameters are the same whether O_2 is present or not, and the reaction between N_2O and CH_4 occurs selectively. The overall stoichiometry of this reaction is represented by $4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O$.

Table 2 Empirical reaction orders.

Reaction system	Reaction order in N2 formation			Reaction order in CO ₂ formation		formation
	N ₂ O	CH_4	O_2	N ₂ O	CH ₄	O_2
$N_2O + CH_4^a$	1.0	0	_	0.6	1.0	_
$N_2O + CH_4 + O_2{}^b$	1.0	0	-0.2	0.6	1.0	-0.1

^a Reaction orders at 240 °C.

^b Reaction orders at 275 °C.

References

- [1] H. Rodhe, Science (1990) 1217.
- [2] F. Kapteijn, J. Rodriguez-Mirasol and J.A. Moulijn, Appl. Catal. B 9 (1996) 25, and references therein.
- [3] S. Kameoka, T. Suzuki, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and K. Kunimori, J. Chem. Soc. Chem. Commun. (2000) 745.
- [4] M. Kögel, R. Mönnig, W. Schwieger, A. Tissler and T. Turek, J. Catal. 182 (1999) 470.
- [5] Y. Li and J.N. Armor, Appl. Catal. B 3 (1993) 55.
- [6] G.I. Panov, A.K. Uriarte, M.A. Rodkin and V.I. Sobolev, Catal. Today 41 (1998) 365, and references therein.
- [7] E.R.S. Winter, J. Catal. 19 (1970) 32.
- [8] K.I. Fujimoto, F.H. Ribeiro, M. Avalos-Borja and E. Iglesia, J. Catal. 179 (1998) 431.
- [9] S.H. Oh, P.J. Mitchell and R.M. Siewert, J. Catal. 132 (1991) 287.
- [10] M. Niwa, K. Awano and Y. Murakami, Appl. Catal. 7 (1983) 317.
- [11] S. Kameoka, T. Miyadera and K. Kunimori, to be published.