NO reduction by C_3H_6 in excess oxygen over fresh and sulfated Pt- and Rh-based catalysts

A. Toubeli*, E.A. Efthimiadis and I.A. Vasalos

Chemical Process Engineering Research Institute, PO Box 1517, University City, 540 06 Thessaloniki, Greece E-mail: toubeli@alexandros.cperi.certh.gr

Received 11 May 2000; accepted 2 August 2000

The selective catalytic reduction (SCR) of NO with C_3H_6 was studied over three noble-metal-based catalysts: 2% Pt/ γ -Al₂O₃, 2% Rh/ γ -Al₂O₃ and 1.5% Rh/TiO₂(4% WO₃). The SO₂ effect on the catalyst activity was examined using sulfated samples of the above catalysts and SO₂-containing feeds. Temperature-programmed desorption and oxidation studies were carried out to examine the adsorption characteristics of NO and C_3H_6 , respectively, in the absence or the presence of SO₂. The adsorption data were linked to variations in the NO reduction rates over fresh and sulfated samples. Modification of the support surface as a result of the SO₂ presence affects the NO and propene sorption characteristics, the NO oxidation and the propene consumption rates.

Keywords: NO, reduction, propene, TPD, Pt, Rh, alumina, doped titania, SO₂

1. Introduction

The selective catalytic reduction (SCR) is an attractive method to convert nitrogen oxides (NO_x) to N_2 . Despite the continuous efforts to remove sulfur from the fuels, the inlet gas stream in deNOx units contains sulfur in the form of SO_2 . The activity of a catalyst in the presence of SO_2 is decisive for its implementation in practical problems. Parvulescu et al. [1] reviewed the catalytic removal of NO from flue gases. They acknowledged that the SCR by hydrocarbons is the most promising method to reduce the NO. This is denoted by the large number of relevant patents [2] and publications (references in [1,3,4]). Parvulescu et al. [1] classified the catalysts for the SCR by hydrocarbons to metal-ion-exchanged zeolites, supported noble metals and base metal oxides. Noble metals impregnated on metal oxides are studied in this work.

Noble metals are tolerant to the SO_2 presence in the feed [5,6], while transition metals [5] and silver [7] are deactivated by SO_2 as a result of the sulfates formation. Ag/alumina, however, was tolerant to the SO_2 presence when methanol was used as reductant [8]. This was attributed to different reaction mechanisms that lead to N_2 formation over the same metal. Burch and coworkers [9,10] also examined the effect of the reaction mechanism on the activity and the SO_2 tolerance over Pt/alumina using C_3H_6 and C_3H_8 as reductants. Change of the reaction mechanism as a result of the catalyst sulfation was observed over Rh/alumina [11]. The deactivation of Pd/TiO₂ by SO_2 was attributed to the complete oxidation of the active Pd^0 ;

while in the absence of SO_2 Pd was partially oxidized [12]. Finally, the activity of Cu impregnated on a commercial, sulfated zirconia did not change upon the addition of traces of SO_2 (20 ppmv) [13].

Verykios and coworkers studied the effect of W⁶⁺-doping of TiO₂ on the interaction of supported Rh with NO [14] and CO [15] and the adsorption of NO (CO) and displacement by CO (NO) [16,17]. Carrier doping was shown to induce a large increase in the extent of transient NO decomposition and the selectivity towards N₂ formation. The concentration of CO adsorbed on the Rh surface also increased upon carrier doping. These observations were attributed to electronic interactions between Rh crystallites and the doped carrier, which in turn results to modifications in the electronic configuration of Rh atoms as compared to the undoped titania-supported catalyst. Accordingly, the activity of Rh/TiO₂ for the selective catalytic reduction of NO with propene was considerably enhanced upon carrier doping.

In our previous studies [18] we presented kinetic expressions for the NO reduction over Pt/γ -alumina and Rh/γ -alumina and we discussed differences in the reaction mechanism that leads to the N_2 formation over these catalysts. The scope of this work was to investigate the sulfur effect on the NO reduction over the above catalysts using both fresh and presulfated samples. Moreover, experiments were carried out using SO_2 -free or SO_2 -containing feeds. In addition to the alumina-based catalysts, the performance of Rh impregnated on titania doped with WO_3 was investigated. The concept of the dopant-induced promotion for the NO reduction over Rh sites was, thus, examined.

^{*} To whom correspondence should be addressed.

2. Experimental

2.1. Sample preparation

Pt and Rh catalysts supported on γ -alumina were prepared by the dry impregnation technique. The γ -alumina carrier (Engelhard, Al-3992 E 1/8'') was in the particle form of 180–355 μ m. The impregnation was performed with aqueous solutions of H₂PtCl₆ (Merck) and RhCl₃ (Merck) producing catalysts with nominal loadings of 2% Pt and 2% Rh, respectively. The catalysts were dried at 120 °C for 2 h and, then, calcined under air flow at 600 °C for 9 h (Rh) or 16 h (Pt).

Doped catalysts were prepared in the laboratory of Heterogeneous Catalysis, University of Patras. Doping of titania was carried out by the solid state diffusion technique. The catalyst had a nominal loading of 1.5% Rh. Details of the preparation procedure can be found elsewhere [19].

The catalysts' sulfation was carried out in a fixed-bed, quartz microreactor of 17 mm i.d. 1.5 g of the catalyst was heated to 540 °C under a flow of 2500 ppmv SO₂ and 5 vol% O₂ in He. The total flow rate was 500 cm³/min. The reaction was allowed to proceed for 5 and 7.5 h over 2% Pt/ γ -alumina and 2% Rh/ γ -alumina, respectively, and for 4.5 h over 0.5 g of 1.5% Rh/TiO₂(4% WO₃). The sulfation experiment was terminated when the SO₂ concentration at the reactor exit reached 90% of the inlet SO₂ concentration.

2.2. Sample characterization

The actual metal loading of the catalysts was determined by inductively coupled plasma and atomic emission spectroscopy (ICP/AES, Perkin–Elmer). Measurements of the surface area were based on N_2 adsorption data obtained from an Autosorb-1 (Quantachrome) apparatus. The sulfur content of the alumina-supported catalysts was determined with the ASTM D 5453 standard method using an ANTEK 7000B model 740 instrument.

2.3. Activity measurements

Kinetic experiments were performed in a quartz microreactor (7 mm i.d.) loaded with 0.15 g of the catalyst sample. The typical composition of the feed gas was 1000 ppmv NO, 1000 ppmv C₃H₆, 5 vol% O₂ and 0 or 300 ppmv SO₂ in He. The total flow rate of the reactants was equal to 500 cm³/min ($W/F = 0.018 \text{ g s/cm}^3$). The catalyst was purged with pure He at 600 °C for 1 h prior to the activity experiment. The reduction of NO was carried out at temperatures ranging from 550 down to 200 °C. At each temperature a pseudo-steady state was obtained before advancing to the next reaction temperature. The product gas stream was analyzed by a set of on-line analyzers placed in series and a gas chromatograph (HP 5890, Hewlett-Packard). The on-line analyzers were: an ultraviolet SO₂ analyzer (AR-3000, Anarad), a chemiluminescence NO-NO₂-NO_x analyzer (42C-HL, Thermo Environmental), non-dispersive infrared CO and CO2 analyzers

(VIA-510, Horiba) and a magnetopneumatic O_2 analyzer (MPA-510, Horiba). The GC had two packed columns in series: a Porapak-N (Hewlett–Packard) for separating CO_2 , N_2O and CO and a MS 5 Å (Hewlett–Packard) for separating O_2 and N_2 , and, in parallel with these two, one capillary Rt-Qplot column (Restek) for the determination of the C_3H_6 concentration.

2.4. Temperature-programmed experiments

Temperature-programmed desorption (TPD) experiments were performed in the same reaction/analysis unit with a quartz reactor of 17 mm i.d. loaded with 0.5 g of the catalyst sample. The sample was pretreated with pure helium at 320 °C for 1 h. The flow rate was 500 cm³/min. At this temperature the feed (NO or NO + SO₂ or NO + O₂ in He) was sent to the reactor for 1 h and the catalyst was then cooled down to 100 °C. At 100 °C the feed was purged with pure helium (1000 cm³/min) for 1 h. Desorption was carried out under pure He flow from 100 to 600 °C with a heating rate of 20 °C/min. The exit of the reactor was connected to the gas analysis system described in section 2.3.

The first stage in the temperature-programmed oxidation studies was the adsorption of C_3H_6 or $C_3H_6+SO_2$ on the sample surface using the same conditions as with the TPD experiments. The sample was flushed with helium at $100\,^{\circ}\text{C}$ for 1 h and oxidation started using 5 vol% O_2/He and the same temperature range and heating rate as with the TPD studies.

3. Results and discussion

3.1. Catalyst characterization

The catalyst characterization data are summarized in table 1. The noble metal content in the γ -alumina-based samples was similar, while less Rh was detected in the titania-based sample. The sulfation of fresh catalysts did not change their surface area, implying that the pore structure changes due to sulfation are negligible. The sulfur content was ca. 20% higher in sulfated Pt/alumina than in sulfated Rh/alumina. This implies that the extent of the sulfation was about the same over these two samples. The sulfur content of sulfated Rh/TiO2(4% WO3) was not determined.

3.2. TPD studies

The NO sorption of alumina using a feed of 3000 ppmv NO in He gave a NO_x desorption peak at 270 °C, while traces of NO_x were detected at 490 °C. These peaks correspond to desorption of nitrite and nitrate species, respectively, according to previous TPD studies [20,21]. A list of the TPD experiments of this study is given in table 2. The temperature where each peak exhibits its maximum intensity and the overall amount of the desorbed species

Table 1
Catalysts used in the activity and temperature-programmed experiments.

Catalyst	Actual metal loading	Surface are	Sulfur content		
	(wt%)	Fresh	Sulfateda	(wt%)	
2% Pt/γ-Al ₂ O ₃	1.64 ± 0.04	183	182	1.61 ± 0.16	
$2\% \text{ Rh/}\gamma\text{-Al}_2\text{O}_3$	1.73 ± 0.08	182	175	1.25 ± 0.30	
1.5% Rh/TiO ₂ (4% WO ₃)	1.3 ± 0.03	20	18	ND^b	

^a Samples sulfated with 2500 ppmv SO₂ and 5 vol% O₂ in He at 540 °C.

Table 2 Peak temperatures (°C) and quantities of species desorbed (μ mol/g) after adsorption of NO or NO + O₂ or NO + SO₂ on γ -Al₂O₃, Pt/ γ -Al₂O₃ and Rh-based catalysts at 320 °C.

Catalyst	Sorption	NO		NO_2		NO_x	
	mixture	T_{peak}	Quantity	T_{peak}	Quantity	T_{peak}	Quantity
γ -Al ₂ O ₃	NO	270	16.5	270	9.5	270	26
						490	Traces
	$NO + O_2$	192	15	192	4	192	19
		506	65.5	476	28.5	493	94
2% Pt/ γ -Al ₂ O ₃	NO	190	17	228	8	215	25
		418	4	418	1	418	5
	$NO + O_2$	234	22				
		483	30	434	136	434	188
S-2% Pt/ γ -Al $_2$ O $_3$ ^a	NO	170	8	170	4	170	12
	$NO + O_2$	291	76	242	62	256	138
	$NO + SO_2$					_	Traces
2% Rh/ γ -Al $_2$ O $_3$	NO	240	22	220	5	240	27
		388	12			388	12
	$NO + O_2$	215	17				
		413	54.5	362	94	362	165.5
S-2% Rh/ γ -Al $_2$ O $_3$ ^a	NO	169	5	_	1.5	169	6.5
	$NO + O_2$			253	35	253	35
		506	74	506	18.5	506	92.5
	$NO + SO_2$		3		1		4
TiO ₂ (4% WO ₃)	NO					_	Traces
	$NO + O_2$	455	26		1	455	27
1.5% Rh/TiO ₂ (4% WO ₃)	NO	385	22		1	385	23
	$NO + O_2$	386	43.5		4	386	47.5
S-1.5% Rh/TiO ₂ (4% WO ₃) ^a	NO	_	4.5	_	1	_	5.5
	$NO + O_2$	_	17	_	2	_	19

^a Samples sulfated with 2500 ppmv SO₂ and 5 vol% O₂ in He at 540 °C.

are given in this table. The NO desorption curves of unpromoted alumina, fresh and sulfated 2% Rh/alumina are compared in figure 1. The impregnated metal causes a shift of the nitrite peak toward lower temperatures, while a second peak was observed at 388 °C implying that the NO-Rh bond is stronger than the NO-alumina one. The sulfated sample desorbed significantly lower amounts of NO_x and at lower temperatures as compared to the fresh samples. Moreover, when 250 ppmv SO₂ coexisted in the feed with NO, almost no NO was desorbed from the sample (table 2). The selective sorption of SO₂ on Rh sites inhibited the NO sorption almost completely. Qualitatively similar results were noticed using Pt/alumina. These data are in a good agreement with previous TPD studies [10,11]. Comparison of the integrated, desorbed NO_x during the TPD experiments showed that about the same amount of NO_x is desorbed from unpromoted γ -alumina and Pt/alumina while this amount is higher by 30% over Rh/alumina. Upon sulfation of Pt/alumina and Rh/alumina the amounts of NO_x measured during desorption were 40 and 17% of those detected over the fresh samples, respectively.

In the presence of 5 vol% O_2 in the feed more NO_x was desorbed as compared to the O_2 -free experiments. The nitrate peak was the dominant one over unpromoted alumina and Rh/alumina (figure 2). The oxidation of NO on the metal sites and the spillover to the support gives rise to the accumulation of nitrates on the catalyst surface. Upon the sulfation of the Rh/alumina less nitrates and more nitrites (peak at 253 °C) were measured. Therefore, sulfates formed during the pretreatment of the sample block the oxidation of NO. Similar results were obtained over Pt/alumina. However, SO_2 was detected at the reactor exit during the NO sorption over sulfated Pt/alumina using an NO/O_2 feed. Integration of the SO_2 vs. time curve of this experiment resulted in 146 μ mol/g catalyst. This value is close to the amount of NO_x desorbed from sulfated Pt/alumina. There-

^b ND = not determined.

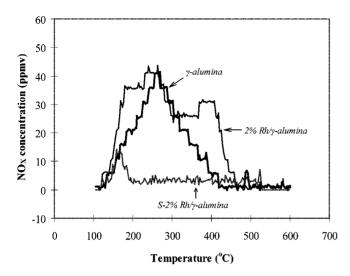


Figure 1. NO $_x$ evolution during temperature-programmed desorption (TPD) experiments over γ -alumina, 2% Rh/ γ -alumina and sulfated 2% Rh/ γ -alumina after sorption of NO at 320 °C. Sorption mixture: 3000 ppmv NO in He.

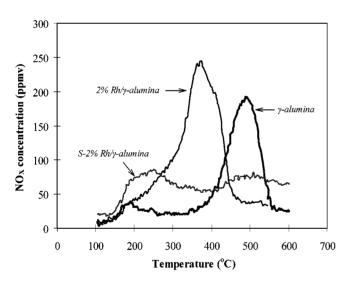


Figure 2. NO $_x$ evolution during temperature-programmed desorption (TPD) experiments over γ -alumina, 2% Rh/ γ -alumina and sulfated 2% Rh/ γ -alumina after sorption of NO + O $_2$ at 320 °C. Sorption mixture: 3000 ppmv NO and 5 vol% O $_2$ in He.

fore, we postulate that during the NO sorption stage, nitrites and nitrates substituted SO_x initially sorbed on this sample. This phenomenon was not noticed over the sulfated Rh/alumina. Moreover, NO_x were desorbed at lower temperatures from the sulfated Pt/alumina than from the sulfated Rh/alumina.

The NO sorption capacity of titania doped with W^{6+} (TiO₂(4% WO₃)) and Rh/TiO₂(4% WO₃) was studied, as well. Only the latter sample exhibited significant NO sorption capacity (table 2). The addition of 5 vol% O₂ in the feed gave rise to relatively small NO desorption peaks at 455 and 386 °C for TiO₂(4% WO₃) and Rh/TiO₂(4% WO₃), respectively. Upon sulfation lower amounts of NO were desorbed from the Rh-based catalyst.

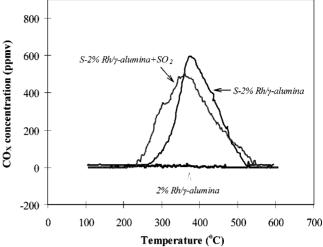


Figure 3. CO_x evolution during oxidation experiments over γ -alumina, 2% Rh/ γ -alumina and sulfated 2% Rh/ γ -alumina after sorption of C_3H_6 or $C_3H_6+SO_2$ at 320 °C. Sorption mixture: 3000 ppmv C_3H_6 , 0 or 250 ppmv SO_2 in He.

3.3. Oxidation studies

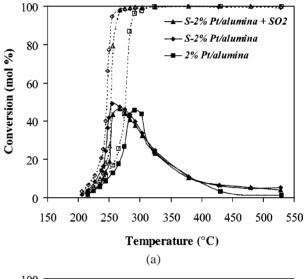
The oxidation studies included two stages. In the first one, C₃H₆ was sorbed on the catalyst in the presence or absence of SO2 in the feed. In the second one, adsorbed species were removed using temperature-programmed oxidation. CO was measured when fresh Rh/alumina was exposed to C₃H₆ implying the reduction of Rh₂O₃ by the hydrocarbon. Integration of the CO concentration vs. time curve during the adsorption stage of the experiment showed that 23 μ mol/g CO were produced, while 168 μ mol/g Rh exist on this sample. The oxidation data of figure 3 show that practically no CO_x were detected during the oxidation stage of the experiment. Similarly to the propene adsorption over fresh Rh/alumina, 165 μ mol/g CO_x were measured during the propene adsorption over the sulfated Rh/alumina. Following that, 345 μ mol/g CO_x were released during the oxidation experiment. About the same amount of CO_x was also measured when the feed in the adsorption stage was 3000 ppmv C₃H₆ and 250 ppmv SO₂ in He. Moreover, SO₂ was desorbed during the oxidation stage when the adsorption mixture contained SO₂ (table 3).

In our previous surface characterization studies [11], we noticed that the temperature rise from 250 to 350 °C caused a significant decrease in the concentration of the surface species on Rh/alumina, while sulfates on Rh/alumina were reduced by propene in the same temperature range. Based on these data we postulate that propene reduced Rh³⁺ on the fresh sample and it was converted to species that were easily desorbed at 320 °C over this fresh sample. On the other hand, propene formed species over the sulfated sample that are not desorbed at 320 °C.

The experimental data over fresh and sulfated Rh/TiO₂ (4% WO₃) were consistent with the corresponding data over fresh and sulfated Rh/alumina. Namely, CO_x were observed during the propene sorption stage and no CO_x were measured during the oxidation of the fresh sample.

 $\label{eq:Table 3} Table \ 3$ Peak temperatures (°C) and quantities of species desorbed (\$\mu\$mol/g) during temperature-programmed oxidation experiments after adsorption of \$C_3H_6\$ or \$C_3H_6+SO_2\$ on \$\gamma\$-Al_2O_3\$, \$Pt/\gamma\$-Al_2O_3\$ and \$Rh\$-based catalysts at 320 °C.}

Catalyst	Sorption	SO_2		CO		CO ₂		CO_x	
	mixture	T_{peak}	Quantity	T_{peak}	Quantity	T_{peak}	Quantity	T_{peak}	Quantity
γ -Al ₂ O ₃	C ₃ H ₆			558	3	568	159	568	162
2% Pt/γ-Al ₂ O ₃	C_3H_6					243	236	251	236
S-2% Pt/\gamma-Al2O3a	C_3H_6					555	4	555	4
$2\% \text{ Rh/}\gamma\text{-Al}_2\text{O}_3$	C_3H_6							_	Traces
S-2% Rh/\gamma-Al2O3^a	C_3H_6			_	13	374	332	374	345
	$C_3H_6 + SO_2$	274	26	243	1	364	330	364	331
TiO ₂ (4% WO ₃)	C_3H_6							_	Traces
1.5% Rh/TiO ₂ (4% WO ₃)	C_3H_6					258	7	258	7
S-1.5% Rh/TiO ₂ (4% WO ₃) ^a	C_3H_6			_	2	357	134	357	136
	$C_3H_6+SO_2$	270	35	_	2	396	98	396	100


^a Samples sulfated with 2500 ppmv SO₂, 5 vol% O₂ in He at 540 °C.

The CO_x formed during the oxidation of the sulfated sample were lower than those from sulfated Rh/alumina in the absence and presence of SO_2 in the feed (table 3). This difference was attributed to the type of support of the two samples.

The oxidation experiment over alumina showed that sorbed C_3H_6 is burned only at elevated temperatures (568 °C). Higher amounts of C_3H_6 are sorbed on Pt/alumina and oxidized at 243 °C due to the O_2 activation on the Pt sites. On the other hand, the formation of sulfates on Pt/alumina inhibited the C_3H_6 sorption since only traces of CO_2 are detected at 555 °C. This is in disagreement with the experimental data over sulfated Rh/alumina. Burch and Watling [9] reported that C_3H_6 does not reduce sulfates on a Pt/alumina catalyst. The presence of sulfates on the catalyst surface has a different effect on Rh/alumina, since propene sorbed on Rh is converted to carbonaceous species that can reduce the sulfates.

3.4. NO reduction studies

The activities of the three noble-metal-based catalysts, 2% Pt/alumina, 2% Rh/alumina and 1.5% Rh/TiO₂(4% WO₃), are shown in figures 4, 5 and 6, respectively. In the same figures the NO reduction performance of the three sulfated samples is depicted in the presence and absence of SO₂ in the reactor feed, in comparison to the SO₂-free behavior of the corresponding fresh catalyst samples. Presulfation of the samples affected the NO reduction activity of the noble-metal-based catalysts as follows: inhibition was noticed over Rh/alumina at temperatures lower than the activation temperature T_{peak} (figure 5(a)), while over Rh/TiO₂(4% WO₃) an activity enhancement was observed at temperatures higher than T_{peak} (e.g., ≥ 330 °C) (figure 6(a)). An activity enhancement was also observed over Pt/alumina at temperatures lower than T_{peak} , (e.g., between 200 and 280 °C) (figure 4(a)). Burch and Watling [9] reported that sulfation had no significant effect on the NO reduction performance of the catalyst. We attribute this difference to the sulfation procedure followed in each study. In this work higher sulfation temperature and SO₂ concen-

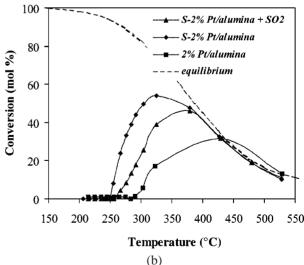


Figure 4. Effect of SO_2 on the selective catalytic reduction of NO with C_3H_6 over 2% Pt/γ -alumina. (a) NO reduction (—) and propene oxidation (- - -) and (b) NO oxidation. Reactor feed composition: 1000 ppmv NO, 1000 ppmv C_3H_6 , 5 vol% O_2 , 0 or 300 ppmv SO_2 .

tration are expected to result in complete sulfation of the surface alumina.

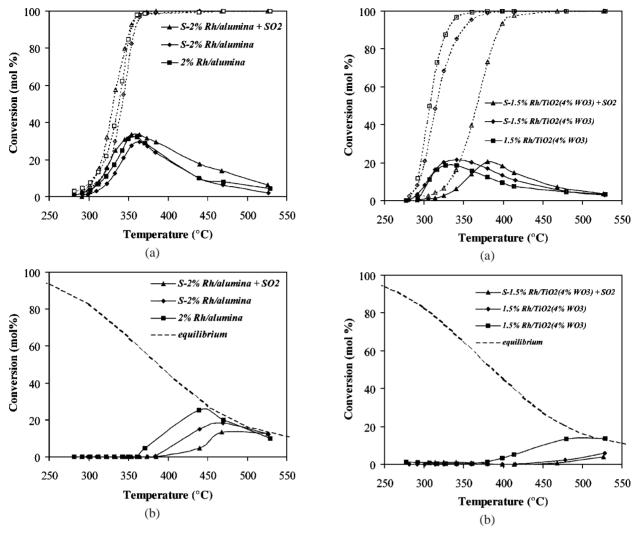


Figure 5. Effect of SO₂ on the selective catalytic reduction of NO with C₃H₆ over 2% Rh/ γ -alumina. (a) NO reduction (—) and propene oxidation (- - -) and (b) NO oxidation. Reactor feed composition: 1000 ppmv NO, 1000 ppmv C_3H_6 , 5 vol% O_2 , 0 or 300 ppmv SO_2 .

NO₂ formation was suppressed over the sulfated Rh-

based catalysts while it was favored over Pt/alumina as compared to the fresh catalyst samples (figures 4(a), 5(a) and 6(a)). In our earlier work [11] we postulated that over Rh/alumina and Pt/alumina the NO oxidation sites are the Rh-Al₂O₃ interface and the Pt particles, respectively. Consequently, sulfation of these catalysts inhibits the NO oxidation over the former sample, in accordance with the experimental evidence. In contrast, sulfates enhance the NO oxidation over Pt/alumina.

The presence of SO₂ in the feed over the sulfated Pt- and Rh-based catalysts caused a modification of their catalytic performance. Thus, over sulfated Rh/alumina we observed an enhancement of the NO reduction activity upon the addition of SO₂ in the feed (figure 5(a)). This is in agreement with our previous works [5,11] where we noticed a reversible enhancement in the catalyst activity when SO₂ was added to the feed. This enhancement was attributed to the inhibition of the NO₂ formation. We believe that there is balance among the beneficial (inhibition of NO2

Figure 6. Effect of SO2 on the selective catalytic reduction of NO with C₃H₆ over 1.5% Rh/TiO₂(4% WO₃). (a) NO reduction (—) and propene oxidation (- - -) and (b) NO oxidation. Reactor feed composition: 1000 ppmv NO, 1000 ppmv C₃H₆, 5 vol% O₂, 0 or 300 ppmv

formation) and the detrimental (competitive adsorption between NO and SO₂) effects of the SO₂ presence in the feed over Rh/alumina. Depending on the reaction conditions one of the above two effects may dominate. Over sulfated Rh/TiO₂(4% WO₃) the NO conversion was maintained at the same levels but was shifted to higher temperatures by about 40 °C in the presence of SO₂ (figure 6(a)). On the other hand, the addition of SO2 over sulfated Pt/alumina resulted in a loss of its NO reduction performance at low temperatures, while, at higher temperatures, the NO reduction fell on the same curve both in the presence and absence of SO₂ (figure 4(a)). These results agree with those of Burch and Watling over sulfated Pt/alumina [9]. The formation of NO₂ was inhibited over all the sulfated catalysts examined when SO₂ was present in the feed (figures 4(a), 5(a) and 6(a)).

The overall SO₂ effect on the NO reduction performance of the noble-metal-based catalysts for the SCR of NO was beneficial in the case of Rh and Pt supported on γ -alumina,

since their activity was enhanced, and unfavorable over Rh supported on doped TiO2, given that the catalyst became active at higher temperatures as compared to its SO₂-free behavior. At T_{peak} the selectivity of the catalysts towards N₂ did not change and was equal to 40, 85 and 80 mol% over Pt/alumina, Rh/alumina and Rh/TiO₂(4% WO₃), respectively. CO was measured over all the catalyst samples examined at temperatures close to the propene light-off temperature. The presence of SO₂ had no effect on the amount of CO formed over Pt/alumina (3 mol%) while CO formation was favored over Rh/alumina (6 mol%) as compared to the fresh catalyst (3.5 mol%). The apparent activation energies for NO reduction estimated in the SO₂-containing experiments were higher as compared to experiments performed on fresh Pt/alumina and Rh/alumina. In the following part of this work we will attempt to correlate the TPD, oxidation and NO reduction experiments.

Our NO desorption studies showed that NO forms a stronger bond with Rh or Pt than with the support, alumina or doped titania. It was also noticed that the overall amounts of NO_x desorbed from the doped titania-supported catalyst are significantly lower in comparison to those from catalysts supported on γ -alumina. This observation may explain the higher NO reduction activity of fresh Pt/alumina and Rh/alumina as compared to fresh Rh/TiO₂(4% WO₃). The sulfation of the catalysts inhibits the NO adsorption in the presence or absence of O₂ in the feed. The NO desorption for the three noble-metal-based catalysts are consistent; however, this was not the case for the oxidation experiments and for the SO₂ effect on the NO reduction.

When fresh Rh/alumina or Rh/TiO₂(4% WO₃) is flushed with C₃H₆ at 320 °C the olefin is preferentially adsorbed on Rh and subsequently oxidized forming species (CO and CO₂) that do not deposit on the support. Solymosi and Sarkany [22] reported that the active sites of Rh-based catalysts are reduced rhodium atoms. Therefore, the role of propene in the NO reduction is to reduce the oxidation state of the rhodium atoms. Over these sites NO is dissociatively sorbed in an SO₂-free atmosphere [11,16,17]. The addition of sulfur-containing species on the catalyst surface by applying the pre-sulfation procedure inhibits the NO sorption in an oxidizing atmosphere. However, propene reduces the sulfates forming carbonaceous compounds that are sorbed on sulfated Rh-based samples. The oxidation of such species formed over sulfated Rh/alumina results in the CO_x formation in figure 3. The addition of SO_2 in the sorption mixture had almost no effect on the amount of CO_x formed during the oxidation experiment (table 3) and the peak temperature of the CO_x desorption curve (figure 3) over Rh/alumina, due to the preferential sorption of SO₂ on the noble metal particles. In the case of sulfated Rh/TiO₂(4% WO₃), however, the presence of SO₂ resulted in the sorption of lower amounts of propene over the catalyst and the up-shift of the evolution of CO_x by 40 °C (table 3). This behavior implies that SO₂ adsorbs not only over Rh sites but is also competitively sorbed over active sites on the support. The peak temperatures of CO_x formation noticed during the oxidation experiments over the sulfated Rh-based catalysts, both with and without SO_2 in the feed, appear to be in fairly good agreement with the T_{peak} of the corresponding NO reduction activity curves (table 3, figures 4 and 5). This coincidence of peak temperatures for NO reduction (kinetic experiments) and propene oxidation (temperature-programmed experiments) implies that the partially oxidized species of propene formed on sulfated Rh-based catalysts play an active role in the reaction rate-determining step which is in agreement with the mechanism we proposed earlier for NO reduction over Rh/alumina in the presence of SO_2 [11].

The presence of Pt on alumina facilitates the C_3H_6 sorption that migrates to the support during the sorption stage. The formation of sulfates around the Pt particles inhibits the spillover process, but does not affect the cleanup of the Pt surface from O_2 during the NO reduction (NO decomposition mechanism) [23]. In contrast, the reduction of the Pt surface becomes easier since more propene is available and NO reduction rates increase at temperatures lower than $T_{\rm peak}$ over the sulfated Pt/alumina as compared to its fresh sample. On the other hand, the presence of SO_2 in the gas phase gives rise to the competition of NO and SO_2 for the Pt sites resulting to lower NO conversions.

A complex reaction scheme was recently proposed for the NO_x reduction by C_3H_6 over acid sites [24,25]. This mechanism involves the formation of acrylonitrile and ammonia from nitrosonium ions and the hydrolysis of acrylonitrile is the controlling step. We employed the NO decomposition mechanism in the interpretation of our experimental results, though there is no experimental evidence from the data of this study to support this choice that was based on previous works [5,11,18,23].

4. Conclusions

Experimental data from TPD studies showed that similar amounts of NO were desorbed from Pt/Al_2O_3 and Rh/Al_2O_3 and lower from $Rh/TiO_2(4\%\ WO_3)$. Sulfation caused a significant reduction of the desorbed NO from all catalysts, the largest decrease being observed over the Rh-based samples. When the sorption mixture was NO and SO_2 in helium, SO_2 was selectively sorbed on the catalysts. In temperature-programmed oxidation experiments CO_x was detected over fresh Pt/Al_2O_3 and sulfated Rh-based catalysts.

Sulfation of the catalysts modified the NO reduction as follows: the activation temperature of Pt/Al₂O₃ was shifted to lower temperatures, the reaction rate slightly decreased at low temperatures over Rh/Al₂O₃ and the reaction rate increased at high temperatures over Rh/TiO₂(4% WO₃). The addition of SO₂ in the feed did not affect the activity of sulfated Pt/Al₂O₃, enhanced the activity of Rh/Al₂O₃ and shifted the activation temperature of Rh/TiO₂(4% WO₃) to higher temperatures. Sulfation of Pt/Al₂O₃ and Rh-based catalysts enhanced and inhibited, respectively, the NO oxidation.

In the absence of SO_2 in the sorption mixture, NO was desorbed on the catalysts at temperatures close to those where the maximum NO reduction is measured. SO_2 was preferentially sorbed on the samples as compared to NO. Noble-metal-based catalysts maintained their NO reduction activity when SO_x existed on the catalyst surface or in the gas feed for the following reasons: C_3H_6 was not sorbed on sulfated Pt/Al_2O_3 , thus, more reductant was available for the cleanup of the Pt sites, and the NO oxidation over the Rh-based catalysts was inhibited, thus, leading to more NO available for reduction. The competitive adsorption of NO and SO_2 for the metal sites inhibited the NO reduction over all samples. As a result, the observed NO reduction rate over sulfated catalysts increased or decreased as compared to the fresh ones depending on the reaction conditions.

Acknowledgement

The authors wish to thank Professor X.E. Verykios, Dr. D.I. Kondarides and Ph.D. student T. Halkides from the laboratory of Heterogeneous Catalysis of the University of Patras, Greece, for kindly supplying the Rh/doped titania catalyst. The contribution of Mrs. E.S. Stergioula in carrying out the activity and temperature-programmed experiments is greatly appreciated. The Commission of the European Community funded this work under Contract BRPR-CT97-0460.

References

- [1] V.I. Parvulescu, P. Grange and B. Delmon, Catal. Today 46 (1998)
- [2] T. Tabata, M. Kokitsu and O. Okada, Catal. Today 22 (1994) 147.

- [3] M. Iwamoto, Catal. Today 29 (1996) 29.
- [4] M.D. Amiridis, T. Zhang and R.J. Farrauto, Appl. Catal. B 10 (1996) 203.
- [5] E.A. Efthimiadis, G.D. Lionta, S.C. Christoforou and I.A. Vasalos, Catal. Today 40 (1998) 15.
- [6] A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Obuchi, Appl. Catal. B 2 (1993) 71.
- [7] F.C. Meunier and J.R.H. Ross, Appl. Catal. B 24 (2000) 23.
- [8] S. Sumiya, M. Saito, H. He, Q.-C. Feng, N. Takezawa and K. Yoshiba, Catal. Lett. 50 (1998) 87.
- [9] R. Burch and T.C. Watling, Appl. Catal. B 17 (1998) 131.
- [10] R. Burch, J.A. Sullivan and T.C. Watling, Catal. Today 42 (1998) 13.
- [11] E.A. Efthimiadis, S.C. Christoforou, A.A. Nikolopoulos and I.A. Vasalos, Appl. Catal. B 22 (1999) 91.
- [12] J. Mitome, G. Karakas, K.A. Bryan and U.S. Ozkan, Catal. Today 42 (1998) 3.
- [13] F. Figueras, B. Coq, E. Ensuque, D. Tachon and G. Delahay, Catal. Today 42 (1998) 117.
- [14] T. Chafic, A.M. Efstathiou and X.E. Verykios, J. Phys. Chem. B 101 (1997) 7968.
- [15] Z. Zhang, A. Kladi and X.E. Verykios, J. Phys. Chem. 98 (1994) 6804.
- [16] T. Chafic, D.I. Kondarides and X.E. Verykios, J. Catal. 190 (2000) 446.
- [17] D.I. Kondarides, T. Chafic and X.E. Verykios, J. Catal. 191 (2000) 147.
- [18] A.A. Nikolopoulos, E.S. Stergioula, E.A. Efthimiadis and I.A. Vasalos, Catal. Today 54 (1999) 439.
- [19] T. Ioannides and X.E. Verykios, J. Catal. 145 (1994) 479.
- [20] V.A. Sadykov, S.L. Baron, V.A. Matyshak, G.M. Alikina, R.V. Bunina, A.Ya. Rozovskii, V.V. Lumin, E.V. Lumina, A.N. Kharlanov and S.A. Veniaminov, Catal. Lett. 37 (1996) 157.
- [21] R. Burch, E. Halpin and J.A. Sullivan, Appl. Catal. B 17 (1998) 115.
- [22] F. Solymosi and J. Sarkany, Appl. Surf. Sci. 3 (1979) 68.
- [23] R. Burch, P.J. Millington and A.P. Walker, Appl. Catal. B 4 (1994)
- [24] T. Gerlach, F.W. Schütze and M. Baerns, J. Catal. 185 (1999) 131.
- [25] T. Gerlach, U. Illgen, M. Bartoszek and M. Baerns, Appl. Catal. B 22 (1999) 269.