The effect of SO₂ on the activity of Pd-based catalysts in methane combustion

R. Burch, D.J. Crittle, B.W.L. Southward and J.A. Sullivan *

School of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, UK E-mail: r.burch@qub.ac.uk

Received 14 November 2000; accepted 11 January 2001

The effect of SO_2 on Pd-based catalysts for the combustion of methane has been investigated. It is shown that while SO_2 poisons Al_2O_3 - and SiO_2 -supported catalysts, pre-treatment of Pd/ZrO₂ by SO_2 enhances the activity substantially.

KEY WORDS: methane; heterogeneous catalyst; combustion; promotion/poisoning; SO2

1. Introduction

Catalytically stabilised combustion of natural gas using Pd-based catalysts for power generation has seen great advances since the original proposal by Pfefferle [1] and patented systems have been reported [2]. There has been significant interest also in the application of catalytic combustion to natural gas powered vehicles [3]. However, in both cases sulphur-containing compounds either in the fuel, or as contaminants from the engine systems, are known to poison conventional Pd catalysts [4]. Conversely, exposure of platinum catalysts to SO₂ can have beneficial effects for the combustion of higher hydrocarbons [5–8]. This promotion has been variously ascribed to enhanced alkane adsorption on Pt [5], support mediated interactions [6] or the modification of the Pt site by interfacial interaction with an adsorbed sulfate species [7].

To investigate the possibility of a similar promoting effect for methane combustion on palladium we have examined the effect of SO_2 exposure on the activity of Pd/Al_2O_3 , Pd/ZrO_2 and Pd/SiO_2 .

2. Experimental

All catalysts were prepared by incipient wetness impregnation (Pd(NO₃)₂, Johnson Matthey) of the dried supports (Azko CK300 Al₂O₃, surface area 195 m² g⁻¹, Grace 432 acid washed silica, 265 m² g⁻¹ and ZrO₂, Melcat X20 632/03 Zr(OH)₂, 12 m² g⁻¹). After impregnation all samples were dried at room temperature (24 h), and 120 °C (12 h) prior to calcination at 600 °C (12 h) in static air.

Catalyst testing was performed in a standard plug-flow microreactor with on-line analysis. The catalyst (50 mg) was heated in a Eurotherm 818p series controlled furnace and the bed temperature monitored by an *in situ* thermocouple.

All reactant gases, supplied by BOC and used without further purification, were provided from mass flow controllers at a total flow rate of 200 cm³ min⁻¹ at the compositions listed. All reactor lines, fittings and valves were constructed in stainless steel. Product analysis was by Perkin–Elmer 8700 GC fitted with a Porapak Q-S column. Analysis of CO and CO₂ was achieved by the use of a methanator and FID.

NH₃ TPD was performed on pre-oxidised samples (150 mg, 5% O_2 for 1 h at 550 °C). 1% NH₃/N₂ was dosed at 150 °C for 1 h, the sample purged (30 min) and cooled to 100 °C prior to desorption at a rate of 20 °C min⁻¹ in 103 cm³ min⁻¹ of He. Product analysis was by mass spectrometry (Fisons Gaslab). Note that when Pd is present some oxidation of NH₃(ads) can occur so we estimate the amount of ammonia adsorbed by summing all the desorption products (including NO, N₂ and N₂O as well as NH₃). In this way we can back calculate the amount of nitrogen adsorbed originally as NH₃ on acidic sites.

Dispersions were measured using standard H_2 chemisorption methods in a glass vacuum system. Pre-reduction was performed in H_2 for 30 min at 250 °C. The values obtained were 1% Pd/Al₂O₃, 9.9%; 1% Pd/SiO₂, 5.2%; and 1% Pd/ZrO₂, 21.1%.

TPR experiments were performed at a ramp rate of $10\,^{\circ}\text{C}\,\text{min}^{-1}$ on $20\,\text{mg}$ samples in a flow of $10\,\text{cm}^3\,\text{min}^{-1}$ of $5\%\,H_2/\text{Ar}$ (BOC) using a standard Wheatstone bridge/amplifier assembly linked to a PC-interfaced Perkin–Elmer Nelson integrator.

3. Results and discussion

3.1. Isothermal SO₂ poisoning studies

Figure 1 summarises the effects of 20 ppm SO₂ (introduced after 1 h SO₂-free combustion) on the activity of Pd supported on Al₂O₃, SiO₂ and ZrO₂ for CH₄ combustion at

^{*} Present address: Department of Chemistry, University College, Belfield, Dublin 4, Ireland.

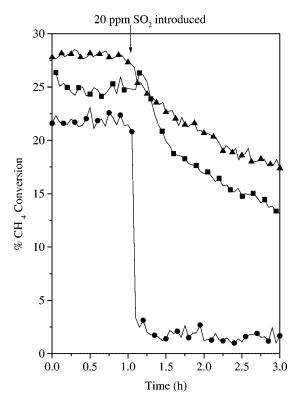


Figure 1. Effect of introduction of 20 ppm SO_2 on the steady state activity of PdO-based CH_4 combustion catalysts. Conditions: 2000 ppm CH_4 , 5000 ppm O_2 , 0.05 g catalyst, 400 °C. (\blacktriangle) 1% PdO/Al $_2O_3$, (\blacksquare) 1% PdO/Zr O_2 and (\bullet) 1% PdO/Si O_2 .

 $400\,^{\circ}\text{C}$. These data reflect the competition between SO_2 and CH₄ for active sites and the expected cumulative poisoning effect due to SO_2 retention. In the case of 1% Pd/SiO₂ the loss of activity was almost instantaneous, reflecting the inability of this support to scavenge any SO_x species. The molar flux of SO_2 (ca. 1.79×10^{-7} mol min⁻¹) and molar concentration of exposed Pd atoms ($\sim 1.0 \times 10^{-7}$ mol) indicates that there is a sufficient amount of SO_2 to saturate the PdO in <1 min. In the case of the 1% Pd/ZrO₂ and 1% Pd/Al₂O₃ catalysts deactivation was much slower but similar in both cases. However, for 1% Pd/ZrO₂ introduction of SO_2 showed, before the onset of deactivation, a small initial increase in conversion which merited further study by varying the method of introducing SO_2 (see later).

TPR analysis (results not shown) gave large H₂ uptake peaks at 600–650 °C for 1% PdO/Al₂O₃ and 1% PdO/ZrO₂, consistent with sulphate reduction [7], in contrast to silica, where no such peak was observed in line with expectations [9–12].

3.2. Effect of SO₂ pre-treatment on activity

Figure 2 contrasts the effects of SO₂ pre-treatment (20 ppm SO₂, 5000 ppm O₂, 400 °C, 1 h) on the subsequent activities for the CH₄ combustion reaction of 1% Pd/Al₂O₃ and 1% Pd/ZrO₂. In the case of the alumina-supported catalysts the initial activity was lower after SO₂ pre-treatment and, while some recovery over ca. 2 h was evident, the final

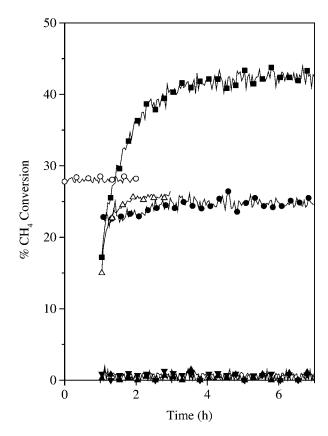


Figure 2. Effect of SO₂ pre-treatment (1 h 20 ppm SO₂, 5000 ppm O₂, 400 °C) on the activity of PdO-based CH₄ combustion catalysts. (■) 1% PdO/ZrO₂-ex SO₂, (•) 1% PdO/ZrO₂, (△) 1% PdO/Al₂O₃-ex SO₂, (•) 1% PdO/Al₂O₃, (▲) ZrO₂-ex SO₂ and (▼) ZrO₂.

steady state conversion was still somewhat lower than for the untreated catalyst. The contrast with the 1% Pd/ZrO₂ catalyst is quite marked. This again exhibited an initial suppression of activity but over a comparable 2 h period displayed a dramatic increase in activity to a final steady state conversion which was more than 150% that of the untreated sample. Figure 2 also shows that the enhanced activity is not due to the sulphation of the ZrO₂ alone. Crittle [13] has shown that in the Pd case only a small quantity of SO₂ is required to get enhanced activity. Further exposure to SO₂ can result in poisoning of the active centres. Indeed, the gradual rise in activity with time after the cessation of the SO₂ treatment (see also figure 3) is attributed to a slow release of SO_x from the Pd since it is known that PdO is reversibly poisoned by SO_x .

To further examine this dramatic increase in activity of the 1% Pd/ZrO₂ catalyst NH₃ TPD analysis of various ZrO₂-based samples was performed (table 1). The SO₂-treated PdO/ZrO₂ showed a large increase in acidity relative to all other samples and is indicative of a strong synergy between the PdO particles and the sulphate formed via spillover at the PdO/support interface.

From these observations it would appear that the active sites for CH_4 activation are enhanced by the presence of the SO_4^{2-} . It could be postulated that by providing this interfacial acidic sulphate species the cleavage of the initial weakly

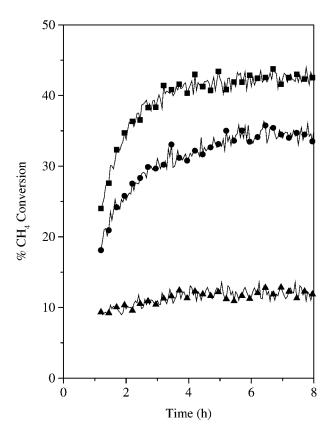


Figure 3. Effect of PdO dispersion on the SO₂ promotion of CH₄ combustion of 1% PdO/ZrO₂ catalysts. Conditions: pre-treatment 1 h 20 ppm SO₂, 5000 ppm O₂, 400 °C, followed by reaction of 2000 ppm CH₄, 5000 ppm O₂, 400 °C. Dispersions: (♠) 6.3, (♠) 18.2 and (■) 26.9%.

Sample ^a	Total amount of N-species desorbed $(\mu \text{mol g}^{-1})$
ZrO_2	97
S/ZrO ₂	122
Pd/ZrO ₂	106
S/Pd/ZrO ₂	204

^a S indicates sulphated samples.

basic C–H bond in CH₄ is facilitated by a polarisation of the C–H bond in a manner similar to that proposed by Burch et al. [7] for Pt-based propane combustion catalysts.

3.3. Effect of particle size

A further indication for the role of interfacial sites comes from the activity of samples of 1% Pd/ZrO₂ of varying dispersions (6.3, 18.2 and 26.9%) pre-treated for 1 h with 20 ppm SO₂. Figure 3 shows that the samples of higher dispersion display a significant activity enhancement. In contrast, figure 4 shows that the sample of low dispersion was hardly promoted by SO₂ under the conditions of these experiments.

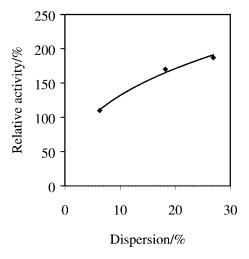


Figure 4. Relative activity of samples after treatment with SO_2 to activity before treatment as a function of Pd dispersion in Pd/ZrO₂ catalysts.

4. Conclusions

The activities of PdO-based CH_4 combustion catalysts are markedly affected by SO_2 . The nature of the support determines the type of interaction observed. Non-interacting supports, e.g., SiO_2 , display immediate deactivation due to formation of PdSO₄. Interacting supports delay this poisoning by the formation of support sulfates. However, in the case of PdO/ZrO₂, when the catalyst is *pretreated* in SO_2 , there is a dramatic increase in activity which we associate with the formation of a composite site between the PdO and acidic sulphate at the PdO/support interface.

Acknowledgement

We are grateful to EPSRC for financial support.

References

- L.D. Pfefferrle and W.C. Pfefferrle, Catal. Rev. Sci. Eng. 129 (1987) 219.
- [2] US Patents 5 425 632, 5 405 260, 5 326 253, 5 281 128, assigned to Catalytica Combustion Systems Inc.
- [3] Compressed Natural Gas as a Fuel, Analysis series no. 5 (Centre of Energy Technologies, Sittard, 1991).
- $[4]\;\;D.D.\;Beck$ and J.W. Sommers, Appl. Catal. A 6 (1995) 185.
- [5] K. Wilson, C. Hardacre and R.M. Lambert, J. Phys. Chem. 99 (1995) 13755.
- [6] C.P. Hubbard, K. Otto, H.S. Ghandi and K.Y.S. Ng, J. Catal. 144 (1993) 484.
- [7] R. Burch, E. Halpin, M. Hayes, K. Ruth and J.A. Sullivan, Appl. Catal. B. 19 (1998) 199.
- [8] H.C. Yao, H.K. Stepien and H.S. Ghandi, J. Catal. 67 (1981) 231.
- [9] F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th Ed. (Interscience, New York).
- [10] S. Khairulin, B. Beguin, E. Garbowski and M. Primet, J. Chem. Soc. Faraday Trans. 193 (1997) 2217.
- [11] J.K. Lampert, M.S. Kazi and R.J. Farrauto, Appl. Catal. B 14 (1997) 211.
- [12] T.C. Yu and H. Shaw, Appl. Catal. B 18 (1998) 105.
- [13] D.J. Crittle, Ph.D. thesis, University of Reading (1999).