Highly stable Ni catalyst supported on Ce–ZrO₂ for oxy-steam reforming of methane

Hyun-Seog Roh a, Ki-Won Jun a, Wen-Sheng Dong a, Sang-Eon Park a,* and Young-Soon Baek b

^a Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology, PO Box 107, Yusong, Taejon 305-600, Korea ^b LNG Technology Research Center, Korea Gas Corporation, 973 Dongchun-Dong, Yeonsu-Ku, Incheon 406-130, Korea

Received 30 November 2000; accepted 4 April 2001

A novel catalyst, Ni/Ce–ZrO₂, exhibits very high catalytic activity and stability even in the stoichiometric steam reforming of methane $(H_2O/CH_4 = 1)$. Furthermore, when it was employed in oxy-steam reforming, it gave enhanced CH_4 conversion (99.1%) at 750 °C and the activity was maintained for 100 h. The high catalyst stability is mainly ascribed to the synergistic effect of the Ce modifier resulting from high capacity to store oxygen and high ability to produce mobile oxygen.

KEY WORDS: Ni/Ce-ZrO2; methane; steam reforming; oxy-steam reforming; Ce modifier

1. Introduction

Production of hydrogen has received much attention in recent years, due to the importance of hydrogen as a clean source of energy as well as the increased demand in chemical industry [1–3]. Steam reforming of methane (SRM) is a widely practiced technology for hydrogen production. The reaction is highly endothermic. Although stoichiometry for the SRM suggests that only one mole of water is required for one mole of methane (CH₄ + H₂O \rightarrow CO + 3H₂), usually excess steam is used to reduce carbon formation. Because of the excess steam, the cost of operating an SRM plant increases. Furthermore, the H₂/CO ratio is over 3 in SRM, which does not fit for methanol synthesis or Fischer-Tropsch synthesis. As an alternative, partial oxidation of methane (POM) has advantages such as mild exothermicity, high conversion, high selectivity, suitable H₂/CO ratio and very short residence time [3]. However, POM has also disadvantages such as explosion danger and carbon formation. Due to these demerits, catalytic POM has not been commercialized even though it is estimated to be more economical than SRM [1]. As another alternative, oxy-steam reforming (combination of POM and SRM) could be considered. By co-feeding steam and oxygen, one can avoid explosion danger in POM and lessen additional steam cost in SRM, and the H₂/CO ratio can be controlled by changing the feeding rate of steam or oxygen per methane. Furthermore, one can expect enhanced CH₄ conversion and H₂ yield by combination of these two reforming reactions. Besides these advantages, increasing the portion of exothermic POM reaction could reduce required energy for the reforming reaction. In 1991, Green and co-workers [4] reported that 1% Ir/Al₂O₃ showed high activities with different compositions of CH₄, O₂, and CO₂. In 1994, Choudhary et al. [5] reported syngas formation by coupled exothermic oxidative conversion and endothermic CO₂ and steam reforming of methane over NiO/CaO catalyst. They suggested that the coupled process can be made mildly exothermic, nearly thermoneutral, or mildly endothermic by manipulating the process conditions.

Recently, zirconia as a support was applied to Ni catalysts for CO_2 reforming of methane and good results were reported [6,7]. Furthermore, Ni/Ce–ZrO₂ showed high activity and stability in partial oxidation of methane without catalyst deactivation [8]. Based on the previous results, in the present work, Ce–ZrO₂-supported Ni catalyst was applied to SRM using a stoichiometric feed mixture (H₂O/CH₄ = 1.0) and oxy-steam reforming of methane (OSRM). As a result, it has been found that Ni supported on Ce-doped ZrO₂ is very active and stable in SRM even under severe conditions and exhibits high activity as well as stability in OSRM.

2. Experimental

Support materials employed in this study were monoclinic ZrO₂ (99%, Strem Chemicals), MgAl₂O₄ (99%, Johnson Matthey), MgO (99%, Aldrich Chemicals), CeO₂ (99%, Aldrich Chemicals), and Ce-doped ZrO₂. Ce-doped zirconia support was prepared by the sol–gel method using a mixture of zirconyl chloride and the corresponding salt of Ce [7,8]. The weight ratio of ZrO₂ to CeO₂ was 4:1. The modified zirconia support was calcined at 800 °C for 6 h in air. Supported Ni (15 wt%) catalysts were prepared by the molten-salt method using its nitrate source [8,9]. The catalyst samples were calcined at 550 °C for 6 h in air. Catalytic activity measurements were conducted in a fixed-bed quartz reactor with inner diameter of 4 mm at atmospheric pressure. The reactant gas stream consisted of CH₄ and H₂O with a molar ratio of 1:1 both in SRM and OSRM. The ra-

^{*} To whom correspondence should be addressed.

tio of O₂/CH₄ in the feed gas was changed from 0.5 to 0 in OSRM. In all the reactions, CH₄ feed flow rate was fixed to 30 cm²/min. Prior to each catalytic measurement, the catalyst was reduced in H₂/N₂ (5 vol% H₂) at 700 °C for 2 h. Effluent gases from the reactor were analyzed by means of a gas chromatograph (Chrompack CP9001) equipped with a thermal conductivity detector (TCD). The GC column used in this study was a fused silica capillary column (Carbo-PLOT P7). The BET specific surface areas were measured by nitrogen adsorption at 77 K using a Micromeritics instrument (ASAP-2400). X-ray diffraction (XRD) patterns were recorded using a Rigaku 2155D6 diffractometer (Ni-filtered Cu K α , 40 kV, 50 mA). Temperature-programmed reduction (TPR) was carried out in a conventional apparatus [10] using 5% H₂/N₂ gas with a heating rate of 10 °C/min. X-ray photoelectron spectroscopy (XPS) measurements were performed at room temperature on a VG ESCALAB 210 spectrometer, with Al K α radiation generated at 300 W. The analyses were operated at a pass energy of 20 eV and a step size of 0.1 eV. Pulse reactions were carried out to estimate the amount of mobile oxygen in the supports according to the method described by Hayakawa et al. [11]. 200 mg of each support was loaded in a conventional quartz reactor. Before pulse reaction the sample was pretreated in He at 800 °C for 2 h. Then hydrogen pulse (1 ml \times 7) reaction was started at 800 °C using pure H₂ to react with the mobile oxygen species, leading to reduction of the support, and then CO₂ was pulsed over the support, resulting in re-oxidation of the reduced support with converting CO_2 into CO.

3. Results and discussion

In commercial SRM processes, Al₂O₃ and MgAl₂O₄ have been used as supports due to their thermal stabilities at high temperature. Especially the latter is preferred, because it is less acidic than alumina resulting in lower coke deposition and it has significant surface area due to its spinel structure. Monoclinic zirconia also has thermal stability at high temperature as well as a considerable surface area. Furthermore, because it has both basic and weak acidic sites, zirconia could be resistant to coke formation [6]. In addition to these superior physical properties, the surface area of zirconia can be increased by the change of its phase from monoclinic to tetragonal using doping of other metals. The modification of a zirconia support with ceria reveals the most profound effect for coke resistance of the catalyst [7]. In previous results, Ni/Ce-ZrO2 showed high activity at high GHSV as well as high stability in POM [8].

Table 1 summarizes the BET specific surface areas and Ni surface areas of the catalysts employed in this study. The BET surface area of Ce–ZrO₂ used in this study is 55 m²/g, whereas that of undoped zirconia is 18 m²/g. This high surface area of Ce–ZrO₂ is due to the Ce-doping effect which makes zirconia a stable tetragonal phase, which was confirmed by XRD analysis. It seems that the BET surface area of each catalyst depends on that of the support because the

Table 1 Surface areas of the supported Ni catalysts.

Surface area	Catalyst				
(m^2/g)	Ni/	Ni/	Ni/	Ni/	Ni/
	Ce–ZrO ₂	ZrO ₂	CeO ₂	MgO	MgAl ₂ O ₄
BET ^a	40	13	3 –	16	18
Ni ^b	0.76	1.04		0.71	1.96

^a Estimated from N₂ adsorption at −196 °C.

H.-S. Roh et al. / Oxy-steam reforming of methane

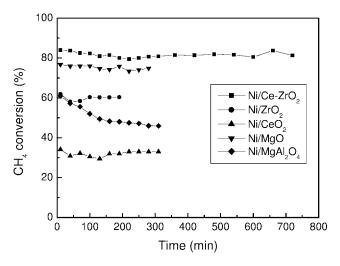


Figure 1. Change in CH₄ conversion with time on stream in stoichiometric steam reforming reaction. Conditions: CH₄ 30 cm²/min, H₂O/CH₄ = 1.0, catalyst amount 50 mg, temperature 750 $^{\circ}$ C.

Table 2 Reaction activities over supported Ni catalysts in SRM.

Catalyst	H ₂ yield (%)	CO yield	H ₂ /CO	H_2/CO_x
Ni/Ce-ZrO ₂	87.0	78.2	3.4	3.2
Ni/ZrO ₂	61.8	51.4	3.8	3.2
Ni/CeO ₂	36.7	21.8	5.1	3.3
Ni/MgO	72.5	52.9	3.3	3.0
Ni/MgAl ₂ O ₄ ^a	47.8	32.1	4.4	3.2

^a Data obtained after 6 h in SRM.

Ni surface area is much smaller than the total surface area. Moreover, it is hard to correlate the total surface area with the Ni surface area, which would be predominantly affected by support-dependent Ni dispersion.

First of all, the catalysts were examined for SRM using stoichiometric feed (steam/carbon = 1.0). In order to illustrate stability in stoichiometric SRM, the change in CH₄ conversion is shown in figure 1 with time on stream over supported Ni catalysts. As can be clearly seen, Ni/MgAl₂O₄ remarkably deactivated with time on stream, which is most likely due to the carbon formation, but the other catalysts kept their activities. Especially, Ni/Ce–ZrO₂ executed SRM under low steam per carbon ratio (S/C = 1.0) without deactivation for 12 h. Table 2 presents H₂ yields, CO yields, H₂/CO ratios, and H₂/CO_x ratios estimated on the supported Ni catalysts in SRM. Ni/Ce–ZrO₂ showed the highest H₂

^b Estimated from H₂ adsorption at 50 °C.

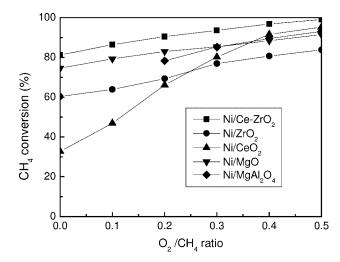


Figure 2. Dependence of CH₄ conversion on O_2/CH_4 ratio in oxy-steam reforming reaction. Conditions: CH₄ 30 cm³/min, H₂O/CH₄ = 1.0, catalyst amount 50 mg, temperature 750 °C.

yield and CO yield among the catalysts examined in this work. The trends of both H_2 and CO yield are similar to that of CH₄ conversion. Generally, the catalyst with high activity shows rather low H_2 /CO ratio. It is due to the fact that the water–gas shift (WGS) reaction is more negligible when the amount of excess steam is relatively small. Thus, Ni/CeO₂, which showed the lowest activity, showed the highest H_2 /CO ratio. H_2 /CO_x ratios on the catalysts are in the range of 3.0–3.3 thus showing little difference.

The various supported Ni catalysts mentioned above were also examined with change of O₂/CH₄ ratio at 750 °C, and their activities in terms of CH₄ conversion are presented in figure 2. In this figure, the data are given only for the catalysts that show stable activities for at least 6 h under the identical reaction conditions. Ni/MgAl₂O₄ showed 93.1% CH₄ conversion at the O₂/CH₄ ratio of 0.5. As the O₂/CH₄ ratio decreased, CH₄ conversion also decreased, and 78.3% CH₄ conversion was obtained at the O₂/CH₄ ratio of 0.3. However, this catalyst deactivated with time on stream below the O₂/CH₄ ratio of 0.2; consequently continuous experiments could not be done due to carbon formation. This result indicates that Ni/MgAl₂O₄ is rather susceptible to carbon formation compared with the other catalysts. Yamazaki et al. [12] reported a similar result that under the condition of low steam/carbon ratio ($H_2O/CH_4 = 1.0$) a commercial reforming catalyst (Ni/Al₂O₃-MgO) deactivated due to carbon formation, but 3 mol% Ni/MgO showed stable CH₄ conversion of 90% at 850 °C and 20 000 h⁻¹. Generally, the CH₄ conversion is proportional to the O₂/CH₄ ratio. As the O₂/CH₄ ratio increases, CH₄ conversion increases. In the case of Ni/MgO, CH₄ conversion increased from 74.6 to 91.5% with the increase in O_2/CH_4 ratio from 0 to 0.5. In the case of Ni/CeO₂, though CH₄ conversion was relatively low (32.8%) at zero O₂/CH₄, it increased drastically with increasing O₂/CH₄ ratio, and finally it reached 95.3%, which is higher than that of Ni/MgO, at the O₂/CH₄ ratio of 0.5. This seems to be due to the high oxygen capacity of ceria, which would probably result in effective oxygen

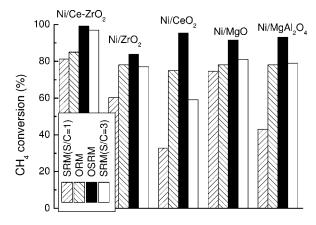


Figure 3. Dependence of CH₄ conversion on the reaction types over supported Ni catalysts.

transfer during oxy-steam reforming. In other words, the ability to produce mobile oxygen species from oxygen molecules is higher than that from water molecules. Ni/ZrO₂ showed stable activity in the range of 60.3-83.8% depending on O₂/CH₄ ratio. The Ce modification in the support resulted in much more enhanced catalytic performance – the resultant Ni/Ce-ZrO₂ showed the highest CH₄ conversion in any range of O₂/CH₄ ratio. CH₄ conversion was 81.2% at zero O₂/CH₄ ratio, and it increased with increasing the ratio and finally it reached 99.1% at O₂/CH₄ ratio of 0.5. It can be suggested that Ni/Ce-ZrO2 can mobile oxygen species, which play a beneficial role in producing syngas, from water molecules as well as oxygen molecules. This suggestion is supported by both TPR results and mobile oxygen data explained later. In all cases, O₂ conversions were 100%, namely no oxygen peak was detected. This indicates that POM was executed primarily and then SRM and WGS reactions were carried out.

The catalytic properties of the supported Ni catalysts have been compared parallel with different types of reforming reactions and the results are summarized in figure 3. From this figure, it is apparent that CH₄ conversion in OSRM showed the highest value among all the reactions examined. Especially, CH₄ conversions in OSRM were higher than those in SRM using the feed of $H_2O/CH_4 = 3$. For example in OSRM over Ni/Ce-ZrO₂, CH₄ conversion was 99.1% which is even higher than that (97.0%) in SRM with S/C ratio of 3. This result offers the possibility that excess steam (at least 1 mole per 1 mole methane) in the present SRM process can be replaced by oxygen (at most 0.5 mole per 1 mole methane), which would bring the benefit of decreasing additional steam cost. Furthermore, combined steam and oxyreforming could be carried out continuously in an adiabatic reactor without supply of heat owing to the combination of exothermic POM and endothermic SRM. Besides these advantages, explosion danger in POM could be eliminated due to the steam introduction.

With the Ni/Ce–ZrO₂ catalyst, reaction data such as CH₄ conversion, CO yield, H_2 /CO ratio, and H_2 /CO_x ratio depending on reaction type are summarized in table 3. The CO yield is quite dependent on the reaction type. In SRM using

Table 3
Comparison of the activity over Ni/Ce–ZrO₂ among various reaction types.

Туре	CH ₄ conv. (%)	CO yield	H ₂ /CO ratio	H_2/CO_x ratio
OSRM ^a	99.1	67.9	3.4	2.3
POM [8]	85.0	76.3	2.1	1.9
SRM (S/C = 3.0)	97.0	67.0	4.7	3.4
SRM (S/C = 1.0)	81.2	78.0	3.3	3.2

^a Conditions: CH₄ 30 cm³/min, O₂ 15 cm³/min, H₂O in gas 30 cm³/min, catalyst amount 50 mg, temperature 750 °C. In all reactions, CH₄ flow rate was 30 cm³/min for comparison.

a feed of $H_2O/CH_4 = 3$ and OSRM, owing to the water–gas shift (WGS) reaction (CO + $H_2O \rightarrow H_2 + CO_2$) resulting from using excess steam, rather low CO yield was obtained. In POM and SRM using a feed of $H_2O/CH_4 = 1$, rather high CO yield was attained though CO yield was still lower than CH₄ conversion. This can be explained as follows. In the stoichiometric SRM, the WGS reaction was still executed due to the reaction between an unconverted water molecule and a produced CO molecule. On the other hand, in POM, because the ratio of O₂/CH₄ was slightly higher than stoichiometry, somewhat CO2 formation takes place via total combustion [8]. Another implication can be drawn from the data of H₂/CO ratio and H₂/CO_x ratio. The ratio of H₂/CO was 2.1 in POM and more than 3.0 in SRM due to the WGS reaction. In OSRM, H₂/CO_x was 2.3 which is adjacent to 2.0, suggesting that POM was carried out totally and a small portion of SRM and WGS reaction took place. The ratio of H_2/CO_x was 3.4 in the SRM with excess steam and 3.2 in the stoichiometric SRM, indicating that the WGS reaction becomes more considerable with higher H₂O/CH₄ ratio. From the above results, it is evident that in OSRM, Ni/Ce-ZrO₂ is more active and stable than Ni/MgAl₂O₄, which is widely used in steam reforming catalysts, and Ni/MgO, which has been reported as a fairly good POM catalyst. The outstanding catalytic properties of Ni/Ce-ZrO2 can be explained as follows. The presence of ceria has beneficial influence on the catalyst performance such as increasing concentration of the highly mobile oxygen species. The role of ceria in the catalyst is assigned to form a thermally stable solid solution with zirconia and to give high capacity of oxygen storage [13]. From TPR study, it was found that the interaction with zirconia leads to the easier reduction of ceria resulting in effective oxygen transfer via a redox cycle [8]. The TPR patterns of Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 are shown in figure 4. While a clear reduction peak was detected at 880 °C on ceria itself [8], in the case of Ni/CeO₂, two obvious peaks were observed. One (peak maximum = 410 °C) is attributable to the reduction of NiO, and the other (peak maximum = $880 \,^{\circ}$ C) is attributable to the reduction of ceria support. For Ni/ZrO₂, broad and unresolved reduction peaks with maximum at about 400 and 510 °C are observed. This suggests that there are a lot of NiO_x sites which are strongly interacted with ZrO₂ but different in the degree of this interaction. Ni/Ce-ZrO2 exhibits two kinds of peaks without any obvious peak at 640 °C which was seen in the Ce-ZrO₂

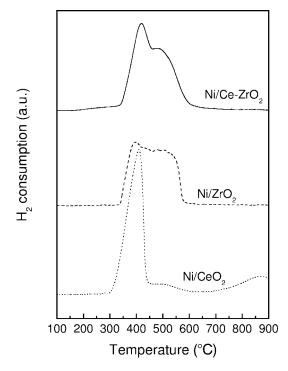


Figure 4. TPR patterns of Ni/Ce-ZrO₂, Ni/ZrO₂, Ni/CeO₂.

Table 4 XPS binding energies of Ni $2p_{3/2}$ and Ni surface concentration data of supported Ni catalysts.

	Catalyst				
	15% Ni/ Ce–ZrO ₂	3% Ni/ Ce–ZrO ₂	15% Ni/ ZrO ₂	15% Ni/ CeO ₂	15% Ni/ MgO
Ni BE (eV)	854.4 857.0	856.4	855.3	854.4	856.7
Ni surf. conc. (%)	15.6	3.3	16.1	30.4	18.0

support [8]. This is possibly due to the fact that strong interaction between Ni and Ce–ZrO₂ makes ceria more reducible by H_2 , which probably helps to produce mobile oxygen during the reforming reaction. Besides, the reduction of NiO is retarded and the reduction range is widened, when Ni is supported on Ce–ZrO₂ compared with Ni/CeO₂. The first, sharp peak can be assigned to relatively free nickel oxide. The second, broad peak can be assigned to complex NiO_x species which strongly interact with the support, and it seems to be concurrent with ceria reduction.

The XPS binding energies (BE) of Ni 2p_{3/2} electrons and surface Ni concentration data in the catalysts are shown in table 4. In the case of Ni/CeO₂, the Ni 2p_{3/2} BE is 854.4 eV, which is characteristic of free NiO species. The BE of Ni/ZrO₂ is 0.9 eV higher than that of Ni/CeO₂, indicating the existence of interaction between NiO and ZrO₂. Ni/MgO shows much higher BE shift (+2.3 eV). It is known that Ni/MgO forms a solid solution, whereby a very strong interaction between NiO and MgO would result. In the case of Ni/Ce–ZrO₂, two Ni 2p_{3/2} BEs appear. One is 854.4 eV, which is assigned as free NiO species, and the other is 857.0 eV, which can be attributable to NiO_x species strongly

Table 5
Mobile oxygen in the supports or catalysts.

Sample	Mobile oxygen $(\mu \text{mol/g-sample})$	Mobile oxygen ^a (%)
Ce–ZrO ₂	254.7	1.660
CeO ₂	251.5	2.160
ZrO_2	5.25	0.032
MgO	3.36	0.014
$MgAl_2O_4$	_	_
3% Ni/Ce-ZrO ₂	228.8	1.580
15% Ni/Ce-ZrO ₂	214.9	1.750

^a Percentage in total oxygen in the support.

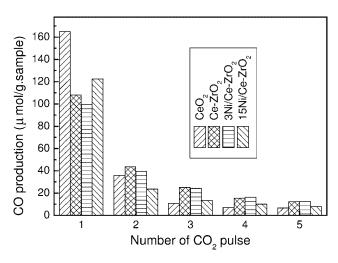


Figure 5. CO production with CO₂ pulse over supports or catalysts.

interacted with Ce–ZrO₂. This result is quite consistent with the TPR pattern of Ni/Ce-ZrO₂. For the 3% Ni/Ce-ZrO₂ sample, the BE of Ni is 856.4 eV. Ni surface concentrations are strongly dependent on the supports even though the bulk concentrations are the same. The Ni surface concentration of Ni/CeO₂ is 30.4% which is two times higher than the bulk concentration. This is due to the low surface area of CeO₂ and little interaction between Ni and CeO2 which is consistent with the TPR pattern of Ni/CeO₂. Ni/MgO and Ni/ZrO₂ show 18.0 and 16.1% surface concentration, respectively. These results suggest that both catalysts form a solid solution having strong interaction between Ni and the support. Especially, 3 and 15% Ni/Ce-ZrO₂ show 3.3 and 15.6%, respectively, which are close to bulk concentrations. These results strongly suggest that Ni can be easily incorporated into the Ce–ZrO₂ support resulting in Ni–Ce–ZrO_x solid solution.

The reducibility of support is most likely to be related with the abundance of mobile oxygen. This speculation is well supported by the estimation data of mobile oxygen in the supports or catalysts (table 5 and figure 5). Table 5 presents mobile oxygen values and figure 5 illustrates CO peak areas of the samples. The results clearly show that Ce makes more mobile oxygen when located in a Ce–ZrO₂ solid solution. MgAl₂O₄ does not have any mobile oxygen and MgO has small amounts of mobile oxygen (3.36 μ mol/g). In the case of ZrO₂ support, it produces 5.25 μ mol/g. However, the CeO₂ support makes 50 times more mobile oxygen

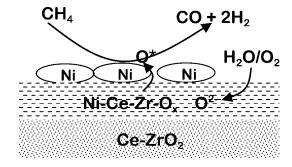


Figure 6. Schematics of producing syngas over Ni/Ce-ZrO2 catalyst.

gen (251.5 μ mol/g) than the ZrO₂ support. Furthermore, the Ce-ZrO₂ support gives slightly higher mobile oxygen $(254.7 \,\mu\text{mol/g})$ than the CeO₂ support indicating that easier reducibility of Ce makes it possible to make mobile oxygen more effectively. It is noteworthy that the amount of mobile oxygen in Ce–ZrO₂ is higher than that in CeO₂. Even though CeO₂ content in Ce–ZrO₂ is only 20 wt%, mobile oxygen percentage in Ce-ZrO2 corresponds to 77% of that in CeO₂. This result implies that the interaction between CeO₂ and ZrO₂ enhance remarkably the mobility of oxygen in either CeO2 or ZrO2. Besides, 3 and 15% Ni/Ce-ZrO₂ also show almost the same values of mobile oxygen as Ce–ZrO₂ without regard to the Ni incorporation. This indicates that the NiO incorporated into Ce-ZrO2 is not hardly reduced by the H₂ reduction treatment or that once-reduced Ni is hardly oxidized by a mild oxidant such as CO₂. As shown in TPR results, free NiO species would locate on the Ni–Ce–ZrO_x interlayer surface after NiO incorporation into Ce–ZrO₂ with increasing Ni loading. While the NiO species on 3% Ni/CeZrO₂ would be hardly reduced because of the strong interaction with the support, the free NiO would be easily reduced. However, once-reduced Ni would be hardly reoxidized by CO₂. In anyway, it is confirmed that Ni/Ce-ZrO₂ can make mobile oxygen species like Ce–ZrO₂. As a consequence, Ni/Ce-ZrO₂ showed very high activities in SRM, POM, and OSRM. Mobile oxygen data are in good agreement with the OSRM reaction data. The catalysts having high mobile oxygen species showed very good activities in OSRM. For example, Ni/CeO₂ and Ni/Ce–ZrO₂ showed very high activities in OSRM, whereas Ni/CeO₂ showed low activity in SRM. In figure 5, it can be seen that CO production behavior depends on the samples. In the case of CeO₂, a relatively high CO peak was detected at the first CO₂ pulse, but it decreased fast with increasing number of pulses. However, although Ce-ZrO₂ produced 70% CO compared with CeO₂ at the first pulse, it produced more CO at the subsequent pulses. This indicates that oxygen migration is more rapid in CeO₂ than in Ce–ZrO₂. From figure 5, it is also seen that the existence of 15% Ni promotes the oxygen migration rate in contrast to 3% Ni. The free Ni species on the surface probably promotes the spillover of oxygen formed from CO₂ dissociation.

Combining the reaction results with TPR, XPS, and mobile oxygen estimation, it is deduced that the outstanding catalytic properties of Ni/Ce–ZrO₂ is owing to the trilateral

interaction. The easier reducibility of Ce-ZrO₂ makes it possible to give highly mobile oxygen species via a redox cycle - thus enhancing decoking activity through the participation of the lattice oxygen, which subsequently would be supplemented with the oxygen from water molecules or oxygen molecules. Consequently, it results in high activity in stoichiometric SRM as well as OSRM. This suggestion is illustrated in figure 6. It is likely that the Ni/Ce-ZrO₂ catalyst is a composite of different layers. The top layer consists of relatively free Ni particles, and an intermediate layer consisting of strongly interacted Ni and Ce–ZrO₂, namely Ni–Ce–Zr– O_x , is sandwiched between the top layer and Ce– ZrO₂ support. The high oxygen storage capacity of ceria is based on the ability to store and release reversibly a large amount of oxygen, responding to the reaction condition. Ceria in the catalyst is partially reduced under reductive condition and the partially reduced ceria site produces active oxygen species from a water molecule, which reacts with the deposited carbon with the help of oxygen spillover from the support onto the Ni sites.

4. Conclusion

Ni/Ce–ZrO₂ reveals high catalytic activity as well as high stability both in SRM and OSRM compared with widely used catalytic systems such as a Ni/MgAl₂O₄ or Ni/MgO. The high catalyst stability is mainly ascribed to the synergistic effect of the Ce dopant resulting from strong interaction between Ni and Ce–ZrO₂, high oxygen storage capacity, and high ability to produce mobile oxygen species during the reaction.

References

- [1] M.A. Peña, J.P. Gómez and J.L.G. Fierro, Appl. Catal. A 144 (1996) 7.
- [2] J.N. Armor, Appl. Catal. A 176 (1999) 159.
- [3] S.C. Tsang, J.B. Claridge and M.L.H. Green, Catal. Today 23 (1995)
- [4] A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature 352 (1991) 225.
- [5] V.R. Choudhary, A.M. Rajput and B. Prabhakar, Angew. Chem. Int. Ed. Engl. 33 (1994) 2104.
- [6] X. Li, J.-S. Chang and S.-E. Park, Chem. Lett. (1999) 1099.
- [7] X. Li, J.-S. Chang, M. Tian and S.-E. Park, J. Appl. Organomet. Chem. 15 (2001) 109.
- [8] H.-S. Roh, W.-S. Dong, K.-W. Jun and S.-E. Park, Chem. Lett. (2001)
- [9] J.-S. Chang, S.-E. Park and H. Chon, Appl. Catal. A 145 (1996) 111.
- [10] K.-W. Jun, K.S. Rama Rao, M.-H. Jung and K.-W. Lee, Bull. Korean Chem. Soc. 19 (1998) 466.
- [11] T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Appl. Catal. A 183 (1999) 273.
- [12] O. Yamazaki, K. Tomishige and K. Fujimoto, Appl. Catal. A 136 (1996) 49.
- [13] C.-K. Loong and M. Ozawa, J. Alloy Comp. 303-304 (2000) 60.