Enhancement of C_2H_6 oxidation by O_2 in the presence of N_2O over Fe ion-exchanged BEA zeolite catalyst

Satoshi Kameoka ^a, Kenji Kita ^a, Shin-ichi Tanaka ^a, Takeshi Nobukawa ^a, Shin-ichi Ito ^a, Keiichi Tomishige ^a, Tatsuo Miyadera ^b, and Kimio Kunimori ^{a,*}

^a Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
^b Research Institute of Energy Utilization, AIST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Accepted 29 November 2001

Selective catalytic reduction (SCR) of N_2O with C_2H_6 took place effectively over Fe ion-exchanged BEA zeolite catalyst (Fe-BEA) even in the presence of excess oxygen. The mechanism in the SCR of N_2O with C_2H_6 over Fe-BEA catalyst was studied by a transient response experiment and an *in situ* DRIFT spectroscopy. No oxidation of C_2H_6 by O_2 took place below 350 °C (in C_2H_6/O_2). In the $N_2O/C_2H_6/O_2$ system, however, it was found that the reaction of C_2H_6 with O_2 was drastically enhanced by the presence of N_2O even at low temperatures (200–300 °C). Therefore, it was concluded that N_2O played an important role in the oxidation of C_2H_6 (*i.e.*, activation of C_2H_6 at an initial step). On the basis of these findings, the mechanism in the SCR of N_2O with C_2H_6 is discussed.

KEY WORDS: SCR, N₂O; enhancement of C₂H₆ oxidation; mechanism; Fe-BEA zeolite.

1. Introduction

Nitrous oxide (N_2O) , which also contributes to catalytic stratospheric ozone destruction, is a strong greenhouse-effect gas with a global warming potential (GWP) per molecule of about 300 times that of carbon dioxide (CO_2) [1,2]. From the point of view of environment, therefore, it is important to study removal of N₂O in the emission gases. Selective catalytic reduction (SCR) of N₂O with reductants such as hydrocarbons [3–11] and ammonia [12,13] have been proposed as the effective method of N₂O abatement. Recently, we reported that CH₄ reacted selectively with N₂O to produce N₂, CO₂ and H₂O even in the presence of excess O2 over Fe-BEA zeolite [7,8]. The oxidation of CH₄ as one of inactive molecules by O₂ required high temperature (above 450 °C) over Fe-BEA zeolite. Nevertheless, the selective oxidation of CH₄ by N₂O over Fe-BEA zeolite readily occurred at much lower temperatures whether in the presence of O₂ or not [8]. On the other hand, the oxidation behavior of C₂H₆ in the SCR of N₂O was significantly different from that of CH₄ [10]. The reaction of C₂H₆ with O₂ was significantly enhanced by the presence of N₂O even at low temperatures (200–300 °C), while the oxidation of C_2H_6 by O_2 did not proceed at these temperatures (below 350 °C in C_2H_6/O_2).

The present study is devoted to an investigation of C_2H_6 oxidation in the SCR of N_2O with C_2H_6 over Fe-BEA catalyst by using a transient response reaction technique and an *in situ* diffuse reflectance infrared

Fourier transform (DRIFT) spectroscopy. The role of N_2O as oxidant in the oxidation of C_2H_6 and the reaction mechanism in the SCR of N_2O are investigated.

2. Experimental

Fe-BEA catalyst was prepared by ion-exchange with a dilute solution of FeSO₄ at 50 °C for 20 h under nitrogen atmosphere, and calcined in air for 12h at 500 °C [4,7,14]. The zeolite supports (H-BEA, SiO₂/ $Al_2O_3 = 27.3$) were supplied by Tosoh Co. The loading weight of Fe on BEA support was 0.77 wt% (25% exchanged with Fe²⁺, 1.3×10^{-4} mol Fe ion · g-cat⁻¹). The reaction was carried out in a standard fixed-bed flow reactor by passing a gaseous mixture of N₂O (0-2000 ppm), C_2H_6 (0-300 ppm) and O_2 (10%) in He flow at a total flow rate of 50 cm min⁻¹ over 50 mg of catalyst (total pressure: 1 atm; space velocity (SV): 60 000 h⁻¹). The transient response experiment was carried out in the same apparatus as described previously [11], capable of rapid switching (ON-OFF) of the gases, using a mixture of N₂O (1300 ppm), C₂H₆ (1000 ppm) and O₂ (10%) in He flow $(SV = 60\,000\,\text{h}^{-1})$. Pretreatment of the samples and analysis of the products were carried out as described previously [11]. The catalytic activity for the reduction of N₂O with C₂H₆ was evaluated by the percentage conversion of N_2O and C_2H_6 to N_2 and CO_x (CO_2 and/or CO), respectively. It should be noted that there were no by-products such as NO_x and other N-containing compounds in the present work, which was confirmed by the mass balance of nitrogen atoms between the reacted N_2O and the produced N_2 .

^{*}To whom correspondence should be addressed.

The *in situ* DRIFT measurement was performed using the same set up and experimental procedures as in a previous paper [15]. A clean catalyst-surface spectrum was recorded at the reaction temperature and used as a background to which the measured spectra were corrected; the final spectra were presented in Kubelka–Munk form. The pretreatment and the exposure of the gaseous mixture (N₂O: 1500 ppm, O₂: 10%, C₂H₆: 1000 ppm) to the sample before the DRIFT measurements were carried out in the same way as in the transient response experiment described above (at 350 °C).

3. Results and discussion

3.1. Catalytic activities in various reaction systems

Figure 1 shows N_2O and C_2H_6 conversions in various reaction systems over Fe-BEA catalyst. The direct decomposition of N_2O and the oxidation of C_2H_6 by O_2 initiated above 370 °C and 350 °C, respectively. However, the catalytic activity of N_2O removal was drastically assisted by adding C_2H_6 as reductant even at the low temperatures (200–300 °C). Increasing of N_2O conversions correlated well with that of C_2H_6 conversions. This result indicates that SCR of N_2O with C_2H_6 takes place effectively even in the presence of excess oxygen. Similar SCR reactions of N_2O over Fe-zeolite catalysts have also been observed in other hydrocarbons such as CH_4 [3,7,8], C_3H_8 [4–6] and C_3H_6 [4–6,11].

The activities in the SCR of N_2O with CH_4 and the oxidation of CH_4 with O_2 over Fe-BEA are also shown in figure 1 for the comparison, which are taken from

reference [8]. Although the oxidation of CH₄ (CH₄ + $2O_2 \rightarrow CO_2 + 2H_2O$) over Fe-BEA required high temperatures (above 450 °C), the oxidation of CH₄ in the SCR of N₂O readily occurred at much lower temperatures (figure 1). In the SCR of N₂O with CH₄ over Fe-BEA catalyst, we also reported that there was a plateau in CH₄ conversion after N₂O conversion reached 100% (ca. 350-450 °C) [7,8]. This is due to the fact that N₂O in the mixture gas was completely consumed by the reaction with CH₄ at these temperatures. N₂, H₂O and CO₂ were observed as products in this reaction system. These results clearly indicated that CH₄ reacted selectively with N₂O even in the presence of excess O₂. Therefore, overall reaction in the N₂O/O₂/CH₄ system was represented by [8]

$$4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O.$$
 (1)

On the other hand, the oxidation behavior of C₂H₆ in the SCR of N₂O was significantly different from that of CH_4 . No plateaus in the C_2H_6 conversion were observed in the $N_2O/O_2/C_2H_6$ system, while the plateau in the C₂H₆ conversion curve was observed after the N₂O conversion reached 100% (in N₂O/C₂H₆ system). In the N_2O/C_2H_6 system (without O_2), it should be noted that N₂O in the mixture gas was completely consumed by the reaction with C₂H₆ at these temperatures. If C₂H₆ reacted selectively with N_2O (in $N_2O/O_2/C_2H_6$ system, equation (2)) in the same way as the $N_2O/O_2/CH_4$ system (equation (1)), a plateau should be observed at ca. 45% in the C₂H₆ conversion. Therefore, it was found that the oxidation of C₂H₆ by coexistent O₂ concomitantly occurred. As shown in figure 1, the oxidation of C_2H_6 by O_2 (in the C_2H_6/O_2 system) required much

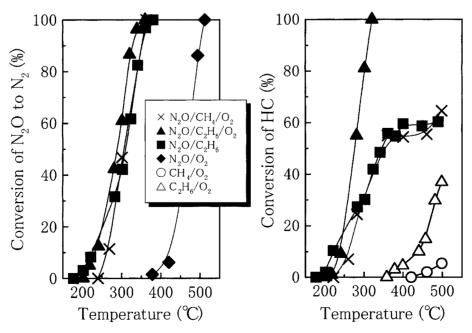


Figure 1. Conversion of N_2O and HC in various reaction systems over Fe-BEA catalyst.; N_2O (950 ppm), O_2 (10%) and HC (CH₄: 500 ppm, C_2H_6 : 300 ppm).

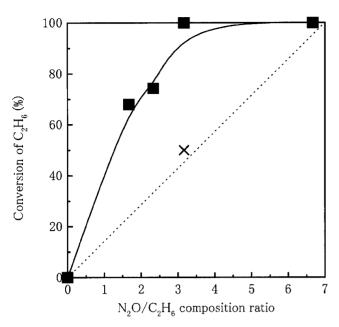


Figure 2. C_2H_6 conversion as a function of C_2H_6/N_2O composition ratio in the $C_2H_6/N_2O/O_2$ reaction system at 350 °C. \blacksquare : C_2H_6 300 ppm (constant), O_2 10% (constant) and N_2O (0, 500, 700, 950, 2000 ppm); \times : C_2H_6 300 ppm (constant) and N_2O (950 ppm).

higher temperatures (above 350 °C). This result indicates that the oxidation of C_2H_6 by O_2 in the SCR of N_2O is enhanced by the presence of N_2O , and that N_2O plays important roles at an initial step in the oxidation of C_2H_6 by O_2 (i.e., activation of C_2H_6).

$$7N_2O + C_2H_6 \rightarrow 7N_2 + 2CO_2 + 3H_2O.$$
 (2)

Additionally, the enhancement of C₂H₆ oxidation by O_2 in the presence of N_2O was also confirmed by the catalytic experiments at the different N₂O/C₂H₆ composition ratio in the N_2O (0, 500, 700, 950, 2000 ppm)/ O_2 (constant as 10%)/C₂H₆ (constant as 300 ppm) system. Figure 2 shows the dependence of the N_2O/C_2H_6 composition ratio (0, 1.67, 2.33, 3.17, 6.67) in the $N_2O/C_2H_6/O_2$ system for the C_2H_6 conversion at 350 °C. The plot of the N_2O/C_2H_6 system at 350 °C (in the absence of O_2 , the N_2O/C_2H_6 ratio = 3.17) is also shown in figure 2 for comparison. If the ratio of N₂O conversion to C₂H₆ conversion was along the stoichiometry of equation (2), the plots should exist on the dotted straight line. The C_2H_6 conversions in the presence of O_2 exhibit large deviations from the straight line of stoichiometry over the whole range $(0 < N_2O/C_2H_6 < 7)$.

3.2. Transient reaction experiments and DRIFT measurements

In order to examine in more detail the oxidation behavior of C_2H_6 in the SCR of N_2O , we performed the transient reaction experiments in the $N_2O/O_2/C_2H_6$ system over Fe-BEA catalyst. Figure 3 shows the transient responses for C_2H_6 oxidation on addition of N_2O

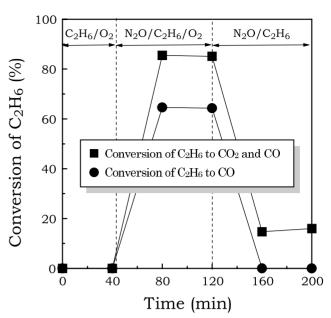


Figure 3. Transient responses for C_2H_6 oxidation on addition of N_2O (1300 ppm) to C_2H_6 (1000 ppm)/ O_2 (10%) flow and on removal of O_2 (10%) from N_2O (1300 ppm)/ C_2H_6 (1000 ppm)/ O_2 (10%) flow at 350 °C over Fe-BEA catalyst.

(1300 ppm) to C_2H_6 $(1000 \text{ ppm})/O_2$ (10%) flow at 350 °C. C₂H₆ conversion was drastically increased by adding N_2O to C_2H_6/O_2 flow at 350 °C, while oxidation of C₂H₆ by O₂ hardly occurred. Figure 3 also shows the transient responses for C₂H₆ oxidation on removal of O₂ from N₂O/C₂H₆/O₂ flow at 350 °C. After changing to the N₂O/C₂H₆ flow, the C₂H₆ conversion decreased. In this case, the C₂H₆ conversion was small simply due to the depletion of the oxidant (i.e., N₂O). These results directly demonstrate that the oxidation of C₂H₆ by O₂ is significantly enhanced by the presence of N₂O. The behaviors of these catalytic activities are in good agreement with the results in figure 1. In these experiments, CO, CO₂, H₂O and N₂ were observed as products. It should be noted that CO formation was observed only at the $N_2O/C_2H_6/O_2$ flow. As shown in figure 3, the formation of CO₂ occurred in the reaction of C₂H₆ with N₂O (in the N_2O/C_2H_6 flow). Therefore, this result apparently shows that the formation of CO occurred in the reaction of C_2H_6 with O_2 (in the $N_2O/C_2H_6/O_2$ flow).

In order to investigate the correlation between the enhancement of C₂H₆ oxidation by O₂ in the presence of N₂O and the formation of the adsorbed surface species, the DRIFT spectra were recorded at 350 °C on Fe-BEA under the similar condition of the transient response experiments shown in figure 3. Figures 4(A) and 4(B) show *in situ* DRIFT spectra during the reaction in the C₂H₆/O₂ and N₂O/C₂H₆/O₂ mixture gas at 350 °C over Fe-BEA, respectively. Clear peaks were hardly observed in exposing the C₂H₆/O₂ and N₂O/C₂H₆/O₂ mixture (figures 4(A) and 4(B)). This is due to the fact that the activation and/or adsorption of C₂H₆ hardly occur in the C₂H₆/O₂ system at 350 °C, and that

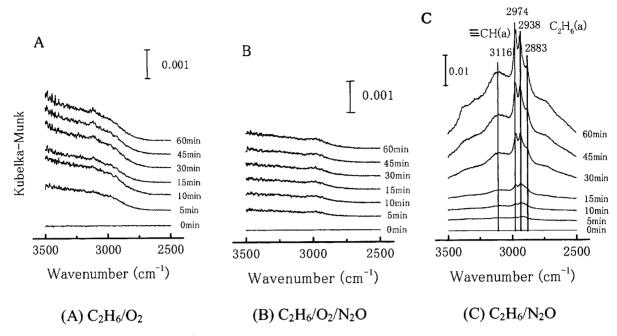


Figure 4. DRIFT spectra in the $3500-2500\,\mathrm{cm}^{-1}$ region during the reaction at $350\,^{\circ}$ C. Gas composition: C_2H_6 (1000 ppm), O_2 (10%), N_2O (1500 ppm) in He flow.

almost no adsorbed species were present in the $N_2O/C_2H_6/O_2$ system at 350 $^{\circ}C$ because of the steady-state reaction at high conversion.

Figure 4(C) shows in situ DRIFT spectra during the exposure of the N₂O/C₂H₆ mixture gas at 350 °C over Fe-BEA. Several absorption peaks were observed in exposing the N_2O/C_2H_6 mixture (figure 4(C)). All of these observed peaks increased in intensity with time during the reaction in the N_2O/C_2H_6 mixture. It should be noted that these observed peaks were hardly changed by the He purge at 350 °C for 15 min. In general, it could be admitted that the IR bands observed in the region of 3100-2800 cm⁻¹ indicate the CH stretching $(\nu_{\rm CH})$ bands of alkanes or adsorbed C-H bondcontaining species [16,17]. The peaks at 2974, 2938 and $2883 \, \text{cm}^{-1}$ were assigned to ν_{CH} of $C_2 H_6(a)$ [17,18]. The increase in the intensities of the other broad band at around 3116 cm⁻¹ was also observed (figure 4(C)). Similar broad band observed during the SCR of N₂O with C₃H₆ over Fe-MFI [11], which was assigned to -C≡CH(a) and/or unsaturated carbonaceous species (i.e., $C_x H_v(a)$) [11,19,20]. In our previous report [11], the partial oxidized species (i.e., $C_xH_vO_z(a)$) as well as $C_xH_v(a)$ species, which were important active surface species, were observed during the SCR of N₂O with C₃H₆ over Fe-MFI. In the present work, however, the low-wavenumber region (1700–1400 cm⁻¹) of the $C_x H_y O_z$ species ($\nu_{C=O}$, $\nu_{C=C}$, ν_{COO} , etc.) bands could not be measured reliably because of the strong absorption band of Fe-BEA (below 1700 cm⁻¹). Therefore, we do not exclude the presence of $C_x H_y O_z(a)$ as intermediate surface species over Fe-BEA. These above results suggest that $C_x H_v(a)$ and/or $C_x H_v O_z(a)$ species

may be the important active surface species of the C_2H_6 oxidation by coexistent O_2 in the $N_2O/C_2H_6/O_2$ system. Previously, we reported that $C_xH_y(a)$ and/or $C_xH_yO_z(a)$ species react with O_2 (and/or N_2O) to produce N_2 , CO_x and H_2O at 350 °C [11].

3.3. Proposed reaction mechanism

On the basis of above mentioned findings, we propose the following possible reaction steps for the SCR of N_2O with C_2H_6 over Fe-BEA catalyst, as shown in figure 5. Firstly, adsorption and activation of C_2H_6 are initiated by the reaction with N_2O over the Fe ion sites on zeolite (i.e., abstraction of H atom and oxidation to form $C_xH_y(a)$ and/or $C_xH_yO_z(a)$ species). At the low temperatures (≤ 350 °C), the formation of $C_xH_y(a)$ and $C_xH_yO_z(a)$ species by the reaction of C_zH_6 with N_2O readily occurred, while the formation of $C_xH_y(a)$ and $C_xH_yO_z(a)$ species by the reaction of C_2H_6 with O_2 hardly occurred. Therefore, N_2O plays important roles in the formation of $C_xH_y(a)$ and/or $C_xH_y(a)$ species as active surface species. Finally, $C_xH_y(a)$ and/or

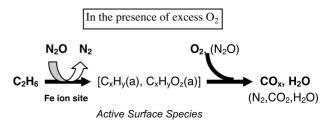


Figure 5. Proposed reaction steps for the SCR of N_2O with C_2H_6 over Fe-BEA zeolite catalyst.

 $C_xH_yO_z(a)$ species react with O_2 or N_2O to produce N_2 , CO_x and H_2O .

In the oxidation behavior of alkane with O_2 , the difference between the N₂O/CH₄/O₂ system and the N₂O/C₂H₆/O₂ system could be attributed to the reactivity of active surface species with O_2 (e.g., $CH_x(a)$) versus C_xH_v(a)). Previously, Panov et al. [21] reported that the O atom from the N_2O molecule (so-called α oxygen), which cannot be produced by O₂, readily reacted with CH₄ or benzene to produce CH₃OH or phenol over Fe/ZSM5 catalyst. The O atom from the N₂O molecule is much more active than that from the O₂ molecule. In our experiment, therefore, both CH₄ and C2H6 molecules are readily activated by the O atom from the N2O molecule to form active surface species. The reaction of CH₄ with N₂O presumably leads to the formation of $CH_x(a)$ species etc., although no adsorbed species were detected by the DRIFT technique because of very low concentration of these species. However, the plateau in the CH₄ conversion (ca. 350– 450 °C, in figure 1) means that the reaction rate of $CH_x(a)$ etc. with O_2 is much lower than that with N_2O over Fe-BEA catalyst below 450 °C. Therefore, CH₄ reacts selectively with N₂O. On the other hand, the formation of $C_xH_v(a)$ by the reaction of C_2H_6 with N_2O were observed by the DRIFT (figure 4(C)). The reaction of $C_rH_\nu(a)$ species with O_2 as well as N_2O readily takes place, which leads to the enhancement of C₂H₆ oxidation.

4. Conclusion

The selective catalytic reduction of N_2O with C_2H_6 in the presence of excess O_2 took place efficiently over FeBEA catalyst. The present study demonstrates the enhancement of C_2H_6 oxidation by O_2 in the presence of N_2O . This result suggests that N_2O plays an important role in the oxidation of C_2H_6 (*i.e.*, activation of C_2H_6 at an initial step).

Acknowledgment

SK is grateful to the Japan Securities Scholarship Foundation (JSSF) for its financial support.

References

- [1] H. Rodhe, Science 248 (1990) 1217.
- [2] F. Kapteijn, J. Rodriguez-Mirasol and J. A. Moulijn, Appl. Catal. B 9 (1996) 25.
- [3] Y. Li and J.N. Armor, Appl. Catal. B 3 (1993) 55.
- [4] C. Pophal, T. Yogo, K. Yamada and K. Segawa, Appl. Catal. B 16 (1998) 177; Catal. Lett. 44 (1997) 271.
- [5] M. Kögel, R. Mönnig, W. Schwieger, A. Tissler and T. Turek, J. Catal. 182 (1999) 470; Catal. Lett. 51 (1998) 23.
- [6] G. Centi and F. Vazzana, Catal. Today 53 (1999) 683.
- [7] S. Kameoka, T. Suzuki, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and K. Kunimori, Chem. Commun. (2000) 745.
- [8] S. Kameoka, K. Kita, T. Takeda, S. Tanaka, S. Ito, K. Yuzaki, T. Miyadera and K. Kunimori, Catal. Lett. 69 (2000) 169.
- [9] K. Yuzaki, Doctoral Thesis, University of Tsukuba, 2000.
- [10] S. Kameoka, T. Takeda, K. Kita, S. Tanaka, S. Ito, K. Yuzaki, T. Miyadera and K. Kunimori, Catalyst and Catalysis 42 (2000) 402.
- [11] S. Kameoka, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and K. Kunimori, Phys. Chem. Chem. Phys. 3 (2001) 256.
- [12] M. Mauvezin, G. Delahay, F. Kisslich, B. Coq and S. Kieger, Catal. Lett. 62 (1999) 41.
- [13] B. Coq, M. Mauvezin, G. Delahay and S. Kieger, J. Catal. 195 (2000) 298.
- [14] W.N. Delgass, R.L. Garten and M. Boudart, J. Chem. Phys. 50 (1969) 4603.
- [15] S. Kameoka, Y. Ukisu and T. Miyadera, Phys. Chem. Chem. Phys. 2 (2000) 367.
- [16] A.A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (John Wiley & Sons, Chichester, 1990).
- [17] L.H. Little, Infrared Spectra of Adsorbed Species (Academic Press, New York/London, 1966).
- [18] F. Solymosi, A. Szöke and L. Ovári, J. Catal. 186 (1999) 269.
- [19] H-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, J. Catal. 180 (1998) 171
- [20] H-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, Catal. Today, 54 (1999) 483.
- [21] G.I. Panov, A.K. Uriarte, M.A. Rodkin and V.I. Sobolev, Catal. Today 41 (1998) 365 and references therein.