A novel catalyst Pt/CoAl₂O₄/Al₂O₃ for combination CO₂ reforming and partial oxidation of CH₄

Liuye Mo^a, Xiaoming Zheng^{a,*}, Chuanjing Huang^b and Jinhua Fei^a

^a Institute of Catalysis, Zhejiang University (Xixi Campus), Hangzhou 310028, P.R. China ^b Department of Chemistry, Huaibei Coal Industry Teacher's College, Huaibei 235000, P.R. China

Received 20 November 2001; accepted 14 February 2002

 $Pt/CoAl_2O_4/Al_2O_3$, $Pt/CoO_x/Al_2O_3$, $CoAl_2O_4/Al_2O_3$ and CoO_x/Al_2O_3 catalysts were studied for combination CO_2 reforming and partial oxidation of CH_4 . The results indicate that $Pt/CoAl_2O_4/Al_2O_3$ is the most effective, and XRD results indicate that Pt species are well dispersed over the $Pt/CoAl_2O_4/Al_2O_3$. High dispersion is related to the presence of $CoAl_2O_4$, formed during calcining at high temperature before Pt addition. In the presence of Pt, $CoAl_2O_4$ in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from $CoAl_2O_4$ reduction are responsible for high activity in the $Pt/CoAl_2O_4/Al_2O_3$ catalyst.

KEY WORDS: combination CO₂ reforming and partial oxidation of CH₄; synthesis gas; Pt/CoAl₂O₄/Al₂O₃ catalyst.

1. Introduction

Methane is the most abundant component of natural gas although it is also produced in a variety of petrochemical and waste treatment operations. Presently, about 1% of the natural gas produced worldwide is used in chemical industries, while the rest is burned as fuel for heating and power generation [1]. The growing importance of environmental protection coupled with the need for a more effective use of the enormous natural gas reserves have stimulated research in methane conversion to feedstock and chemicals of commercial importance [2]. Natural gas is mainly used in industry for the manufacture of synthesis gas (CO/H₂). Synthesis gas is a versatile feedstock for methanol and ammonia synthesis processes and also for a number of Fischer-Tropsch synthesis processes for the production of liquid fuels, olefins and oxygenates. Synthesis gas is produced at present by steam reforming of methane. However, this process is highly endothermic and, hence, highly energy intensive. Moreover, it typically produces synthesis gas with high H₂/CO ratio (>4.0) due to the water-gas shift reaction (CO + $H_2O \rightarrow CO_2 + H_2$), resulting in low selectivity and yield for carbon monoxide. In recent years, research to produce synthesis gas from methane has centered on two other processes: catalytic CO₂ reforming of CH_4 [3–8] and the catalytic partial oxidation of methane [9-12]. Both processes produce synthesis gas with more useful H₂/CO ratios. However, the catalytic partial oxidation of methane to synthesis gas may lead to a "hot-spot" which is hazardous and/or difficult to control particularly for large-scale operations. Because

the CO₂ reforming of methane is an endothermic process, its coupling with the catalytic partial oxidation of methane can overcome the overheating hazard. In addition, by combining the two reactions, one can control the ratio H₂/CO and thus the selectivity for various Fischer—Tropsch synthesis products. This coupling was studied over noble-metal-based catalysts [13,14], and nickel-based catalysts [15–17]. Here, we report on studies using a novel catalyst Pt/CoAl₂O₄/Al₂O₃ which is highly active for combination of CO₂ reforming and partial oxidation of CH₄.

2. Experimental

2.1. Catalyst preparation

CoO_x/Al₂O₃ and CoAl₂O₄/Al₂O₃ catalysts were prepared by the wet-impregnation method, using nitrate salt as the metal precursor and γ-Al₂O₃ as support. After drying at 393 K, the resulting material was then calcined in air at 923 K and 1473 K for 5 h, respectively. The Co loading was 4 wt%. Pt/CoO_x/Al₂O₃ and Pt/CoAl₂O₄/Al₂O₃ catalysts were prepared by impregnating CoO_x/Al₂O₃ and CoAl₂O₄/Al₂O₃ with a solution of H₂PtCl₆ and calcined at 923 K for 5 h. For reference, Pt/Al₂O₃ catalysts were also prepared according to the procedure for Pt/CoAl₂O₄/Al₂O₃ catalysts, but the carrier (γ-Al₂O₃) was calcined at 1473 K for 5 h before use.

2.2. Catalytic reaction

The catalytic reaction was carried out in a tubular fixed-bed flow reactor made of quartz (i.d. = 4 mm)

^{*}To whom correspondence should be addressed.

under atmospheric pressure. Prior to reaction, the catalyst was reduced at 973 K in H_2 for 1 h (unless otherwise stated), followed by Ar purge and heating under Ar flow to the reaction temperature (1023 K). The reactant gas stream consisted of methane, carbon dioxide and oxygen with a molar ratio of 1:0.4:0.3, controlled by mass flow controller, with GHSV = 24000 h⁻¹. After condensing and drying, the reaction effluents were analyzed using the TCD of a gas chromatograph equipped with a TDX-01 column.

2.3. Catalyst characterization

Surface area of the support as well as the catalysts were determined by adsorption at 77 K using the BET method in an OMNISORP 100CX apparatus.

XRD data were obtained using a Rigaku-D/max-B automated power X-ray diffractometer (Cu K_{α} , 45 kV, 40 mA).

In TPR experiments, 50 mg of catalyst was charged in a quartz microreactor (i.d. = 4 mm). After purging with N_2 at room temperature, the sample was reduced in a 5% H_2/N_2 stream (30 ml/min). The reaction temperature was uniformly raised with ramp of 20 K/min from room temperature to a holding temperature of 1173 K, which was held for 13 min. The H_2 consumption was monitored by a TCD connected to a PC data station.

3. Results and discussion

3.1. Catalytic activity measurements

Table 1 reports the results obtained over various CoO_x/Al_2O_3 catalysts after a reaction time of 0.5 h. It shows that the CoO_x/Al_2O_3 catalyst has poor activity and low selectivity. $CoAl_2O_4/Al_2O_3$ showed only total oxidation of CH_4 until the prereduction temperature was increased to 1123 K. Interestingly, when $CoAl_2O_4/Al_2O_3$ catalyst was reduced at 1123 K, the catalytic activity increased remarkedly. This is attributed to the Co metal produced by partial reduction of $CoAl_2O_4$

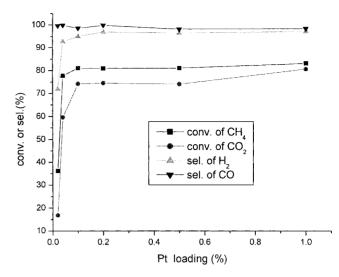


Figure 1. Effect of Pt content on catalytic activity of Pt/CoAl₂O₄/Al₂O₃. Reaction conditions: $T = 1023 \,\mathrm{K}$, $\mathrm{GVSV} = 24\,000 \,\mathrm{h}^{-1}$, $\mathrm{CH_4} : \mathrm{CO_2} : \mathrm{O_2} = 1 : 0.4 : 0.3$.

[18]. Carbon is not formed on the active catalysts, and the selectivity of CO is almost 100%. From table 1, it is also found that with promotion by a small amount of Pt, Pt/CoAl₂O₄/Al₂O₃ catalyst showed significant improvement in activity.

Figure 1 shows the effect of Pt content on the activities of Pt/CoAl₂O₄/Al₂O₃ catalysts. Pt/CoAl₂O₄/Al₂O₃ catalysts increase in activity with Pt low loadings, but above 0.1%, increasing Pt loading has little effect on the activity.

Catalyst stability was also examined. Figure 2 shows that a rapid decline in CH_4 conversion is observed for the $0.2\%Pt/Al_2O_3$ catalyst. During 2 h of reaction, the conversion of methane decreased from 40.1% for the initial reaction to 31.2%. However, $0.2\%Pt/CoAl_2O_4/Al_2O_3$ catalyst maintained high activity during 30 h on stream without coke formation, showing superior stability.

3.2. XRD study

Figure 3 shows XRD spectra of CoO_x/Al_2O_3 catalysts and $CoAl_2O_4/Al_2O_3$ which were calcined at 923 and

 $Table\ 1$ Catalytic activities of CoO_x/Al_2O_3 , $CoAl_2O_4/Al_2O_3$, $0.2\%Pt/CoO_x/Al_2O_3$ and $0.2\%Pt/CoAl_2O_4/Al_2O_3$

Catalyst	Convers	sion (%)	Selectivity (%)	
	CH ₄	CO ₂	H_2	СО
CoO_x/Al_2O_3	32.5	8.0	56.5	98.8
CoAl ₂ O ₄ /Al ₂ O ₃ a	_	_	trace	trace
CoAl ₂ O ₄ /Al ₂ O ₃ b	53.8	35.0	85.4	100
0.2%Pt/CoO _x /Al ₂ O ₃	52.1	30.5	82.7	100
0.2% Pt/CoAl ₂ O ₄ /Al ₂ O ₃	80.9	74.5	96.7	99.9

Note: Reaction conditions: T = 1023 K, $GHSV = 24\,000 \,\text{h}^{-1}$, $t = 0.5 \,\text{h}$, $CH_4 : CO_2 : O_2 = 1 : 0.4 : 0.3$.

^a CH₄ combustion primary reaction.

^b Reduced at 1123 K for 1 h before reaction.

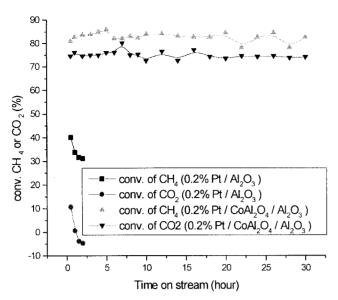


Figure 2. Stability of catalysts for combination of CO_2 reforming and partial oxidation of CH_4 . Reaction conditions: $T=1023\,\mathrm{K}$, $GHSV=24\,000\,\mathrm{h}^{-1}$, $CH_4:CO_2:O_2=1:0.4:0.3$.

1473 K, respectively. For $\text{CoO}_x/\text{Al}_2\text{O}_3$ catalysts, three peaks are observed at d=0.244, 0.286 and 0.467 nm (2 θ values 36.8, 31.3 and 19.0°, respectively). Considering that the diffraction lines characteristic of CO_3O_4 and CoAl_2O_4 blend together at d=0.244 and 0.286 nm, except for a line of CO_3O_4 at 0.476 nm which is absent from the XRD pattern of CoAl_2O_4 [18], the presence of CO_3O_4 is suggested for the $\text{CoO}_x/\text{Al}_2\text{O}_3$ catalyst. With $\text{CoAl}_2\text{O}_4/\text{Al}_2\text{O}_3$, however, the peak at 0.467 nm disappears and several sharp peaks clearly exhibit the presence of CoAl_2O_4 and $\alpha\text{-Al}_2\text{O}_3$, agreeing with the literature [4]. This is also supported by the results in table 2. When the calcination temperature was increased from 923 to 1473 K, the catalyst experienced pronounced

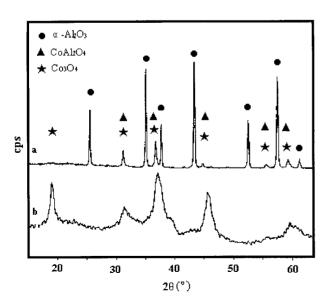


Figure 3. Patterns of (a) CoAl₂O₄/Al₂O₃ and (b) CoO_x/Al₂O₃.

Table 2 Color and surface area of catalysts

Catalyst	Color	BET area (m ² /g)	
Al ₂ O ₃ ^a	White	162.9	
Pt/Al ₂ O ₃ b	White	8.8	
CoO_x/Al_2O_3	Black	162.9	
CoAl ₂ O ₄ /Al ₂ O ₃	Sky blue	8.6	
0.2% Pt/CoO _x /Al ₂ O ₃	Black	153.1	
$0.2\% Pt/CoAl_2O_4/Al_2O_3$	Sky blue	9.9	

^a Calcined at 923 K.

changes in color and surface area, indicating phase transformations of CO_3O_4 to $CoAl_2O_4$ and γ - Al_2O_3 to α - Al_2O_3 . The effect of platinum addition on XRD patterns for CoO_x/Al_2O_3 and $CoAl_2O_4/Al_2O_3$ catalysts is shown in figure 4. When the Pt content is 1%, crystalline PtO₂ is clearly dectected for Pt/ Al_2O_3 and Pt/ Al_2O_3 catalysts. However, no distinct XRD peaks of Pt species are detected for Pt/ Al_2O_3 catalysts at 1%Pt, although weak peaks of PtO₂ are observed at 2%Pt. These findings suggest that Pt species are highly dispersed in the Pt/ Al_2O_3 catalyst.

3.3. TPR results

From figure 5, it can be seen that the reduction behaviors of $CoAl_2O_4/Al_2O_3$ with and without Pt are very different. On $CoAl_2O_4/Al_2O_3$ catalyst a peak due to the reduction of $CoAl_2O_4$ [19] appears above 1173 K. On Pt/Al_2O_3 catalyst three peaks appear at 423, 493 and 713 K, respectively. The former two peaks could be assigned to a two-step reduction of "free" PtO_2 [20], *i.e.* $Pt^{4+} \rightarrow Pt^{2+} \rightarrow Pt^0$, and the last peak probably indicates stronger interaction with the support.

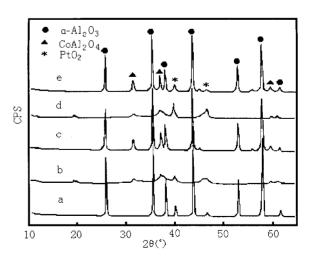
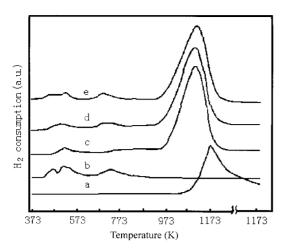



Figure 4. XRD patterns of Pt/CoAl $_2$ O $_4$ /Al $_2$ O $_3$. (a) 1%Pt/Al $_2$ O $_3$; (b) 1%Pt/CoO $_x$ /Al $_2$ O $_3$; (c) 1%Pt/CoAl $_2$ O $_4$ /Al $_2$ O $_3$; (d) 2%Pt/CoO $_x$ /Al $_2$ O $_3$; (e) 2%Pt/CoAl $_2$ O $_4$ /Al $_2$ O $_3$.

^b Al₂O₃ was precalcined at 1473 K.

 $\begin{aligned} & Figure \ 5. \ TPR \ profiles \ of \ (a) \ CoAl_2O_4/Al_2O_3; \ (b) \ 1\%Pt/Al_2O_3; \ (c) \ 0.2\%Pt/CoAl_2O_4/Al_2O_3; \ (d) \ 0.6\%Pt/CoAl_2O_4/Al_2O_3; \ (e) \ 1\%Pt/CoAl_2O_4/Al_2O_3. \end{aligned}$

These peaks are also observed for Pt/CoAl₂O₄/Al₂O₃ catalysts. However, due to Pt addition, the peak of CoO_x/Al₂O₃ reduction shifts to about 1100 K and its intensity is greatly increased. This clearly demonstrates that Pt promotes reduction of CoAl₂O₄. The Pt-assisted process could be attributed to hydrogen spillover, which facilitates CoAl₂O₄ reduction. Relating results of TPR and activity measurements listed in table 1, it seems that the zerovalent platinum and zerovalent cobalt resulting from CoAl₂O₄ reduction promoted by Pt are responsible for the high activity of Pt/CoAl₂O₄/Al₂O₃ catalysts for combination of CO₂ reforming and partial oxidation of CH₄ to synthesis gas.

As shown in figure 6, the Pt-assisted reduction of Co species is also observed for $Pt/CoO_x/Al_2O_3$ catalysts. On CoO_x/Al_2O_3 catalysts, two peaks appear at 863 and 1173 K, which are ascribed to the reduction of CO_3O_4 and cobalt surface phase, respectively. With addition of a small amount of Pt, the peaks shift to lower temperature. However, it can be seen from table 2 that, in the case of catalytic performance, the effect

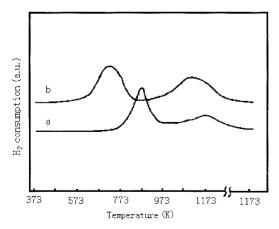


Figure 6. TPR profiles of (a) CoO_x/Al₂O₃; (b) 0.2%Pt/CoO_x/Al₂O₃.

of Pt addition is very different for CoO_x/Al_2O_3 and $CoAl_2O_4/Al_2O_3$ catalysts.

As to the great difference in activity between 0.2% Pt/CoO_x/Al₂O₃ and 0.2% Pt CoAl₂O₄/Al₂O₃ catalysts (see table 1), the other clue probably lies in the different dispersion of PtO₂, the precursor of Pt⁰, over the two catalysts suggested by the XRD results shown in figure 4. It is probable that a higher dispersion of PtO₂ is likely to result in a higher dispersion of PtO, which is responsible for higher activity. This is supported by literature for Pt-Co/Al₂O₃ catalyst [21].

4. Conclusions

The combination of CO_2 reforming and partial oxidation of CH_4 has been investigated on $Pt/CoO_x/Al_2O_3$ and $Pt/CoAl_2O_4/Al_2O_3$ catalysts by comparing with CoO_x/Al_2O_3 , $CoAl_2O_4/Al_2O_3$ and Pt/Al_2O_3 catalysts. Among the catalysts investigated, $CoAl_2O_4/Al_2O_3$ calcined at 1473 K and promoted by a small amount of Pt is the most effective for the combination of CO_2 reforming and partial oxidation of methane, in terms of high activity, optimal stability and excellent resistance to carbon deposition. At lower metal content, the activity order for the catalysts is $Pt/CoAl_2O_4/Al_2O_3 > Pt/CoO_x/Al_2O_3 > Pt/Al_2O_3 \gg CoAl_2O_4/Al_2O_3$. Due to Pt addition, $CoAl_2O_4$ in the catalyst can be reduced partially under H_2 at 973 K.

Acknowledgment

This research project was supported by the Zhejiang provincial Natural Science Foundation of China.

References

- IGT World Reserves Survey (Inst. of GAS Technology, Chicago, IL, 1989).
- [2] M.G. Poirer, A.R. Sauger and R.J. Smith, Can. J. Chem. Eng. 69 (1991) 1027.
- [3] A.T. Ashcroft, A.K. Cheetham, M.L. Green and P.D.F. Vernon, Nature 352 (1991) 225.
- [4] P.F. Wang, N.C. Wu and X.M. Zheng, J. Catal. (China) 6 (1995) 196.
- [5] C.J. Huang, J.H. Fei, D.J. Wang and X.M. Zheng, Chin. Chem. Lett. 3 (2000) 181.
- [6] C.J. Huang, X.M. Zheng, L.Y. Mo and J.H. Fei, Chin. Chem. Lett. 3 (2001) 249.
- [7] C.J. Huang, X.M. Zheng and J.H. Fei, J. Catal. (China) 2 (2001) 138.
- [8] C.J. Huang, X.M. Zheng, L.Y. Mo and J.H. Fei, Chin. J. Chem. 4 (2001) 340.
- [9] A.T. Ashcroft, A.K. Cheetham, M.L. Green, C.P. Grey, A.J. Murell and P.D.F. Vernon, Nature 344 (1990) 319.
- [10] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and J.H. Lunsford, J. Catal. 192 (1991) 117.
- [11] D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.
- [12] D. Dissanayake, M.P. Rosynek and J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.

- [13] P.D.F. Vernon, M.L. Green, A.K. Cheetham and A.T. Ashcroft, Catal. Today 46 (1998) 203.
- [14] A.M. O'Connor and J.R.H. Ross, Catal. Lett. 32 (1998) 203.
- [15] V.R. Choudhary, A.M. Rajput and B. Prabhaker, Catal. Lett. 32 (1995) 391.
- [16] E. Ruckenstein and Y.H. Hu, Ind. Eng. Chem. Res. 37 (1998) 1744.
- [17] V.R. Choudhary and A.S. Mamman, Applied Energy 66 (2000) 161.
- [18] Y. Lu, C. Deng, X. Ding and S.K. Shen, J. Catal. (China) 30 (2000) 85.
- [19] P. Arnoldy and J.A. Monlijn, J. Catal. 93 (1985) 38.
- [20] B. Mile, D. Stirling, M.A. Zammitt, A. Lovell and M. Webb, J. Catal. 114 (1988) 217.
- [21] L. Guczi, T. Hoffer and Z. Zsoldos, J. Phys. Chem. 95 (1991) 802.