The effect of CO₂ and H₂O on the kinetics of NO reduction by CH₄ over Sr-promoted La₂O₃

Todd J. Toops, Arden B. Walters, and M. Albert Vannice*

Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA

Received 11 January 2001; accepted 4 April 2002

The influence of CO_2 and H_2O on the activity of 4% $Sr-La_2O_3$ mimics that observed with pure La_2O_3 , and a reversible inhibition of the rate is observed. CO_2 causes a greater effect, with decreases in rate of about 65% with O_2 present and 90% in its absence, while with H_2O in the feed, the rate decreased around 35–40% with O_2 present or absent. The influence of these two reaction products on kinetic behavior can be described by assuming competitive adsorption on the surface, incorporating adsorbed CO_2 and H_2O in the site balance, and using rate expressions previously proposed for this reaction over Sr-promoted La_2O_3 . In the absence of O_2 , the rate expression is

$$r_{\rm N_2} = \frac{k' P_{\rm NO} P_{\rm CH_4}}{\left(1 + K_{\rm NO} P_{\rm NO} + K_{\rm CH_4} P_{\rm CH_4} + K_{\rm CO_2} P_{\rm CO_2} + K_{\rm H_2O} P_{\rm H_2O}\right)^2},$$

which yields a good fit to the experimental data and gives optimized equilibrium adsorption constants that demonstrate thermodynamic consistency. With O_2 in the feed, nondifferential changes in reactant concentrations through the reactor bed were accounted for by assuming integral reactor behavior and simultaneously considering both CH_4 combustion and CH_4 reduction of NO, which provided the following rate law for total CH_4 disappearance:

$$(r_{\mathrm{CH_4}})_{\mathrm{T}} = \frac{k'_{\mathrm{com}} P_{\mathrm{CH_4}} P_{\mathrm{O_2}}^{0.5} + k'_{\mathrm{NO}} P_{\mathrm{NO}} P_{\mathrm{CH_4}} P_{\mathrm{O_2}}^{0.5}}{\left(1 + K_{\mathrm{NO}} P_{\mathrm{NO}} + K_{\mathrm{CH_4}} P_{\mathrm{CH_4}} + K_{\mathrm{O_2}}^{0.5} P_{\mathrm{O_2}}^{0.5} + K_{\mathrm{CO_2}} P_{\mathrm{CO_2}} + K_{\mathrm{H_2O}} P_{\mathrm{H_2O}}\right)^2}.$$

The second term of this expression represents N_2 formation, and it again fit the experimental data well. The fitting constants in the denominator, which correspond to equilibrium adsorption constants, were not only thermodynamically consistent but also provided entropies and enthalpies of adsorption that were similar to values obtained with other La_2O_3 -based catalysts. Apparent activation energies typically ranged from 23 to 28 kcal/mol with O_2 absent and 31-36 kcal/mol with O_2 in the feed. With CO_2 in the feed, but no O_2 , the activation energy for the formation of a methyl group via interaction of CH_4 with adsorbed NO was determined to be 35 kcal/mol.

KEY WORDS: NO reduction; SCR kinetics; CH₄; Sr-promoted La₂O₃; CO₂; H₂O.

1. Introduction

The promoting effect of Sr on La₂O₃ catalysts has been demonstrated in both methane oxidative coupling (MOC) [1-3] and NO reduction [4-6] reactions. Evidence indicates that Sr promotes the formation of oxygen vacancies in the La₂O₃ lattice, particularly at the surface, thus generating more active sites [5,7–9]. In MOC reactions, CO₂ helps stabilize an active phase in Sr-La₂O₃ [10], and H₂O has also been found to have a beneficial effect [11]; however, no studies have examined the effects of these two components on NO reduction over Sr-promoted La₂O₃. Thus, the present investigation addresses NO reduction by CH₄ over a 4% Sr-La₂O₃ catalyst between 773 and 973 K in the presence and absence of O₂ because it had been previously determined that this Sr loading optimized the performance of this system [4–6]. The standard concentrations of these two flue components, i.e., 9% CO₂ and 2% H₂O, were the same as in another study, but SO₂ was not examined because of its poisoning effect on La₂O₃ [12]. Reaction orders were determined along with specific activities and activation energies, and a reaction mechanism previously proposed was modified to account for the effects of CO₂ and H₂O in either the absence or the presence of O₂. The equilibrium adsorption constants for CH₄, NO, O₂, CO₂, and H₂O obtained from the optimized fitting constants in the rate expressions were further evaluated to verify thermodynamic consistency. In this study the catalyst was also characterized before and after kinetic experimentation using X-ray diffraction, BET surface area measurements, and NO chemisorption.

2. Experimental

The Sr-promoted La_2O_3 catalyst was prepared by dissolving $Sr(NO_3)_2$ (Aldrich, 99.995%) in distilled, deionized water in the appropriate quantity, slowly adding this solution to La_2O_3 , and then heating this mixture

^{*}To whom correspondence should be addressed. E-mail: mavche@engr.psu.edu

until only a paste remained. To provide homogeneity in the catalyst, fresh water was added to the paste followed by drying; this last cycle was repeated two more times, then the catalyst was dried overnight in air at 400 K. The catalyst was ground into a powder and calcined for 10h at 1023 K under 50 cm³ (STP)/min of O₂ (MG Ind., 99.999%). The BET surface area, total and reversible NO uptakes, and the bulk crystal structure of the catalyst were determined before and after reaction.

Initial surface areas were determined using the approach described elsewhere [13], while the surface area of a used sample was obtained by transferring the quartz adsorption cell with a catalyst sample to the reactor system, ramping from 300 to 973 K at 11 K/min and holding there for 1 h while flowing a mixture of 10% O₂ in He at $20\,\mathrm{cm}^3$ (STP)/min. The catalyst was then maintained at $973\,\mathrm{K}$ overnight under standard reaction conditions, purged with $50\,\mathrm{cm}^3$ (STP)/min He for $30\,\mathrm{min}$, closed off, quenched to $300\,\mathrm{K}$, transferred to the adsorption system, and evacuated. Physical adsorption measurements were then conducted as described previously [13].

Chemisorption of NO was determined in the same system as that used for the BET experiments, and the same general procedure was followed. For fresh samples, the standard pretreatment was used, i.e., $20 \, \text{cm}^3$ (STP)/min of 10% O₂ in He at 973 K for 1 h, with an $11 \, \text{K/min}$ ramp from ambient temperature. The catalyst was then evacuated for $30 \, \text{min}$, cooled to room temperature, and NO chemisorption was measured at $300 \, \text{K}$. The sample was then evacuated for 1 h and the sequence was repeated to generate the reversible adsorption isotherm. The difference between the two isotherms yielded the irreversibly chemisorbed NO. To determine NO chemisorption after a kinetic experiment, the procedure followed was that previously described for surface area determination of a used catalyst.

X-ray diffraction (XRD) patterns were used to monitor phase changes in the La₂O₃, and they were obtained *ex situ* utilizing a Philips MPD X-ray diffractometer with Cu K_{α} radiation following a procedure described earlier [13]. For analysis of post-reaction catalysts, the reactor was cooled in 20 cm³ (STP) He/min and the catalyst was transferred to a desiccator prior to analysis.

The kinetic studies were performed in a reactor system similar to that described previously [14], except that a P-E Sigma 3 gas chromatograph (GC) was combined with a P-E Nelson 1020 integrator and a chemiluminescence NO_x analyzer (Thermo Environmental Instr. Inc., Model 42H) was installed downstream from the GC to differentiate between NO and NO₂ in the effluent. The GC temperature program provided good separation of N₂, O₂, NO, CO, CH₄, CO₂, N₂O and H₂O, although the last peak was not quantifiable [12]. Unless otherwise specified, experiments in the presence of O₂ were performed with 25 mg of catalyst and a feed containing 1.4% NO, 0.35% CH₄ and 1.0% O₂ in He flowing at

45 cm³ (STP)/min. In the absence of O₂, the concentrations were not changed, but 75 mg catalyst was used with a lower total flow rate (25 cm³ (STP)/min) because the activity was lower. The effects of CO₂ or H₂O were studied separately using standard concentrations of 9.0% or 2.0% in He, respectively. Distilled, deionized water was introduced to the reactor system via He flowing through a saturator placed in a Neslab GP-100 constant temperature bath. All stainless steel tubing leading to and from the reactor was heated at 323 K to avoid water condensation. The gas mixtures used in the experiments were 4.03% NO in He, 9.80% O₂ in He and 1.0% CH₄ in He, and they were prepared with gases from MG Ind. (99.999% except for NO, which was 99.0+%). The CO₂ was also from MG Ind. (99.995%).

The standard catalyst pretreatment in the kinetic experiments involved heating for 1 h at 973 K under 20 cm³ (STP)/min of 10% O₂ in He. The feed mixture was flowed for at least 30 min before any data were recorded. NO reduction with CH₄ was studied between 773 and 973 K, and a descending then an ascending temperature sequence was used to check for any deactivation; other details are provided elsewhere [12]. Activity versus time on stream (TOS) was also monitored to determine the transient effects of CO₂ or H₂O in the feed stream on NO reduction.

Activity dependencies on H₂O and CO₂ partial pressures were determined at three or four temperatures between 873 and 973 K by varying the inlet partial pressure of one reactant while keeping all other reactant concentrations and the total flow rate constant. The standard feed concentrations were 11 Torr NO (1.4%), 2.7 Torr CH₄ (0.35%) and 7.6 Torr O₂ (1.0%) in He. NO was varied from 1.9 to 15 Torr (0.25-2.2%), CH₄ from 0.38 to 3.4 Torr (0.05-0.55%), O₂ from 1.9 to 22 Torr (0.35–1.8%), CO₂ from 8 to 130 Torr (1.0– 17%), and H_2O from 2.3 to 22 Torr (0.3–3.0%). Generally, a new catalyst was used for each test, which caused minor variations in the rates; however, all pressure-dependency rates were normalized to the Arrhenius plot at standard conditions to eliminate this complication during the data-fitting optimization.

3. Results

As with La₂O₃, CO₂ induced a reversible inhibition of NO reduction by CH₄ over 4% Sr-La₂O₃ in either the absence or the presence of O₂, as depicted by the Arrhenius plots in figure 1. Each gas hourly space velocity (GHSV) was calculated using an approximate catalyst density of 1.45 g/cm³. Apparent activation energies were determined in the differential regime, depicted by solid lines in the Arrhenius plots, where all reactant conversions were less than 20%. Rates and specific activities at 873 and 973 K are reported in table 1. The

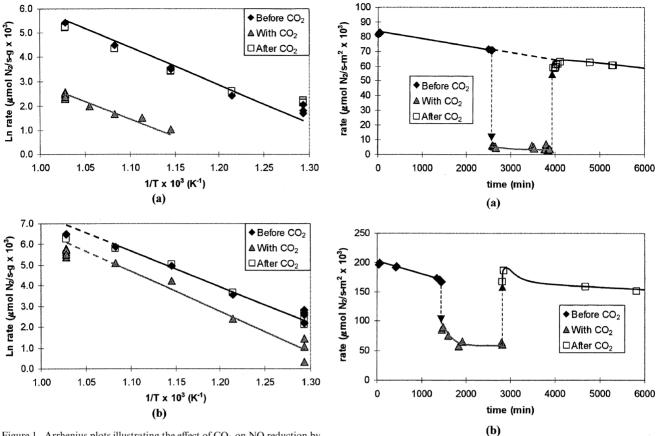


Figure 1. Arrhenius plots illustrating the effect of CO_2 on NO reduction by CH_4 over 4% $Sr\text{-}La_2O_3$ in (a) the absence of O_2 and (b) in the presence of O_2 . Reactor conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , 0 or 9.0% CO_2 , balance He; $GHSV = 28\,000\,h^{-1}$ in the absence of O_2 and $130\,000,h^{-1}$ in the presence of O_2 .

Figure 2. Activity for NO reduction by CH₄ versus time on stream in the presence of CO₂ in (a) the absence of O₂ and (b) the presence of O₂. Reactor conditions: 1.4% NO, 0.35% CH₄, 0 or 1.0% O₂, and 0 or 9.0% CO₂, balance He; GHSV = $30\,000\,h^{-1}$ in the absence of O₂ and $140\,000\,h^{-1}$ in the presence of O₂.

 $\begin{tabular}{ll} Table 1 \\ Apparent activation energies for 4\% Sr-La_2O_3 \end{tabular}$

	Ra (μ mol N_2)		Specific $(\mu \text{mol } N_2)$	E _a (kcal/mol	
	873 K	973 K	873 K	973 K	
9% CO ₂ study					
O2 absent					
Before CO ₂	34	230	11	72	27 ± 2
With CO ₂	2.8	12	0.89	3.9	23 ± 3
After CO ₂	30	190	9.6	61	23 ± 2
O ₂ present					
Before CO ₂	143	660	41	190	31 ± 5
With CO ₂	65	300	19	84	35 ± 4
After CO ₂	150	530	44	150	33 ± 6
2% H ₂ O study					
O ₂ absent					
Before H ₂ O	39	230	12	73	27 ± 2
With H ₂ O	22	150	7.0	46	27 ± 2
After H ₂ O	32	230	10	73	28 ± 2
O ₂ present					
Before H ₂ O	172	730	55	230	43 ± 9
With H ₂ O	55	310	17	99	36 ± 9
After H ₂ O	150	530	46	170	35 ± 4

Reactor conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , 0 or 9.0% CO_2 , 0 or 2% H_2O , balance He; $GHSV=30\,000\,h^{-1}$ in the absence of O_2 and $130\,000\,h^{-1}$ in the presence of O_2 .

effect of CO_2 was also examined by monitoring activity *versus* time on stream, as shown in figure 2, to determine if the inhibition was transient. A similar reversible effect was observed when the influence of H_2O on NO reduction was examined, as depicted by the Arrhenius plots in figure 3. The kinetic results are also reported in table 1 for each set of conditions, while a portrayal of activity *versus* time on stream is given in figure 4. In each case N_2 was the predominant product during NO reduction, with N_2O formation comprising less than 10% of the total NO reduction rate.

Reaction orders were determined in the absence of oxygen at four temperatures between 898 and 973 K following the procedure described earlier [13], and they are listed in table 2, while the kinetic data are displayed in figure 5 for CO₂ and figure 6 for H₂O. Although NO conversions were always below 20%, direct combustion of CH₄ by O₂ was significant; thus integral reactor behavior was assumed in the analysis of rate data. Due to this complication, the reaction orders obtained from a power-rate law and listed in table 2 should be considered to be approximate. The data for the partial pressure dependencies with O₂ and either CO₂ or H₂O are displayed in figures 7 and 8, respectively.

The XRD spectra indicated the influence of CO₂ or H₂O on the phases observable in the promoted La₂O₃.

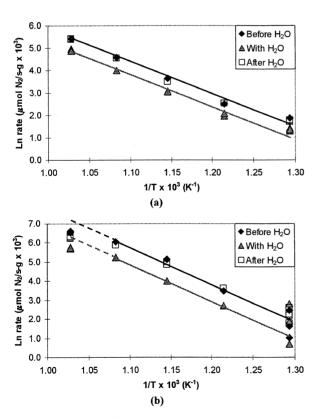
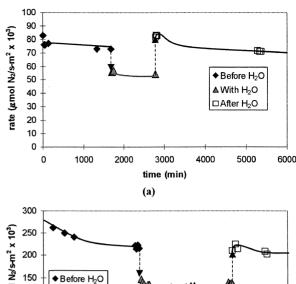



Figure 3. Arrhenius plots illustrating the effect of H_2O on NO reduction by CH_4 over 4% Sr- La_2O_3 in (a) the absence of O_2 and (b) the presence of O_2 . Reactor conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , 0 or 2.0% H_2O , balance He; $GHSV = 30\,000\,h^{-1}$ in the absence of O_2 and $140\,000\,h^{-1}$ in the presence of O_2 .

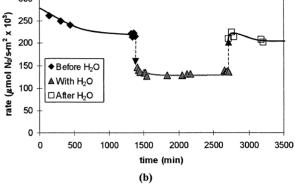


Figure 4. Activity for NO reduction by CH_4 versus time on stream in the presence of H_2O in (a) the absence of O_2 and (b) the presence of O_2 . Reactor conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , and 0 or 2.0% H_2O , balance He; $GHSV = 30\,000\,h^{-1}$ in the absence of O_2 and $140\,000\,h^{-1}$ in the presence of O_2 .

Table~2 Reaction orders for the reduction of NO by CH₄ over 4% Sr-La₂O₃

	NO	CH_4	O_2	CO_2	H_2O
CO ₂ study					
O ₂ absent					
973 K	0.56	0.08	_	-0.21	_
960 K	0.45	0.21	_	-0.20	-
948 K	0.54	0.23	_	-0.17	_
923 K	0.51	0.25	_	-0.14	-
O ₂ present					
923 K	0.74	0.51	0.25	-0.11	_
908 K	0.74	0.48	0.17	-0.05	_
893 K	0.76	0.64	-0.19	-0.04	_
873 K	0.66	0.73	-0.33	-0.17	_
H ₂ O study					
O ₂ absent					
973 K	0.97	0.32	_	_	-0.23
948 K	0.89	0.28	_	_	-0.29
923 K	0.98	0.26	_	_	-0.39
898 K	1.07	0.21	_	_	-0.40
O ₂ present					
923 K	0.41	0.74	-0.03	_	-0.17
908 K	0.41	0.73	-0.08	_	-0.33
893 K	0.45	0.75	-0.16	_	-0.20
873 K	0.41	0.80	-0.02	_	-0.34

Standard reactor conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , 0 or 9.0% CO_2 , 0 or 2.0% H_2O , balance He; $GHSV = 30\,000\,h^{-1}$ in the absence of O_2 and $140\,000\,h^{-1}$ in the presence of O_2 .

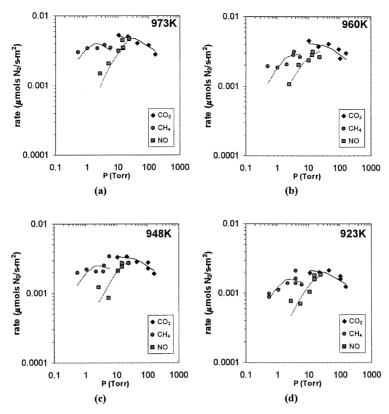


Figure 5. Partial pressure dependencies for NO reduction by CH_4 with CO_2 but no O_2 in the feed at (a) 973 K, (b) 960 K, (c) 948 K and (d) 923 K. Symbols represent experimental data, and the rate expression given by equation (8) is represented by lines. Standard reactor conditions: 1.4% NO, 0.35% CH_4 , and 9% CO_2 , balance He; $GHSV = 30\,000\,h^{-1}$.

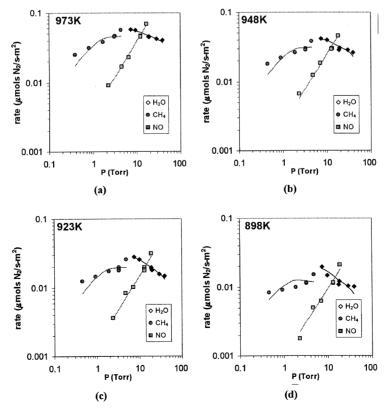


Figure 6. Partial pressure dependencies for NO reduction by CH_4 with H_2O but no O_2 in the feed at (a) 973 K, (b) 948 K, (c) 923 K and (d) 898 K. Symbols represent experimental data, and the rate expression given by equation (8) is represented by lines. Standard reactor conditions: 1.4% NO, 0.35% CH_4 , and 2.0% H_2O , balance He; $GHSV = 30\,000\,h^{-1}$.

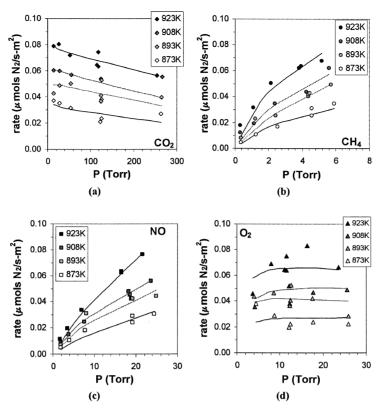


Figure 7. Partial pressure dependencies for NO reduction by CH_4 with CO_2 and O_2 in the feed between 873 and 923 K for (a) CO_2 , (b) CH_4 , (c) NO and (d) CO_2 . Symbols represent experimental data, and the rate expression given by equation (19) is represented by lines. Standard reactor conditions: 1.4% NO, 0.35% CH_4 , 1.0% CO_2 and 9% CO_2 , balance CO_2 , bal

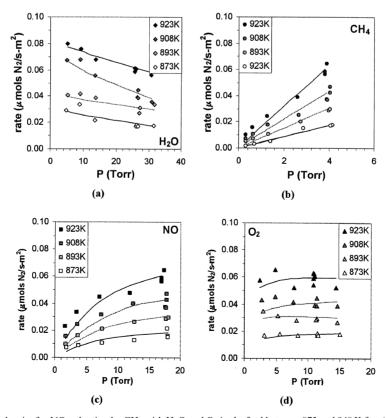


Figure 8. Partial pressure dependencies for NO reduction by CH_4 with H_2O and O_2 in the feed between 873 and 948 K for: (a) H_2O , (b) CH_4 , (c) NO and (d) O_2 . Symbols represent experimental data, and the rate expression given by equation (19) is represented by lines. Standard reactor conditions: 1.4% NO, 0.35% CH_4 , 1.0% O_2 and 2.0% H_2O , balance He; $GHSV = 141\,000\,h^{-1}$.

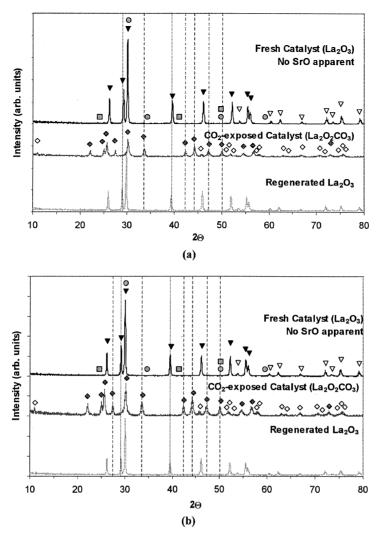


Figure 9. XRD patterns characterizing the effects of CO_2 on the phases present in 4% $Sr-La_2O_3$ in (a) the absence of O_2 and (b) the presence of O_2 . Lines represent unique peaks for La_2O_3 (·····) and $La_2O_2CO_3$ (---). Symbols represent characteristic peaks for La_2O_3 (\blacktriangledown , \heartsuit), II- $La_2O_2CO_3$ (\spadesuit , \diamondsuit), Sr (\circledcirc), and SrO (\circledcirc). Filled symbols represent principal peaks.

After reaction with CO_2 in the feed, a bulk transformation from La_2O_3 to an oxycarbonate (II- $La_2O_2CO_3$) phase had occurred, as shown by the XRD patterns in figure 9. This phase disappeared when CO_2 was removed from the reactor feed stream, and the catalyst reverted to the La_2O_3 phase in either the presence or absence of O_2 in the feed. This same behavior was observed with unpromoted La_2O_3 [12]. No bulk-phase transformation was observed with H_2O in the feed, which is consistent with earlier observations [12,15,16].

The results from the XRD study suggested that the surface area or the type of NO adsorption sites may also change during reaction, so these two parameters were determined after operation at each of the reaction conditions of interest following a specific procedure [12]. The NO chemisorption isotherms at 300 K are shown in figures 10 and 11 after exposure to CO₂ and H₂O, respectively, and table 3 lists the results of these adsorption experiments.

4. Discussion

Similarly to unpromoted La₂O₃ [12], 4% Sr-La₂O₃ maintained activity for NO reduction by methane when CO₂ or H₂O was included in the feed, but rate inhibition did occur. The latter two components are of considerable interest because they are present in any practical NO reduction feed stream, and steam has already been found to cause irreversible deactivation of a promising catalyst [17-19]. This deactivation has attracted attention, and NO reduction studies have been conducted on oxide-based catalysts with H₂O in the feed stream [19-29]. These results are compared to those for Sr-La₂O₃ in table 4, with respect to rate and, whenever possible, on a turnover frequency or specific activity basis also. In this study TOFs were determined by dividing the rate of N_2 production by the number of sites capable of irreversible NO adsorption (μmol NO/g) at 300 K, whereas other rates in table 4 were normalized to the 0

NO Chemisorption Isotherms Total: fresh Total: with O2 Total: without O2 Reversible: with O2 Reversible: without O2 Reversible: without O2

Figure 10. Effect of CO_2 in feed stream on NO chemisorption at 300K after quenching. Reaction conditions: 973 K and either GHSV = 4600 h⁻¹ for 10% O_2 /He pretreatment (fresh) (\spadesuit , \diamondsuit) and 1.4% NO, 0.35% CH₄, 0% O_2 , 9% CO_2 , balance He (\bigcirc , \bigcirc), or GHSV = 8300 h⁻¹ for 1.4% NO, 0.35% CH₄, 1% O_2 , 9% CO_2 , balance He (\bigcirc , \bigcirc).

100

Pressure (Torr)

150

200

50

concentration of metal cations at the catalyst surface; additional aspects of this table have been discussed earlier [12]. Regardless, it can be seen from the table that the rate on Sr-La₂O₃ compares favorably with those for most of the other catalysts, especially considering this catalyst has a specific surface area of only $3 \text{ m}^2/\text{g}$ versus values of $80-200 \text{ m}^2/\text{g}$ for the other catalysts. The limited information available about the influence of CO₂ on NO_x reduction over oxide catalysts has been discussed elsewhere [12].

Details about the catalytic benefits of Sr-promoted La₂O₃ for NO reduction have been reported previously [4,6,30], and the most significant finding was that Sr

Table 3
Specific surface area and NO chemisorption for 4% Sr-La₂O₃ before and after reduction

	Surface area (m²/g)	Total uptake $(\mu \text{mol NO/m}^2)$	Reversible uptake $(\mu \text{mol NO/m}^2)$	Irreversible uptake $(\mu \text{mol NO/m}^2)$
Fresh Catalyst	2.9	10.5	4.9	5.6
CO ₂ study				
O2 absent	3.0	5.5	0.69	4.8
O ₂ present	2.1	8.5	3.6	4.9
H ₂ O study				
O2 absent	2.1	10.1	9.1	1.0
O ₂ present	2.2	7.3	6.8	0.44

Reaction conditions: 1.4% NO, 0.35% CH_4 , 0 or 1.0% O_2 , 0 or 9.0% CO_2 , 0 or 2.0% H_2O , balance He; $GHSV = 4600 \, h^{-1}$ in the absence of O_2 and $8300 \, h^{-1}$ in the presence of O_2 . Uptakes were determined at 150 Torr.

NO Chemisorption Isotherms

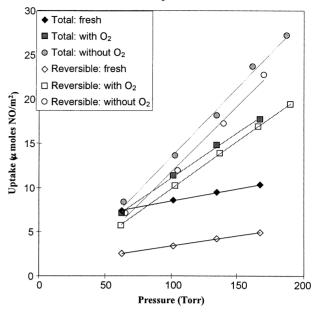


Figure 11. Effect of H_2O in feed stream on NO chemisorption at 300K after quenching. Reaction conditions: 973 K and either GHSV = $4600 \, h^{-1}$ for $10\% \, O_2/He$ pretreatment (fresh) (\spadesuit , \diamondsuit) and $1.4\% \, NO$, $0.35\% \, CH_4$, $0\% \, O_2$, $2\% \, CO_2$, balance He (\bigcirc , \bigcirc), or GHSV = $8300 \, h^{-1}$ for $1.4\% \, NO$, $0.35\% \, CH_4$, $1\% \, O_2$, $9\% \, CO_2$, balance He (\bigcirc , \bigcirc).

appears to enhance the active site concentration at the La₂O₃ surface by creating additional oxygen vacancies; however, it was also found that Sr might promote sintering, thus decreasing the surface area. In this investigation, the effects of CO2 and H2O on NO reduction over this Sr-promoted catalyst were qualitatively the same as those observed with pure La_2O_3 , i.e., reversible inhibition occurred, but its extent differed. At 973 K with CO₂ in the feed stream, this Sr-La₂O₃ catalyst showed a decrease in activity of 95% in the absence of O₂ and 56% in the presence of O₂ compared with respective decreases of 78 and 48% with La₂O₃. These results suggest that the Sr/LaO₃ catalyst is more sensitive than La₂O₃ to a surface oxycarbonate phase, which has been reported in an MOC study involving a SrOpromoted La₂O₃/ZnO catalyst [31]. For experiments at 973 K with H₂O in the feed, this Sr-La₂O₃ catalyst showed inhibition similar to that with La2O3 in the presence of O₂, 51% versus 46%, but in the absence of O₂, the decrease in activity was only 30% compared to 73% for La₂O₃ [12]. These results are more difficult to explain, but they may result from the following surface behavior. In the absence of O2, H2O adsorbs on the surface of the catalyst and dissociates via an interaction with atomic oxygen (O-S) on the surface. On Srpromoted La₂O₃ this surface oxygen is more easily removed from the surface to leave an oxygen vacancy. This water-induced vacancy may explain why the Srpromoted La₂O₃ is inhibited by H₂O to a lesser extent than pure La₂O₃; however, this still has a negative impact on overall site availability due to the competitive

Table 4 Rate comparison of NO_x reduction catalysts in the presence of O₂ and H₂O

Catalyst	Temp (K)	Reduc	ctant (%)	H ₂ O (%)	NO (%)	O ₂ (%)	Balance	N_2 rate $(\mu \text{mol/s g} \times 10^3)$	N_2 activity $(\mu \text{mol/s m}^2 \times 10^3)$	$\begin{array}{c} TOF \\ (s^{-1}\times 10^3) \end{array}$	$\begin{array}{c} GHSV \\ (h^{-1}) \end{array}$	α ^a (%)	Reference
4% Sr-La ₂ O ₃	923	CH ₄	0.35	2.0	1.4	1.0	Не	189	65	10.7	121 000	26	This study
Y_2O_3	923	$\mathrm{CH_4}$	0.40	2.0	0.40	0.40	He	60	0.50	n/a e	30 000	12	[20]
Co/Al_2O_3	923	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a e	21 000	n/a f	[21]
4% Sr-La ₂ O ₃	873	CH_4	0.35	2.0	1.4	1.0	He	55	19	3.1	121 000	24	This study
Co/ZSM-5	873	CH_4	0.10	0°	0.10	2.0	He	67 ^d	n/a ^b	n/a e	40 000	14	[22]
Co-La/ZSM-5	873	CH_4	0.10	0°	0.10	2.0	He	104 ^d	n/a ^b	n/a e	40 000	21	[22]
Ce-Ag/ZSM-5	873	CH_4	0.50	8.3	0.50	2.5	He	60 ^d	n/a ^b	2.4	7 500	31	[23]
In/ZSM-5	873	CH_4	0.10	10	0.10	10	He	15 ^d	n/a ^b	n/a e	30 000	n/a f	[24]
Co/ZSM-5	873	CH_4	0.10	2.0	0.09	2.5	He	70 ^d	n/a ^b	0.21	30 000	9	[25]
Co/ferrierite	873	CH_4	0.10	2.0	0.09	2.5	He	101 ^d	n/a ^b	0.30	30 000	14	[25]
Co/Al ₂ O ₃	873	C_3H_6	0.06	20	0.07	3.0	N_2	98	0.60	n/a e	21 000	n/a ^f	[21]
$Sn\text{-}Co/Al_2O_3$	873	C_3H_6	0.06	20	0.07	3.0	N_2	84	0.51	n/a e	21 000	n/a f	[21]
4% Sr-La ₂ O ₃	823	CH_4	0.35	2.0	1.4	1.0	He	15	5.2	0.86	121 000	17	This study
Co/ferrierite	823	CH_4	0.10	2.0	0.40	2.5	He	60	n/a ^b	2.7	30 000	17	[26]
Cu/Al ₂ O ₃	823	C_3H_6	0.20	5.0	0.2	5.0	He	56	n/a ^b	0.30	15 000 ^d	14	[27]
Co/Al ₂ O ₃	823	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a e	21 000	n/a ^f	[21]
Sn-Co/Al ₂ O ₃	823	C_3H_6	0.06	20	0.07	3.0	N_2	88	0.54	n/a e	21 000	n/a ^f	[21]
Ag/Al_2O_3	823	C_3H_6	0.10	3.0	0.10	5.0	N_2	250	1.3	n/a e	40 000	25	[28]
4% Sr-La ₂ O ₃	773	$\mathrm{CH_4}$	0.35	2.0	1.4	1.0	He	6.6	2.3	0.37	121 000	28	This study
Fe/ZSM-5	773	C_4H_{10}	0.50	10	0.20	3.0	He	290	n/a ^b	0.60	42 000	14	[29]
Fe/ZSM-5	773	C_4H_{10}	0.20	20	0.20	3.0	He	990	n/a ^b	2.5	42 000	>9	[19]
Co/Al ₂ O ₃	773	C_3H_6	0.06	20	0.07	3.0	N_2	19	0.12	n/a e	21 000	n/a f	[21]
Sn-Co/Al ₂ O ₃	773	C_3H_6	0.06	20	0.07	3.0	N_2	75	0.46	n/a e	21 000	n/a f	[21]

^a Defined in equation (4.1).

b Specific surface area not reported.
c Steamed for 24 h in 114 Torr of H₂O at 1073 K.

^d Assumed catalyst density of 1 g/cm³.

^e Neither NO uptake nor reactive sites reported.

^f CH₄ conversion data not reported.

adsorption of H_2O on these sites. In the presence of O_2 , this possible effect due to water-induced oxygen vacancies would be balanced because of the abundance of surface oxygen via dissociative O_2 chemisorption.

Despite these differences it is reasonable to assume that the reaction mechanisms in the absence and presence of O_2 are the same as those proposed previously [30], except that CO_2 and H_2O must be included in the site balance during derivation of the rate law. A detailed sequence of elementary steps describing NO reduction by CH_4 in the absence of O_2 has been proposed previously [30], and a simplified version, which combines a number of quasi-equilibrated steps into a single reaction (equation (4)) but satisfactorily shows the kinetically significant steps, is shown below:

$$4[NO + S \xrightarrow{K_{NO}} NO-S]$$
 (1

$$CH_4 + S \stackrel{K_{CH_4}}{\Longrightarrow} CH_4 - S$$
 (2)

NO-S + CH₄-S
$$\xrightarrow{k}$$
 HNO-S + CH₃-S (rds) (3)

$$3NO-S + HNO-S + CH3-S \xrightarrow{K}$$

$$2H2O-S + 2N2 + CO2-S + 2S$$
(4)

$$CO_2-S \stackrel{K_{CO_2}}{\rightleftharpoons} CO_2 + S \tag{5}$$

$$2[H_2O-S \xrightarrow{K_{H_2O}} H_2O + S]$$
 (6)

$$4NO + CH_4 + \longrightarrow 2N_2 + 2H_2O + CO_2 \tag{7}$$

Equation (3) represents the rate-determining step (rds), and with the following site balance for total active sites, $L = [CH_4-S] + [NO-S] + [CO_2-S] + [H_2O-S] + [S]$, the resulting rate law for N₂ formation is obtained [32]:

$$r_{\rm N_2} = \frac{(LkK_{\rm NO}K_{\rm CH_4})P_{\rm NO}P_{\rm CH_4}}{(1 + K_{\rm NO}P_{\rm NO} + K_{\rm CH_4}P_{\rm CH_4} + K_{\rm CO_2}P_{\rm CO_2} + K_{\rm H_2O}P_{\rm H_2O})^2}$$
(8)

As with La₂O₃ [12], differential reactor conditions were maintained throughout the experiments in the absence of O₂, so the same optimization routine was used to determine the five fitting constants. The resulting fits to the data are quite good and are displayed as solid lines in figures 5 and 6 for CO₂ and H₂O, respectively, and the optimized values at each temperature are listed in table 5. Enthalpies and entropies of adsorption were obtained from the constants corresponding to equilibrium adsorption constants, and they are listed in table 6 along with 90% confidence limits. These values were analyzed for thermodynamic consistency and found to satisfy all criteria to be physically meaningful [33,34]. These values are very consistent with those reported for La₂O₃ under similar conditions [12]. The activation energy for the rate constant k in the rate-determining step (equation (3))

Table 5 Optimized constants for equation (8) in the absence of O_2 and equation (19) in the presence of O_2

	$k'_{ m NO}{}^{ m a}$	k′ ^b	$K_{ m NO}$ (Torr ⁻¹)	$K_{\mathrm{CH_4}}$ (Torr ⁻¹)	K_{O_2} (Torr ⁻¹)	K_{CO_2} (Torr ⁻¹)	$K_{\rm H_2O}$ (Torr ⁻¹)
CO ₂ study							
O2 absent							
973 K	0.17	_	0.67	8.3	-	0.085	_
960 K	0.35	_	2.0	9.9	-	0.15	_
948 K	0.31	_	1.5	12	-	0.13	_
923 K	0.50	_	2.5	20	-	0.21	_
O ₂ present							
923 K	0.020	0.71	0.055	0.51	1.2	0.0075	_
908 K	0.014	1.4	0.093	0.41	0.88	0.0097	_
893 K	0.027	2.5	0.13	0.48	3.6	0.013	_
873 K	0.029	1.7	0.14	0.97	4.7	0.020	-
H ₂ O study							
O2 absent							
973 K	0.0086	_	_	0.40	_	_	0.020
948 K	0.0061	_	_	0.41	_	_	0.026
923 K	0.0057	_	_	0.53	_	_	0.041
898 K	0.010	_	_	1.0	_	_	0.085
O ₂ present							
923 K	0.79	45	1.2	0.057	56	_	0.29
908 K	0.87	86	1.3	0.064	67	_	0.67
893 K	1.0	180	1.7	0.084	180	_	0.45
893 K	1.7	310	3.3	0.11	290	_	1.4

^a Units for k' are μ mol N_2 (s m² Torr²)⁻¹ in the absence of O_2 and μ mol N_2 (s m² Torr^{2.5})⁻¹ in the presence of O_2 .

^b Units for k'_{com} are μ mol CH₄ (s m² Torr²)⁻¹.

Table 6
Enthalpies and entropies of adsorption ^a obtained from the parameters in table 5 for the feed-stream components.

Comparison with earlier results in the absence of O₂ and excess CO₂ and H₂O is provided

	NO	$\mathrm{CH_4}$	O_2	CO_2	H_2O
Huang et al. [5]					
Absence of O ₂					
$\Delta H_{\rm ad}^{\rm o}$ (kcal/mol)	-28	-20	_	_	_
$S_{\rm ad}^{\rm o} ({\rm cal/mol} {\rm K})$	-23	-9	_	_	-
CO ₂ study					
Absence of O ₂					
$\Delta H_{\rm ad}^{\rm o}$ (kcal/mol)	-38 ± 20	-31 ± 6	_	-29 ± 10	_
S _{ad} (cal/mol K)	-26 ± 20	-15 ± 6	_	-21 ± 10	_
Presence of O ₂					
$\Delta H_{\rm ad}^{\rm o}$ (kcal/mol)	-28 ± 10	-21 ± 13	-54 ± 20	-32 ± 4	_
S_{ad}^{o} (cal/mol K)	-23 ± 10	-12 ± 13	-45 ± 20	-31 ± 4	-
H ₂ O Study					
Absence of O ₂					
$\Delta H_{\rm ad}^{\rm o}$ (kcal/mol)	_	-21 ± 7	_	_	-33 ± 5
S _{ad} (cal/mol K)	_	-11 ± 7	_	_	-29 ± 5
Presence of O ₂					
$\Delta H_{\rm ad}^{\rm o}$ (kcal/mol)	-33 ± 7	-22 ± 7	-56 ± 11	_	-44 ± 20
$S_{\rm ad}^{\rm o} ({\rm cal/mol} {\rm K})$	-22 ± 7	-17 ± 7	-40 ± 11	_	-36 ± 20

^a With 90% confidence limits.

was $35 \pm 6 \,\text{kcal/mole}$ with CO_2 in the feed, but it could not be determined in the study with H_2O because the $K_{\text{NO}}P_{\text{NO}}$ term in the partial pressure studies was too small to analyze.

As with La_2O_3 [12], both the chemistry and the data analysis become much more complex when O₂ is added to the feed because Sr-promoted La₂O₃ also catalyzes the direct oxidation of CH₄ with O₂. Consequently, differential conversions of all components could not be maintained under all reaction conditions, even though NO conversion was always less than 10%, because total methane and oxygen conversions sometimes approached 50% or more. Due to this parallel combustion reaction, analyses of rate data were conducted assuming integral reactor behavior so that accurate concentration profiles throughout the reactor could be determined and appropriate modeling of both the NO reduction and CH₄ combustion reactions could be conducted [32]. The latter reaction has been modeled and discussed elsewhere [13].

Based on the similarity of behavior between $Sr-La_2O_3$ and La_2O_3 , it is reasonable to assume that the surface chemistry is the same and the sequence of elementary steps proposed earlier is still applicable [12,30]. The abbreviated reaction mechanism, which again shows the kinetically significant steps (equations (9)–(13)) and combines a number of quasi-equilibrated steps into equation (14), is given below:

$$4[NO + S \xrightarrow{K_{NO}} NO-S]$$
 (9)

$$2[CH_4 + S \stackrel{K_{CH_4}}{\Longrightarrow} CH_4-S]$$
 (10)

$$2[O_2 + 2S \xrightarrow{K_{O_2}} 2O-S] \tag{11}$$

$$3[NO-S + O-S \xrightarrow{K_{NO_2}} NO_2-S + S]$$
 (12)

$$2[NO_2-S + CH_4-S \xrightarrow{k} HNO_2-S + CH_3-S] (rds)$$
 (13)

$$2HNO_2-S + 2CH_3-S + NO-S + NO_2-S + O-S \stackrel{K}{=}$$

 $2CO_2-S + 4H_2O-S + 2N_2$ (14)

$$2[CO_2-S \xrightarrow{K_{CO_2}} CO_2 + S]$$
 (15)

$$4[H2O-S \stackrel{K_{H2O}}{\rightleftharpoons} H2O + S]$$
 (16)

$$4NO + 2CH_4 + 2O_2 \rightarrow 2N_2 + 4H_2O + 2CO_2$$
 (17)

With equation (13) as the rds and assuming CH_4 -S, NO-S, O-S, CO_2 -S and H_2O -S to be the predominant surface species in the site balance, the derived rate expression for N_2 formation becomes [32]:

$$r_{\rm N_2} = \frac{(LkK_{\rm NO_2}K_{\rm NO}K_{\rm CH_4}K_{\rm O_2}^{0.5})P_{\rm NO}P_{\rm CH_4}P_{\rm O_2}^{0.5}}{(1 + K_{\rm NO}P_{\rm NO} + K_{\rm CH_4} + P_{\rm CH_4} + K_{\rm CO_2}P_{\rm CO_2} + K_{\rm H_2O}P_{\rm H_2O} + K_{\rm O_2}^{0.5}P_{\rm O_2}^{0.5})^2}.$$
 (18)

This expression relates directly to CH₄ disappearance due to NO reduction based on the stoichiometry in equation (17), i.e., $r_{\rm N_2} = (r_{\rm CH_4})_{\rm NO}$ because $\rm d[N_2]/dt = -d[CH_4]/dt$. This rate expression must then be combined with that for CH₄ disappearance due only to combustion with O₂ [13] to obtain a rate equation for

total methane disappearance:

$$(r_{\text{CH}_4})_{\text{T}} = \frac{k'_{\text{com}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5} + k'_{\text{NO}} P_{\text{NO}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5}}{(1 + K_{\text{NO}} P_{\text{NO}} + K_{\text{CH}_4} P_{\text{CH}_4} + K_{\text{O}_2}^{0.5} P_{\text{O}_2}^{0.5} + K_{\text{CO}_2} P_{\text{CO}_2} + K_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}})^2}$$
(19)

where $k'_{\text{com}} = LK_{\text{CH}_4}(K_{\text{O}_2})^{0.5}$ and $k'_{\text{NO}} = LK_{\text{NO}_2} \times$ $K_{\text{NO}}K_{\text{CH}_4}(K_{\text{O}_2})^{0.5}$. This expression is then employed in the design equation for an integral reactor by relating the partial pressure of each component to P_{CH_A} via the appropriate stoichiometry [13,32]. An optimization procedure described elsewhere was used to optimize this complex rate expression [13], and the ability of this model to fit the data is displayed as solid lines in figure 7 for CO₂ in the feed and in figure 8 for H₂O in the feed. The fitting constants from the optimized expressions are listed in table 5, and the thermodynamic parameters obtained from these equilibrium adsorption constants are in Table 6. Due to the inclusion of K_{NO} in the lumped rate constant, it was not possible to determine the activation energy associated with the rds given in equation (13). The thermodynamic values determined in the presence of O2 are again quite similar to those from other studies, and the enthalpies for CH₄ adsorption, in particular, show very good agreement, which implies that the interaction of CH₄ and the other adsorbates with the surface is relatively independent of the concentration of O₂, H₂O or CO₂. Similar to the La₂O₃ study in the absence of O₂, a very low surface concentration of adsorbed NO is indicated by the results with H₂O, but no O₂, in the feed. Because of the consistency between these and previous results, it is still proposed that H₂O competes with NO for O-S groups, which have been associated with enhanced NO adsorption on La₂O₃ [35,36].

Xie et al. [37] have also studied NO reduction with CH₄ over a 1% Sr/La₂O₃ catalyst and they also found that O₂ enhanced the rate of NO reduction. In addition, using an ESR technique they identified low concentrations of gas-phase methyl radicals at low pressures near 500 mTorr and above 800 K. In a subsequent study of this reaction over Ba/MgO catalysts, they also observed a rate inhibition due to CO₂ [38]. In both cases, no complete catalytic cycle was provided and no kinetic rate expression was derived, but the authors have suggested that gas-phase methyl radicals are responsible for NO reduction in the presence of O₂, but probably not in the absence of O_2 [38,39]. We do not disallow the possibility of gas-phase reactions involving methyl radicals, but it is our belief that the *predominant* reaction pathway in these porous catalysts involves methyl radicals and NO adsorbed on the surface. This has allowed us to model the reaction via a Langmuir-Hinshelwood model, to readily include the roles of CO₂ and H₂O and to fit the data well, to address CH₄ partial pressure dependencies that are far less than unity, and to obtain thermodynamic parameters that are quite consistent

among La₂O₃, Sr/La₂O₃ and La₂O₃/Al₂O₃ catalyst systems. Regardless, future studies are needed to clearly delineate the homogeneous and heterogeneous contributions to the overall rate.

As in the study with La₂O₃ [12], it was difficult to reach quantitative conclusions about all the NO chemisorption experiments. The chemisorption results in figure 11 for the fresh catalyst (from the same experiment) show well-behaved adsorption behavior with the total and reversible uptakes having similar slopes, which is characteristic of equilibrated adsorption. The oxycarbonate catalyst, La₂O₂CO₃, exhibited significantly different behavior, especially after use in the absence of O₂. While the total and reversible isotherms diverge moderately after use in the presence of O2, the total and irreversible uptakes are only moderately less than those for the fresh catalyst; however, after conducting the reaction in the absence of O_2 , not only do the isotherms show marked divergence, but the total uptake is also less than the reversible uptake of the fresh catalyst. This observation may help explain why the activity decreased by ~95% in the absence of O2 and suggests the following behavior with respect to CO₂ and Srpromoted La₂O₃. The divergence in the isotherms for total and reversible chemisorption following reaction conditions with CO₂ implies that NO adsorption is not equilibrated. If so, this unequilibrated adsorption is most likely due to an oxycarbonate phase that has been shown to desorb CO₂ in the presence of NO via a surface reaction [15]. From the kinetic experiments combined with the XRD analysis in this study and elsewhere [12], it is apparent that the presence of O₂ facilitates decomposition of the oxycarbonate phase. This may lead to a reduced concentration of surface carbonate species compared with reaction conditions without O₂, and this might explain the similarity of the NO uptake with respect to the fresh catalyst. NO uptakes following reaction conditions with H2O in the feed exhibited different behavior as well. The H₂O-exposed catalysts demonstrated steeper slopes for both total and reversible isotherms; in addition, the total and reversible slopes were virtually identical either in the presence or absence of O2, and they indicated relatively low uptakes. These results show very low irreversible uptakes of NO and suggest that H₂O occupies the sites responsible for strong (irreversible) adsorption.

5. Summary

In general, the influence of CO_2 and H_2O on the activity of 4% Sr-La₂O₃ mimics that observed with pure La₂O₃ and reversible rate inhibition is observed, with the former catalyst being slightly more susceptible to CO_2 inhibition, but less susceptible to inhibition by H_2O , than La₂O₃. The mechanism proposed to describe NO reduction by CH_4 on La₂O₃ is applicable to this

study as well, and the rate law in the absence of O2 is

$$r_{\text{N}_2} = \frac{(LkK_{\text{NO}}K_{\text{CH}_4})P_{\text{NO}}P_{\text{CH}_4}}{(1 + K_{\text{NO}}P_{\text{NO}} + K_{\text{CH}_4}P_{\text{CH}_4} +}, K_{\text{CO}_2}P_{\text{CO}_2} + K_{\text{H}_2\text{O}}P_{\text{H}_2\text{O}})^2},$$

which yields a good fit to the experimental data and gives optimized equilibrium adsorption constants that demonstrate thermodynamic consistency. In the presence of O_2 , the nondifferential changes in reactant concentrations through the reactor bed were accounted for by simultaneously considering both CH_4 combustion and CH_4 reduction of NO, which provided the following rate law for total CH_4 disappearance:

$$(r_{\text{CH}_4})_{\text{T}} = \frac{k'_{\text{com}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5} + k'_{\text{NO}} P_{\text{NO}} P_{\text{CH}_4} P_{\text{O}_2}^{0.5}}{(1 + K_{\text{NO}} P_{\text{NO}} + K_{\text{CH}_4} P_{\text{CH}_4} + K_{\text{O}_2}^{0.5} P_{\text{O}_2}^{0.5} + K_{\text{CO}_2} P_{\text{CO}_2} + K_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}})^2}.$$

The second term of this expression represents N_2 formation, and it again gave meaningful fits to the experimental data and yielded thermodynamically consistent rate constants. The entropy and enthalpy of adsorption for each measurable component were consistent with values reported for other La_2O_3 -based catalysts.

Acknowledgment

This study was supported by the National Science Foundation under Grant CTS-9633752.

References

- [1] J.M. DeBoy and R.F. Hicks, J. Chem. Soc., Chem. Commun. (1988)
- [2] J.M. DeBoy and R.F. Hicks, Ind. Eng. Chem. Res. 27 (1988) 1577.
- [3] J.M. DeBoy and R.F. Hicks, J. Catal. 113 (1988) 517.
- [4] X. Zhang, A.B. Walters and M.A. Vannice, Appl. Catal B 7 (1996)
- [5] S.-J. Huang, A.B. Walters and M.A. Vannice, Appl. Catal. B 17 (1998) 183.

- [6] S.-J. Huang, A.B. Walters and M.A. Vannice, J. Catal. 173 (1998) 229.
- [7] Z. Kalenik and E.E. Wolf, Catal. Lett. 9 (1991) 441.
- [8] S.J. Conway, J.A. Greig and G.M. Thomas, Appl. Catal. A 86 (1992) 199.
- [9] A.G. Anshits, E.N. Voskresenykaya and E.V. Kondratenko, Catal. Today 24 (1995) 217.
- [10] T. Le Van, M. Che, M. Kermarec, C. Louis and J.M. Tatibouet, Catal. Lett. 6 (1990) 395.
- [11] H. Piao, Y.L. Bi and K.J. Zhen, Chem. Res. Chinese. Univ. 13 (1997)
- [12] T.J. Toops, A.B. Walters and M.A. Vannice, Appl. Catal. B, In press.
- [13] T.J. Toops, A.B. Walters and M.A. Vannice, Appl. Catal. A, In press.
- [14] T.J. Toops, A.B. Walters and M.A. Vannice, Catal. Lett. 64 (2000) 65.
- [15] B. Klingenberg and M.A. Vannice, Chem Mater. 8 (1996) 2755.
- [16] M.P. Rosynek and D.T. Magnuson, J. Catal. 46 (1977) 402.
- [17] K.C. Khara, H.J. Robota and D.J. Liu, Appl. Catal. B 2 (1993) 225.
- [18] J.Y. Yan, G.-D. Lei, W.M.H. Sachtler and H.H. Kung, J. Catal. 141 (1996) 161.
- [19] X. Feng and W.K. Hall, J. Catal. 166 (1997) 368.
- [20] M.D. Fokema and J.Y. Ying, Appl. Catal. B 18 (1998) 71.
- [21] L. Chen, T. Horiuchi and T. Mori, Catal. Lett. 72(1-2) (2001) 71.
- [22] P. Budi and R. Howe, Catal. Today 38 (1997) 175.
- [23] Z. Li and M. Flytzani-Stephanopolous, Appl. Catal. B 22 (1999) 35.
- [24] E. Kikuchi, M. Ogura, N. Aratani, Y. Sugiura, S. Hiromoto and K. Yogo, in: *Environmental Catalysis*, eds. G. Centi, S. Perathoner, C. Christani and P. Forzatti, Rome, Italy, 1995, p. 27.
- [25] Y. Li and J.N. Armor, Appl. Catal. B 5 (1995) L257.
- [26] Y. Li and J.N. Armor, J. Catal. 150 (1994) 376.
- [27] E. A. Efthimidias, G.D. Lionta, S.C. Christoforou and I.A. Vasalos, Catal. Today 40 (1998) 15.
- [28] A. Martinez-Arias, M. Fernandez-Garcia, A. Iglesias-Juez, J.A. Anderson, J.C. Conesa and J. Soria, Appl. Catal. B 28 (2000) 29.
- [29] H.-Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.
- [30] M.A. Vannice, A.B. Walters and X. Zhang, J. Catal. 159 (1996) 119.
- [31] Y.D. Xu, L. Yu and X.X. Guo, Appl. Catal. A 164(1-2) (1997) 47.
- [32] T.J. Toops, Ph.D. Thesis, The Pennsylvania State University, 2001.
- [33] M. Boudart, AIChE J. 18 (1972) 465.
- [34] M.A. Vannice, S.H. Hyun. B. Kalpakci and W.C. Liauh, J. Catal. 56 (1979) 358.
- [35] S.-J. Huang, A.B. Walters and M.A. Vannice, J. Catal. 192 (2000) 29.
- [36] S.-J. Huang, A.B. Walters and M.A. Vannice, Catal. Lett. 64 (2000) 77
- [37] S. Xie, T.H. Ballinger, M.P. Rosynek and J.H. Lunsford, 11th International Congress on Catalysis, in: *Studies in Surface Science* and Catalysis, Vol. 101, eds. J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell (Elsevier, Amsterdam, 1996), p. 711.
- [38] S. Xie, M.P. Rosynek and J.H. Lunsford, J. Catal. 188 (1999) 32.
- [39] S. Xie, M.P. Rosynck and J.H. Lunsford, Catal. Lett. 43 (1997) 1.