Isotopic study of N_2O decomposition on an ion-exchanged Fe-zeolite catalyst: mechanism of O_2 formation

Takeshi Nobukawa, Shin-ichi Tanaka, Shin-ichi Ito, Keiichi Tomishige, Satoshi Kameoka and Kimio Kunimori*

Institute of Materials Science, University of Tsukuba 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Received 14 February 2002; accepted 23 May 2002

 N_2O decomposition on an ion-exchanged Fe-MFI catalyst has been studied using an ^{18}O -tracer technique in order to reveal the reaction mechanism. $N_2^{16}O$ was pulsed onto an $^{18}O_2$ -treated Fe-MFI catalyst at 693 K, and the O_2 molecules produced were monitored by means of mass spectrometry. The ^{18}O fraction in the produced oxygen had almost half the value of that on the surface oxygen, and $^{18}O^{18}O$ was not detected. The result shows that O_2 formation proceeds *via* the Eley–Rideal mechanism $(N_2^{16}O + ^{18}O(a) \rightarrow N_2 + ^{16}O^{18}O)$.

KEY WORDS: ¹⁸O isotope; Fe-MFI catalyst; N₂O decomposition; reaction mechanism.

1. Introduction

Nitrous oxide (N_2O) is a strong greenhouse-effect gas with a global warming potential (GWP) per molecule of about 300 times that of carbon dioxide (CO_2) , and it also takes part in the destruction of the stratospheric ozone layer [1]. From the point of view of the environment, therefore, the catalytic decomposition of N_2O $(N_2O \rightarrow N_2 + \frac{1}{2}O_2)$ has been attracting much attention [1–15]. Various research groups have studied metal oxides (including mixed oxides) [2–5], supported noble metals (Rh, Ru) [6–10] and transition metal exchanged zeolites (Cu-MFI, Fe-FAU, etc.) [11–13] for N_2O decomposition at different temperatures (500–800 K).

For metal oxides and/or mixed oxide system [4,5], the mechanism of N₂O decomposition has been discussed in terms of the Langmuir–Hinshelwood (LH) mechanism (steps (1) and (2)):

$$N_2O \rightarrow N_2 + O(a)$$
 (1)

$$2O(a) \rightarrow O_2$$
 (2)

$$N_2O + O(a) \rightarrow N_2 + O_2.$$
 (3)

Step (1) is the dissociative N_2O adsorption followed by the production of N_2 and adsorbed oxygen on the catalyst surface. Step (2) is the O_2 formation by the recombinative desorption of adsorbed oxygen, which may occur at relatively higher temperatures (>650 K). As a mechanism of O_2 formation, however, the Eley-Rideal (ER) mechanism (step (3)) has also been proposed [13–15]. Step (3) is the oxygen removal by a direct collision of N_2O with adsorbed oxygen, which might be possible at relatively lower temperatures. Steps (1) and

(3) correspond to the so-called redox process [13,15]. Dandl and Emig [14] proposed a mechanistic model from the kinetics simulation, where the ER mechanism prevails at lower temperatures and the LH mechanism prevails at higher temperatures.

We have reported that an Rh/USY catalyst was very active for the catalytic decomposition of N₂O even at low temperatures around 500 K [7,8]. The O₂ production started on an oxygen-covered Rh surface at low temperatures, but the O2-TPD measurement in an He flow showed that O₂ was not desorbed up to 900 K [16]. To elucidate the mechanism of O₂ formation, we have established an isotopic tracer method, where $N_2^{16}O$ is pulsed onto an ${}^{18}O_2$ -treated catalyst surface [16,17]. Surprisingly, the O₂ formation was found to proceed via the LH mechanism (step (2)) over oxidized Rh black and supported Rh (Rh/USY, Rh/SiO₂) catalysts at 493 K [16–18]. Because the recombinative desorption of oxygen did not occur in He at 493 K (the O₂-TPD [16]), we have proposed reaction-assisted desorption of O₂ during N₂O decomposition at low temperature [16,17].

For ion-exchanged Fe-zeolite catalysts (Fe-FAU, Fe-MOR), the catalytic decomposition rate of N_2O is first-order in N_2O , but a near-zero-order in O_2 , which suggests that the ER mechanism prevails [13,15]. To confirm the mechanism of O_2 formation, Leglise *et al.* [13] conducted an ¹⁸O-tracer experiment using N_2 ¹⁶O in a recirculation system, but the tracer data did not conform to the expectation from the kinetic data. In fact, the first dioxygen molecules observed were virtually all ¹⁶O¹⁶O, and Leglise *et al.* [13] suggested that only a very small fraction of the exchanged Fe cations are active, but that otherwise the decomposition reaction is unrelated to the redox process (the ER mechanism). Further experiments using N_2 ¹⁸O on an Fe-MOR

^{*}To whom correspondence should be addressed. E-mail: Kunimori@ims.tsukuba.ac.jp

catalyst also failed to conform to the expectation, because the reaction mechanism was disguised by the exchange of N_2^{18} O with the catalyst oxygen [19].

In this work, our 18 O tracer technique [16,17] was applied to an ion-exchanged Fe-zeolite (Fe-MFI) catalyst to elucidate the mechanism of N₂O decomposition. This paper presents direct evidence of the ER mechanism for O₂ formation (step (3)).

2. Experimental

An Fe-MFI ($SiO_2/Al_2O_3 = 23.8$) catalyst was prepared by ion-exchange with a dilute solution of FeSO₄ at 323 K for 20 h under a nitrogen atmosphere, followed by calcination in air at 773 K for 12 h [20,21]. The zeolite support (Na-MFI, $SiO_2/Al_2O_3 = 23.8$) was supplied by Tosoh Co. The loading weight of Fe on MFI support was 2.9 wt% (80% exchanged with Fe²⁺). The O₂-TPD experiment was carried out in a microcatalytic pulse reactor in order to study at what temperatures O₂ is desorbed from the catalyst [16]. The He carrier flow rate was $55 \, \text{cm}^3/\text{min}$. The temperature was increased from room temperature to $1073 \, \text{K}$ at a constant heating rate of $10 \, \text{K}/\text{min}$ and was kept at $1073 \, \text{K}$.

The reaction of N_2O decomposition on an $^{18}O_2$ -treated Fe-MFI catalyst was performed in the same reactor as for the O_2 -TPD study. A quartz tube reactor (8 mm i.d.) was charged with 50.2 mg of the Fe-MFI catalyst (4 mm in height, Fe = $26.1 \,\mu\text{mol}$). Highly purified He (99.9999%) was used as a carrier gas at a flow rate of 55 cm³/min. Isotope-labeled ¹⁸O₂ (96.5% ¹⁸O₂) was obtained from Icon Company Ltd. The ¹⁸O tracer-loaded catalyst was prepared as follows: the catalyst was treated with ¹⁸O₂ (110 Torr) three times in an in situ closed system at 773 K for 1 h after H₂ reduction at 773 K. The reactant gas $(0.50\% \text{ N}_2^{16}\text{O in He})$ and probe gases $(0.22\% ^{18}\text{O}_2)$ in He and 0.32% C¹⁶O₂ in He) were flushed onto the catalyst via the carrier gas. The amount of N2O was $0.38 \,\mu\text{mol/pulse}$, $^{18}\text{O}_2$ — $0.17 \,\mu\text{mol/pulse}$, and CO_2 — $0.11 \,\mu \text{mol/pulse}$. The effluent was analyzed in an on-line gas chromatograph (Shimadzu, GC-8A) equipped with Molecular Sieve 5 Å and Porapak Q and differentially pumped quadrupole mass spectrometer (Balzers, QMS 200 F). To prevent leakage of ¹⁶O₂ from the atmosphere into the gas line, the whole apparatus, which was located in a corner of the laboratory room, was isolated from the atmosphere by drawing curtains to make a small room in which N_2 gas was purged [16].

3. Results and discussion

The N_2O decomposition reaction on the Fe-MFI catalyst after O_2 treatment at 773 K was carried out using N_2O pulses in a temperature range of 653–753 K. The pulsed N_2O conversion was 12% at 693 K, and

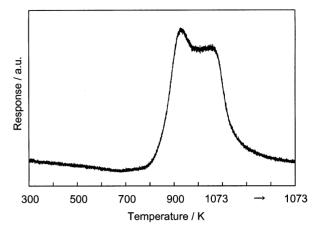


Figure 1. O_2 -TPD profile from Fe-MFI catalyst after O_2 treatment at 773 K for 1 h.

reached 100% at 753 K. In the steady-state N₂O decomposition on the same catalyst [22], the N_2/O_2 ratio of the product molecules was 2. In this study, however, the N_2 / O₂ ratio was 4, indicating that half the amount of oxygen was adsorbed on the catalyst during the N₂O pulse even after the O₂ treatment at 773 K. It should also be noted that the impregnated Fe/MFI catalyst was inactive for N_2O decomposition [21,22], suggesting that the active species are the ion-exchanged Fe. Figure 1 shows the O₂-TPD spectrum over the Fe-MFI catalyst pretreated in O₂ at 773 K for 1 h. O₂ desorption started above 770 K with a maximum occurring around 930 K. No O₂ peak was observed at the temperatures below 770 K. The O/Fe ratio was 0.17. Voskoboinikov et al. [23] reported that the O/Fe ratio depends significantly on the SiO_2/Al_2O_3 ratio. Our result (O/Fe = 0.17) may be reasonable in terms of their data.

Fe-MFI catalyst after $\rm H_2$ treatment was oxidized with the $^{18}\rm O_2$ gas at 773 K, and pulsed $\rm N_2O$ decomposition was carried out at 693 K. Generally, an isotopic equilibrium constant, $K_{\rm e}$, should be considered to judge incidental exchange reactions that would disguise the experimental results. Taking into account an equilibrium reaction,

$$^{18}O_2 + ^{16}O_2 \Leftrightarrow 2^{18}O^{16}O,$$
 (4)

 $K_{\rm e}$ is generally given as

$$K_{\rm e} = \frac{\left[{}^{18}{\rm O}^{16}{\rm O}\right]^2}{\left[{}^{18}{\rm O}_2\right]\left[{}^{16}{\rm O}_2\right]}.\tag{5}$$

If the exchange reaction equilibrates, $K_{\rm e}$ should be close to 4 [24]. The same rule applies for other exchange reactions. An isotopic fraction of $^{18}{\rm O}$ [$^{18}f=^{18}{\rm O}/(^{16}{\rm O}+^{18}{\rm O})$] on the catalyst can be evaluated by a pulsed ${\rm C}^{16}{\rm O}_2$ experiment. It should be noted that the amount of the ${\rm CO}_2$ pulse (0.11 μ mol) is negligible compared with that of the ion-exchanged Fe atoms (26.1 μ mol). Table 1 shows the ^{18}f and $K_{\rm e}$ in the product

Table 1 The isotopic fraction of ^{18}O (^{18}f) and the isotopic equilibrium constant (K_e) in the product molecules from $^{18}O_2$, $C^{16}O_2$ and N_2 ^{16}O pulses at 693 K.

Experiment No.	Pulse	Surface species	Product	$^{18}f_{ m obs.}$	K _e
1	$C^{16}O_2$	¹⁸ O	CO_2	0.23	3.95
2	$N_2^{16}O$	¹⁸ O	O_2	0.13	∞
2	$N_2^{-16}O$	^{18}O	N_2O	0.00^{a}	_
3	$^{18}O_2$	^{16}O	O_2	0.95	0.18
4	$^{18}O_2$	-	O_2	$0.97^{\rm b}$	-

^a The isotopic abundance of ¹⁸O is 0.002.

molecules obtained at 693 K. The exchange reaction of oxygen in CO_2 is fast on metal oxides [24]. As shown in table 1 (experiment 1), K_e is 3.95, which suggests that the isotopic exchange of oxygen in CO_2 equilibrates. Therefore, the ¹⁸f in the product CO_2 should be equal to that of the surface oxygen. Since the ¹⁸f in the product CO_2 was 0.23 (table 1, experiment 1), the ¹⁸f on the Fe-MFI catalyst after the ¹⁸ O_2 treatment was determined to be 0.23. As a separate experiment, the ¹⁸ O_2 pulse was injected onto ¹⁶ O_2 -treated catalyst at 693 K (table 1, experiment 3). Comparing the ¹⁸f value measured without the catalyst (0.97; table 1, experiment 4) with 0.95, the exchange coefficient of O_2 (b_0) with the surface oxygen (step (6)) was estimated to be 0.02:

$$^{18}O_2 + ^{16}O(a) \rightarrow ^{18}O^{16}O + ^{18}O(a).$$
 (6)

The exchange coefficient represents the isotope fraction produced during a single pass of O_2 exchanging with the surface oxygen. It should be noted that the b_0 value was much lower than those of the Rh catalysts [16,17].

After the pulsed CO₂ experiment, an $N_2^{16}O$ pulse was injected onto the $^{18}O_2$ -treated catalyst at 693 K (table 1, experiment 2). The ^{18}f of the product O_2 was 0.13, which was almost half the value of ^{18}f on the catalyst. In addition, the K_e value of oxygen produced from N_2O decomposition was infinity (table 1, experiment 2), because $^{18}O_2$ was not detected. As the K_e value was far from 4, the product O_2 was not in equilibrium. Furthermore, the exchange reaction of oxygen in N_2O with the surface oxygen (step (7)) can be neglected because of the very low ^{18}f value in the outlet N_2O (table 1, experiment 2):

$$N_2^{16}O + {}^{18}O(a) \rightarrow N_2^{18}O + {}^{16}O(a).$$
 (7)

In the case of the Rh catalysts [16,17], all of the surface oxygen was involved in the recombinative desorption of O_2 (the LH mechanism: step (2)). If this is the case, the ¹⁸f of the product oxygen should be the same as that on the surface oxygen (*i.e.*, 0.23). The observed ¹⁸f value (0.13) is quite different from 0.23. If nascent O(a) atoms produced only from $N_2^{16}O$ (step (1)) are desorbed *via* step (2), ¹⁸f of the product O_2 should be zero, which is again quite different from the observed value (0.13).

Therefore, the recombinative desorption of O(a) (step (2)) can be excluded.

In the case of the ER mechanism (*i.e.*, step (3)), the ¹⁸O fraction of the product O_2 should be half the value of that on the surface oxygen. After considering the exchange coefficient ($b_0 = 0.02$), the corrected ¹⁸f value of the product oxygen is 0.12, which is similar to the observed ¹⁸f value. In addition, ¹⁸ O_2 was not produced ($K_e = \infty$) from N_2O decomposition. These experimental results strongly support the ER mechanism (*i.e.*, N_2 ¹⁶O + ¹⁸O(a) $\rightarrow N_2$ + ¹⁶O¹⁸O).

The present result is in contrast to the mechanism of N₂O decomposition over supported Rh catalysts [16,18], where LH-type desorption has been proposed. For some systems such as ion-exchanged Fe-zeolite catalysts, where active sites are isolated, it may be reasonable that the ER mechanism prevails [25]. The active sites of N₂O decomposition over Fe-MFI catalyst may be Fe ion species such as binuclear Fe-oxo species [26–28]. On the other hand, Delahay et al. [29] proposed that mononuclear Fe-oxo species are the most active sites for SCR of N₂O with NH₃. The isotopic study in this work clearly showed that O2 is formed via step (3) (i.e., the ER mechanism) when N₂¹⁶O was pulsed on the ¹⁸O₂-treated Fe-MFI catalyst. The ER mechanism may also prevail during a steady-state N₂O decomposition reaction, although further work is needed in various Fe-zeolite systems.

References

- F. Kapteijn, J. Rodriguez-Mirasol and J.A. Moulijn, Appl. Catal. B 9 (1996) 25.
- [2] S. Kannan and C.S. Swamy, Appl. Catal. B 3 (1994) 109.
- [3] M. Nakamura, H. Mitsuhashi and N. Takezawa, J. Catal. 138 (1992) 686
- [4] J. Wang, H. Yasuda, K. Inumaru and M. Misono, Bull. Chem. Soc. Jpn. 68 (1995) 1226.
- [5] T. Yamashita and A. Vannice, J. Catal. 161 (1996) 254.
- [6] J. Oi, A. Obuchi, G.R. Bamwenda, A. Ogata, H. Yagita, S. Kushiyama and K. Mizuno, Appl. Catal. B 12 (1997) 277.
- [7] K. Yuzaki, T. Yarimizu, S. Ito and K. Kunimori, Catal. Lett. 47 (1997) 173.
- [8] K. Yuzaki, T. Yarimizu, K. Aoyagi, S. Ito and K. Kunimori, Catal. Today 45 (1998) 129.
- [9] G. Centi, L. Dall'Olio and S. Perathoner, J. Catal. 192 (2000) 224.
- [10] X.F. Wang and H.C. Zeng, Appl. Catal. B 17 (1998) 89.
- [11] Y. Li and J.N. Armor, Appl. Catal. B 1 (1992) L21.
- [12] T. Turek, Appl. Catal. B 9 (1996) 201.
- [13] J. Leglise, J.O. Petunchi and W.K. Hall, J. Catal. 86 (1984) 392.
- [14] H. Dandl and G. Emig, Appl. Catal. A 168 (1998) 261.
- [15] C.M. Fu, V.N. Korchak and W.K. Hall, J. Catal. 68 (1981) 166.
- [16] S. Tanaka, K. Yuzaki, S. Ito, S. Kameoka and K. Kunimori, J. Catal. 200 (2001) 203.
- [17] H. Uetsuka, K. Aoyagi, S. Tanaka, K. Yuzaki, S. Ito, S. Kameoka and K. Kunimori, Catal. Lett. 66 (2000) 87.
- [18] S. Tanaka, S. Kameoka, S. Ito, K. Tomishige and K. Kunimori, J. Surf. Sci. Soc. Jpn. 22 (2001) 594.
- [19] J. Valyon, W.S. Millman and W.K. Hall, Catal. Lett. 24 (1994) 215.
- [20] S. Kameoka, T. Suzuki, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and K. Kunimori, Chem. Commun. (2000) 745.

^b The ¹⁸f in the incident pulse measured without the catalyst.

- [21] S. Kameoka, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and K. Kunimori, Phys. Chem. Chem. Phys. 3 (2001) 256.
- [22] T. Nobukawa, K. Kita, S. Tanaka, S. Ito, T. Miyadera, S. Kameoka, K. Tomishige and K. Kunimori, to be published in the Proceedings of the 2nd FEZA (2002).
- [23] T. Voskoboinikov, H.Y. Chen and W.M.H. Sachtler, Appl. Catal. B 19 (1998) 279.
- [24] A. Ozaki, Isotopic Studies of Heterogeneous Catalysis (Kodansha, Tokyo, 1977).
- [25] A.L. Yakovlev, G.M. Zhidomirov and R.A. van Santen, Catal. Lett. 75 (2001) 45.
- [26] H.Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.
- [27] El-M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Catal. 196 (2000) 212.
- [28] P. Marturano, L. Drozdová, A. Kogelbauer and R. Prins, J. Catal. 192 (2000) 236.
- [29] G. Delahay, M. Mauvezin, B. Coq and S. Kieger, J. Catal. 202 (2001)