Photocatalytic decomposition of organic contaminants by Bi₂WO₆ under visible light irradiation

Junwang Tang^{a,*}, Zhigang Zou^{b,c}, and Jinhua Ye^{a,**}

^aEcomaterials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^bEcoenergy and Ecomaterials Center (EEMC), Nanjing University, Nanjing 210093, China

^cPhotoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST),

Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received 26 June 2003; accepted 27 October 2003

An oxide photocatalyst Bi_2WO_6 with corner-shared WO_6 octahedral layered structure was synthesized. Its band gap was determined to be $2.69\,\text{eV}$ from UV-vis diffuse reflectance spectra. The photocatalyst showed not only the activity for photocatalytic O_2 evolution with the initial evolution rate of $2.0\,\mu\text{mol/h}$ but also the activity of mineralizing both CHCl₃ and CH₃CHO contaminants under visible light irradiation. Meanwhile, wavelength dependence of CH₃CHO decomposition was observed, which indicated that the photocatalytic activity of the photocatalyst was in good agreement with its light-absorption ability.

KEY WORDS: Bi₂WO₆ photocatalyst; organic contaminants; visible light irradiation.

1. Introduction

From the viewpoint of the utilization of solar energy, the development of visible light-driven photocatalyst has attracted much attention. Especially in the past 10 years, the scientific interests in the application of photocatalyst have grown exponentially, which involved water splitting and organic contaminants degradation under visible light irradiation [1,2]. Among them, Zou et al. have firstly reported water splitting for H₂ and O₂ evolution in a stoichiometric amount over the NiO_x/In_{0.9}Ni_{0.1}TaO₄ photocatalyst under visible light irradiation [3]. Furthermore, Khan et al. reported the photocatalytic activity of $TiO_{2-x}C_x$ for water splitting with a maximum photoconversion efficiency of 8.35% under visible light irradiation [4]. On the other hand, $TiO_{2-x}N_x$ has been investigated by Asahi et al. as an active photocatalyst for organic contaminants decomposition under visible light irradiation [5].

The above-mentioned photocatalysts showed a high activity for water splitting or organic contaminants decomposition under visible light. However, so far few photocatalysts were reported owning the activity both for water splitting and for organic contaminants decomposition under visible light irradiation except the BiVO₄ photocatalyst. The latter showed the activity of photocatalytic O₂ evolution from water [6] and photocatalytic 4-n-nonylphenol decomposition under visible light irradiation [7]. So the development of a

multifunction photocatalyst for water splitting and organic contaminants decomposition is possible and is very attractive. It was reported that Bi_2WO_6 had a suitable valence band (VB) for photocatalytic O_2 evolution from water under visible light irradiation [8]. Here we are interested in the photocatalytic decomposition of organic contaminants by the Bi_2WO_6 photocatalyst. The photocatalyst was synthesized and the photocatalytic decomposition of both CHCl $_3$ and CH $_3$ CHO contaminants were firstly carried out over the photocatalyst under visible light irradiation in the present work.

2. Experimental

The Bi_2WO_6 photocatalyst was prepared by a solid-state reaction method. The high purity chemicals of Bi_2O_3 and WO_3 were mixed with 1:1 molar ratio in an ethanol solution. The mixture was dried at 353 K for 5 h and sintered at 1173 K for 12h in air. The crystal structure of the samples was determined by the X-ray diffraction (XRD) method using $Cu K\alpha$ radiation (JEOL JDX-3500, Tokyo, Japan). The photophysical property of the photocatalyst was measured by UV–vis spectrometer (UV-2500, Shimadzu, Japan). The surface area of the photocatalysts was determined by BET measurement (Micromeritics-2360, Shimadzu, Japan) on nitrogen adsorption at 77 K after the pretreatment at 573 K for 2 h.

The optical system for the photocatalytic reaction was composed of a 300-W Xe arc lamp, a cutoff filter (providing the visible light of different wavelength) and water filter (removing the IR light irradiation). The

^{*}To whom correspondence should be addressed. Email: tang.junwang@nims.go.jp

^{**}To whom correspondence should be addressed. Email: jinhua.ye@nims.go.jp

filters were placed between the Xe lamp and the reaction cell. The photocatalytic reaction of CHCl₃ decomposition was carried out with 0.5-g powdered Bi₂WO₆ photocatalyst suspended in 100-mL CHCl₃ solution (CHCl₃ concentration: 12 mmol) in a Pyrex glass cell, and the closed reaction system was filled initially with an atmospheric pressure (atm) of air, which was used to oxidize CHCl₃ in the catalytic reaction. The photocatalytic reaction of CH₃CHO decomposition was carried out with 1.5-g powdered Bi₂WO₆ photocatalyst placed at the bottom of a Pyrex glass cell, where the reaction gas was 0.5 atm gaseous mixture that consisted of 837 ppm CH₃CHO, 21% O₂ and Ar balance gas. The photocatalytic reaction for O₂ evolution was conducted with 0.5-g photocatalyst suspended in a 270-mL AgNO₃ solution (5-mmol AgNO₃ was dissolved in 270-mL H_2O) without any cocatalyst.

All experiments were performed at room temperature. The photocatalytic decomposition of organic contaminants was determined by detecting CO_2 in the evolved gas. The photocatalytic splitting of water was determined by detecting O_2 in the evolved gas. The evolved gases were detected by a gas chromatograph with the TCD (GC-8A, Shimadzu, Japan; AC column for CO_2 detection, 5A molecular sieve column for O_2 detection).

3. Results and discussion

The crystal structure of the Bi_2WO_6 photocatalyst was investigated using XRD and the results are shown in figure 1(a). The XRD analysis of the sample showed that the photocatalyst was well crystallized with the orthorhombic structure (space group Pca2₁, a = 0.5437 nm, b = 1.643 nm, c = 0.5458 nm) [9,10]. As shown in figure 2, the orthorhombic structure is

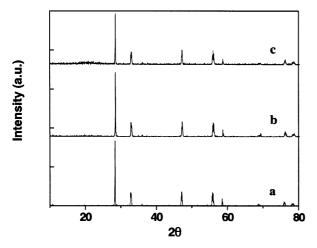


Figure 1. XRD patterns of Bi_2WO_6 before and after the photocatalytic reaction. (a) Before the reaction; (b) after the photocatalytic mineralization of CH_3CHO ; (c) after the photocatalytic mineralization of $CHCl_3$.

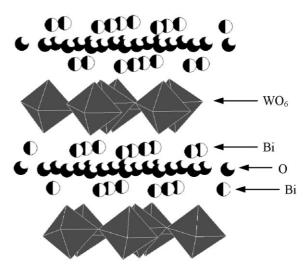


Figure 2. Schematic structure of the Bi₂WO₆ photocatalyst.

constructed by corner-shared WO_6 octahedral layers. Bi atoms layers are sandwiched between WO_6 octahedral layers. Figure 3 represents the UV–vis diffuse reflectance spectra (UV–vis DRS) of the photocatalyst. The steep shape of the spectra indicated that the visible light absorption was not due to the transition from the impurity level but was due to the band-gap transition [11]. The band gap of the photocatalyst was estimated to be 2.69 eV from the onset of the absorption edge. The color of the photocatalyst was yellow, as can be expected from its absorption spectrum.

First, the photocatalytic O_2 evolution from AgNO₃ solution was observed under visible light irradiation ($\lambda > 420 \, \text{nm}$). The initial rate of the O_2 evolution was $2.0 \, \mu \text{mol/h}$ under visible light irradiation, in agreement with the results reported by Kudo *et al.* [8]. With increasing reaction time, evolved O_2 increased greatly. After 10 h, the O_2 evolution rate decreased remarkably, which was probably because the metal Ag from the AgNO₃ sacrificial reagent shielded the incident light and reduced the surface active sites of the photocatalyst [6].



Figure 3. UV-vis diffuse reflectance spectra of Bi₂WO₆.

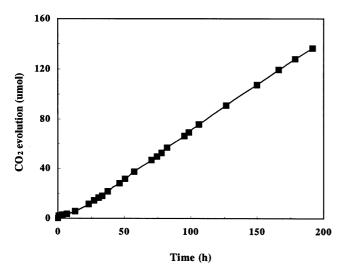


Figure 4. Photocatalytic mineralization of CHCl₃ over Bi_2WO_6 under visible light irradiation ($\lambda > 420\,\mathrm{nm}$) with the initial air pressure of 1 atm. Catalyst: 0.5 g; CHCl₃: 12 mmol; water: 100 mL.

The photocatalytic decomposition of organic contaminants requires that the VB of the photocatalyst must meet the potential level of oxidizing the organic contaminants. The Bi₂WO₆ photocatalyst revealed an activity for O₂ evolution, indicating that its VB is more positive than the O_2/H_2O potential level (1.23 V versus SHE, pH = 0). So, the photocatalyst with a strong oxidizing potential was attempted to decompose organic contaminants. The ideal route to decompose the organics is to mineralize the organics thoroughly, where CO₂ was one of the ultimate products. Figure 4 shows the photocatalytic mineralization of a largely used solvent CHCl₃ under visible light irradiation $(\lambda > 420 \,\mathrm{nm})$ in the neutral solution. The rate of photocatalytic CO₂ evolution was low at the beginning in figure 4, which was named as the induction period of CO₂ evolution. This process was possibly attributed to the fact that the reactant was firstly converted to intermediates and then to CO2, or that the yielded CO₂ was firstly dissolved in water and then emitted to the gaseous environment; whereas it was obvious that CO₂ concentration increased linearly with the reaction time except for the initial 10h. This meant that the photocatalytic mineralization rate of CHCl₃ over Bi₂WO₆ kept stable within the total reaction time. To our knowledge, this is the first report of the photocatalytic mineralization of CHCl3 under visible light irradiation, although there were many relevant works reported under UV light irradiation [12,13].

Figure 5 represents the photocatalytic mineralization of CH₃CHO over the Bi₂WO₆ photocatalyst under visible light irradiation ($\lambda > 440 \text{ nm}$), in which the CO₂ yield (%) was calculated as follows:

$$CO_2(\%) = \frac{M_c}{M_i} \times 100$$

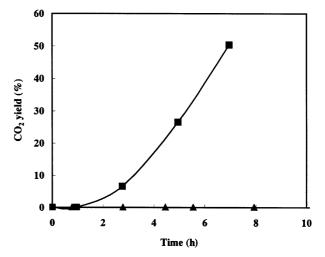


Figure 5. Photocatalytic mineralization of CH_3CHO over Bi_2WO_6 as well as the blank experiment under visible light irradiation ($\lambda > 440 \, \mathrm{nm}$). Catalyst: 1.5 g; gaseous mixture consisted of 837 ppm CH_3CHO , 21% O_2 and Ar balance gas. Bi_2WO_6 (\blacksquare); blank experiment (\blacktriangle)

where M_c was the evolved CO_2 (mol) and M_i was the theoretical value of CO₂ formed when CH₃CHO was decomposed totally (mol); namely, if the CO₂ yield is 100%, it means that CH₃CHO is mineralized thoroughly. As a comparison, the blank experiment (without any photocatalyst) was carried out at the same experimental condition. The results are also shown in figure 5. It was evident that there was also an induction period in the photocatalytic reaction. Meanwhile, Bi₂WO₆ revealed a very remarkable activity under visible light irradiation ($\lambda > 440 \,\mathrm{nm}$), while no activity was observed when there was no photocatalyst at the same condition. Asahi et al. reported that TiO₂ (anatase), a well-known good photocatalyst under UV light, had a negligible activity for CH₃CHO decomposition under the visible light irradiation ($\lambda > 436 \,\mathrm{nm}$) [5]. Apparently, the activity of the present Bi₂WO₆ photocatalyst is very attractive compared to TiO2 (anatase) under visible light irradiation.

To investigate the wavelength dependence of the contaminants decomposition over the photocatalyst, which is often used to identify whether a reaction is driven by light irradiation, CH₃CHO conversion to CO₂ was observed with light wavelength variation from full arc to 440 nm (figure 6). The results showed that CO₂ yield decreased relevantly with the increasing of the light wavelength, and the wavelength dependence of CH₃CHO decomposition was in good agreement with the UV-vis DRS of the photocatalyst, indicating that the catalytic reaction was driven by light irradiation. From these results in figures 5 and 6, it is easily seen that CH₃CHO can be mineralized photocatalytically over the Bi₂WO₆ photocatalyst under visible light irradiation. To our knowledge, it is also the first time to report the photocatalytic mineralization of CH₃CHO over a non-TiO2 and non-ZnO-based photocatalyst

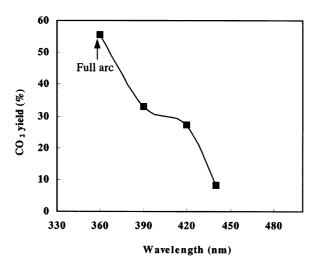


Figure 6. Dependence of CH₃CHO conversion to CO₂ on light wavelength over the Bi₂WO₆ photocatalyst after the photocatalytic reaction for 3 h

under visible light irradiation [5,14]. The crystal structures of the Bi₂WO₆ photocatalyst were checked again after the photocatalytic reactions of organic contaminants mineralization and the XRD patterns are represented in figure 1(b) and (c). The analysis of the XRD patterns of the sample before and after the photocatalyst did not change. So, the photocatalyst was stable in the present photocatalytic reactions.

It is well known that extending the light-absorption region of the photocatalyst and increasing the surface area of the photocatalyst are two of the most important ways to increase the activity of the catalyst. The former is relevant to the electronic structure of the catalyst. The latter is involved in the preparation process of the photocatalyst. BET measurement showed that the surface area of the Bi₂WO₆ photocatalyst was 0.64 m²/g, which is only about 1% of the P-25 (49.41 m²/g) photocatalyst. This suggested that much higher efficiency of the photocatalyst could be expected from increasing surface area. We are focusing on promoting the photocatalytic activity of the photocatalyst by increasing the

surface area of the photocatalyst and modifying the photocatalyst.

In conclusion, we have firstly observed that the Bi_2WO_6 photocatalyst owns activity in mineralizing both CHCl₃ and CH₃CHO to CO₂ under visible light irradiation, in addition to the previously reported photocatalytic O₂ evolution from AgNO₃ solution by Kudo. The activity of the photocatalyst showed obvious wavelength dependence, which is consistent with the light-absorption property of the photocatalyst. The photocatalyst was also found to be stable during the whole photocatalytic reaction. All these indicated that Bi_2WO_6 is a potential candidate for the practical application in environmental purifications in or outdoors, as long as the activity is enhanced sufficiently by increasing the surface area of the photocatalyst.

References

- [1] M.R. Hoffman, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995) 69.
- [2] A. Mills, R.H. Davies and D. Worsley, Chem. Soc. Rev. 22 (1993) 417.
- [3] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 414 (2001) 625.
- [4] S.U.M. Khan, M. Al-Shahry Jr. and W.B. Ingler, Science 297 (2002) 2243.
- [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293 (2001) 269.
- [6] A. Kudo, K. Omori and H. Kato, J. Am. Chem. Soc. 121 (1999) 11459
- [7] S. Kohtani, S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, T. Matsunaga, O. Nikaido, K. Hayakawa and R. Nakagaki, Chem. Lett. 7 (2002) 660.
- [8] A. Kudo and S. Hijii, Chem. Lett. (1999) 1103.
- [9] K.S. Knight, Mineralog. Mag. 56 (1992) 399.
- [10] R. Rangel, P. Bartolo-perez, A. Gomez-cortes, G. Diaz, S. Fuentes and D.H. Galvan, J. Mater. Synth. Proces. 9(4) (2002) 207.
- [11] A. Kudo, I. Tsuji and H. Kato, Chem. Commun. (2002) 1958.
- [12] P. Calza, C. Minero and E. Pelizzetti, J. Chem. Soc., Faraday Trans. 93(21) (1997) 3765.
- [13] Z. Zhang, C. Wang, R. Zakaria and J.Y. Ying, J. Phys. Chem. B 102 (1998) 10871.
- [14] D. Li and H. Haneda, J. Photochem. Photobiol., A: Chem. 155 (2003) 171.