CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Supporting Information

for

Synthesis of Macrocyclic Heptaoxazole, A Potent G-Quadruplex Binder

Masayuki Tera, Keisuke Iida, Hiromichi Ishizuka, Motoki Takagi, Masami Suganuma, Takayuki Doi, Kazuo Shin-ya, and Kazuo Nagasawa*

Table of Contents:

1. General	S2
2. Synthesis of 7OTD (6-14)	S3-S10
3. Copies of NMR spectra of compounds (6-14)	S11-S25
4. CD experiment	S26-S27
5. EMSA	S28
6. PCR stop assay	S29
7. MTT assay	S30

General

Flash chromatography was performed on Silica gel 60 (spherical, particle size 0.040 ~ 0.100 µm; Kanto). Optical rotations were measured on a JASCO DIP 1000 polarimeter, using the sodium D line. ¹H and ¹³C NMR spectra were recorded on JEOL JNM-ECX 400. The spectra are referenced internally according to residual solvent signals of CDCl₃ (1 H NMR; d = 7.26 ppm, 13 C NMR; d = 77.0 ppm), CD₃OD (1 H NMR; d = 3.30 ppm, ¹³C NMR; d = 49.0 ppm), (CD₃)₂SO (¹H NMR; d = 2.50 ppm, ¹³C NMR; d = 39.5 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; m, multiplet; br, broad), integration, coupling constant (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectra were recorded on JEOL JMS-T100X spectrometer with ESIMS mode using methanol as solvent. CD spectra were recorded on a JASCO-810 spectropolarimeter (Jasco, Easton, MD) using a guartz cell of 1-mm optical path length and an instrument scanning speed of 100 nm/min with a response time of 1 s, and over a wavelength range of 200-320 nm. Fluorescence was scanned with a phosphorimager (Typhoon 8600, Molecular Dynamics). All oligonucleotides purified were obtained from Sigma Genosys and dissolved in double-distilled water to be used without further purification.

Synthesis of L1H1-7OTD (6) and L1A1-7OTD (14).

Scheme S1. Synthesis of L1H1-7OTD (**6**) and L1A1-7OTD (**14**). a) $Pd(OH)_2/C$, H_2 , THF/MeOH; b) $LiOH \bullet H_2O$, THF/H_2O ; c) DMT-MM, NMM, THF/H_2O , 91% from **7** and **8**; d) $LiOH \bullet H_2O$, THF/H_2O ; e) $Pd(OH)_2/C$, H_2 , THF/MeOH; f) Et^iPr_2N , DMAP, DPPA, DMF/CH $_2CI_2$, 3 mM, 79% from **9**; g) $HF \bullet py$, THF; h) MsCI, Et_3N , CH_2CI_2 then DBU, 96% from **10**; i) NBS, Cs_2CO_3 , MeCN, 65 °C, 31%; j) TFA, $CHCI_3$, 96%; k) Ac_2O , CH_2CI_2 , 64%.

Bis-trioxazole \$1

Synthesis of **S2**: To a solution of trioxazole **7** (1.07 g, 1.80 mmol) in THF-H₂O (3:1, 30 mL), was added LiOH (98.2 mg, 2.34 mmol) at 0 °C. After stirring at room temperature for 45 min, Dowex[®] 50WX4 ion-exchange resign was added. The resulting mixture was filtered through a cotton with MeOH, to give carboxylic acid **S2** solution, which was used without further purification. TLC $R_f = 0.1$ (3:2:1 CHCl₃/EtOAc/MeOH)

Synthesis of **S3**: to a solution of trioxazole **8** (1.02 g, 1.80 mmol) in MeOH-THF (1:1, 30 mL) was added 20% Pd(OH)₂/C (30 mg) and the reaction mixture was stirred at room temperature under an atmosphere of hydrogen gas (balloon). After 14 h, CHCl₃ (10 mL) was added to the reaction mixture and was filtered through a pad of celite and eluted with CHCl₃-MeOH (1:1). The solution was concentrated in vacuo to give amine **S3**, which was used without further purification. TLC $R_f = 0.6$ (CHCl₃/EtOAc/MeOH 3:2:1)

Synthesis of **S1**: to a solution of carboxylic acid **S2** in THF-H₂O-MeOH (3:1:1), was added the amine **S3**, NMM (400 μ L, 3.60 mmol), and DMT-MM (986 mg, 3.60 mmol), and the mixture was stirred at room temperature. After stirring for 25 h, the reaction mixture was concentrated and the resulting mixture was extracted with CHCl₃. The organic layer was washed with 0.1 N HCl and H₂O, dried over MgSO₄, filtrated and concentrated in vacuo. The residue was purified on silica gel (CHCl₃-

AcOEt-MeOH = 3:2:1) to give bis-trioxazole S1 (1.64 g, 91%, 3 steps). TLC R_f = 0.8 (CHCl₃/EtOAc/MeOH 3:2:1)

Spectral data for **S1**: $[\alpha]_D^{25} = 11.9$ (c 1.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) d 8.43 (s, 1H), 8.32 (m, 5H), 7.85 (d, J = 8.7Hz, 1H), 7.35 (m, 5H), 5.56 (m, 2H), 5.12 (s, 2H), 5.03 (m, 1H), 4.56 (br, 1H), 4.23 (dd, J = 4.2, 10.2 Hz, 1H), 4.08 (dd, J = 4.8 10.2 Hz, 1H), 3.95 (s, 3H), 3.10 (br, 2H), 2.03 (br, 1H), 1.95 (m, 1H), 1.40 (m, 13H), 0.84 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) d 165.5, 163.4, 161.2, 159.9, 156.0, 155.8, 155.4, 154.4, 143.9, 141.6, 139.7, 139.6, 139.3, 139.1, 136.7, 136.0, 134.4, 130.9, 130.8, 128.5, 128.2, 128.15, 79.2, 67.2, 64.1, 52.3, 49.3, 49.26, 39.8, 35.5, 29.5, 28.4, 25.7, 22.3, 18.1, -5.6; HRMS (ESI, M+Na) calcd for $C_{47}H_{55}N_9O_{14}SiNa$ 1020.3535, found 1020.3498.

Macrocyclic bisamide 10

To a solution of bis-trioxazole S1 (310 mg, 0.311 mmol) in MeOH/THF (1:1, 30 mL), and 20% Pd(OH)₂/C (15 mg) was added. The mixture was stirred at room temperature under hydrogen (balloon) for 3 h. The reaction mixture was filtered through a pad of Celite and the filtrates were concentrated in vacuo to give amine. The crude amine was dissolved in THF-H₂O (3:1, 10 mL) and lithium hydroxide (23.5 mg, 0.560 mmol) was added at 0 °C and was stirred at room temperature for 0.5 h. To the re-

action mixture was added Dowex[®] 50WX4 ion-exchange resign. The resulting mixture was filtered through a cotton with MeOH, and the filtrates were concentrated in vacuo to give amino acid. To a solution of the crude amino acid in DMF-CH₂Cl₂ (1:2, 100 mL) was added DMAP (179 mg, 1.47 mmol), diisopropylethylamine $(250 \mu L)$, 1.47 mmol), and DPPA (320 μL , 1.47 mmol). The resulting mixture was stirred for another 3 days at room temperature. To the reaction mixture was added $(150 \mu L)$ 0 and the organic layer was extracted with AcOEt. The extracts were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column (AcOEt-MeOH = 100:1) to give 9 as a pale yellow solid (179 mg, 69%, 3 steps). TLC $(150 \mu L)$ 1 CHC $(150 \mu L)$ 2 (1:2, 1.2)

Spectral data for **9**: $[\alpha]^{25}_D = 22.1$ (*c* 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) *d* 8.54 (d, J = 7.3 Hz, 1H), 8.50 (d, J = 7.3 Hz, 1H), 8.23-8.19 (m, 6H), 5.42 (m, 2H), 4.17 (dd, J = 4.6, 9.6 Hz, 1H), 3.97 (dd, J = 6.4, 9.6 Hz 1H), 3.06 (br, 2H), 2.30 (m, 1H), 2.09 (m, 1H), 2.00 (m, 1H), 1.48 (m, 13H), 0.81 (s, 9H), 0.00 (s, 3H), -0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) *d* 164.7, 163.8, 159.9, 159.8, 156.1, 156.0, 155.9, 154.6, 140.9, 139.2, 138.4, 138.3, 136.9, 136.8, 130.9, 129.8, 129.6, 79.0, 64.5, 50.2, 47.9, 40.3, 34.5, 29.7, 29.5, 28.4, 25.7, 21.9, 18.2, -5.56; HRMS (ESI, M+Na) calcd for C₃₈H₄₅N₉O₁₁Na 854.2906, found854.2910.

Macrocyclic bisamide 10

To a solution of **9** (228 mg, 0.275 mmol) in dry THF (40 mL), was added HF•py (1.6 mL) and the mixture was stirred for 2 h. To the reaction mixture was added NaHCO₃aq and the organic layer was extracted with AcOEt. The residue was purified by silica gel column (30:20:1 CHC $\frac{1}{6}$ /AcOEt/MeOH) to give **10** as a white solid (198 mg, 99%). TLC $R_f = 0.5$ (CHC $\frac{1}{6}$ /EtOAc/MeOH 3:2:1).

Spectral data for **10**: $[\alpha]^{25}_D$ –3.1 = (c 2.1, CHCl₃:MeOH = 3:1); ¹H NMR (400 MHz, [D₆]DMSO) d 9.13 (s, 1H), 9.12 (s, 1H), 9.11 (s, 1H), 9.10 (s, 1H), 8.94 (s, 1H), 8.92 (s, 1H), 8.37 (d, J = 7.3 Hz, 1H), 8.31 (d, J = 7.3 Hz, 1H), 6.79 (t, J = 5.5 Hz, 1H), 5.42 (dt, J = 5.5, 6.9 Hz, 1H), 5.36 (dt, J = 3.7, 6.9 Hz, 1H), 5.29 (t, J = 6.4 Hz, 1H), 3.91 (m, 2H), 2.83 (m, 2H), 2.07 (br, 1H), 1.90 (br, 1H), 1.32-1.28 (br, 12H), 1.05 (br, 1H); ¹³C NMR (100 MHz, DMSO d-6) d 164.5, 163.3, 158.7, 155.8, 155.7, 154.5, 142.5, 141.9, 141.1, 129.8, 128.5, 128.4, 79.1, 77.2, 61.9, 50.5, 47.5, 33.2, 29.1, 28.1, 21.0; HRMS (ESI, M+H) calcd for C₃₂H₃₁N₉O₁₁Na 740.2041, found 740.2027.

Enamide 11

To a solution of **10** (198 mg, 0.275 mmol) in CH₂Cl₂ (60 mL), was added Et₈N (300 μ L, 2.75 mmol), MsCl (110 μ L, 1.38 mmol), and the mixture was stirred for 1 h at room temperature. To the reaction mixture, was added DBU (420 μ L, 2.75 mmol), the mixture was stirred for another 1 h at room temperature. To the reaction mixture was added 0.05 N HCl and the organic layer was extracted with AcOEt, dried over MgSO₄, filtered, and concentrated in vacuo. The residue was chromatographed on silica gel (CHCl₃/AcOEt/MeOH 3:2:1) to give Enamide **11** as a white solid (186 mg, 97%).). TLC $R_f = 0.7$ (CHCl₃/EtOAc/MeOH 3:2:1)

Spectral data for **11**: $[\alpha]^{25}_D = -5.3$ (*c* 1.8, CHCl₃/MeOH 2:1); ¹H NMR (400 MHz, CDCl₃) *d* 9.72 (s, 1H), 8.63 (d, 1H, J = 7.2 Hz), 8.28 (m, 6H), 6.81 (s, 1H), 5.89 (s, 1H), 5.40 (dt, 1H, J = 5.5, 7.2 Hz), 4.58 (br, 1H), 3.04 (br, 2H), 2.15 (br, 1H), 1.95 (br, 1H), 1.42 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) *d* 165.7, 159.8, 159.4, 159.0, 156.1, 155.9, 155.8, 154.7, 154.6, 141.8, 140.8, 139.8, 139.5, 138.9, 138.5, 137.3, 136.9,

131.0, 130.9, 130.5, 129.6, 128.0, 104.7, 79.0, 48.0, 40.3, 34.1, 29.5, 28.3, 21.6; HRMS (ESI, M+Na) calcd for $C_{32}H_{29}N_9O_{10}Na$ 722.1935, found 722.1935.

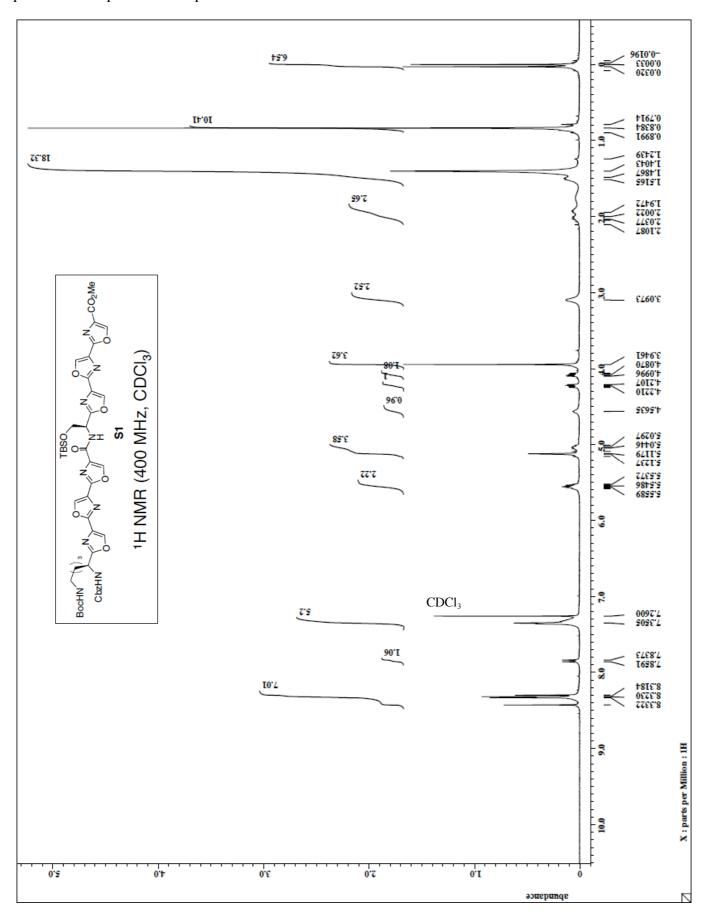
Heptaoxazole 13

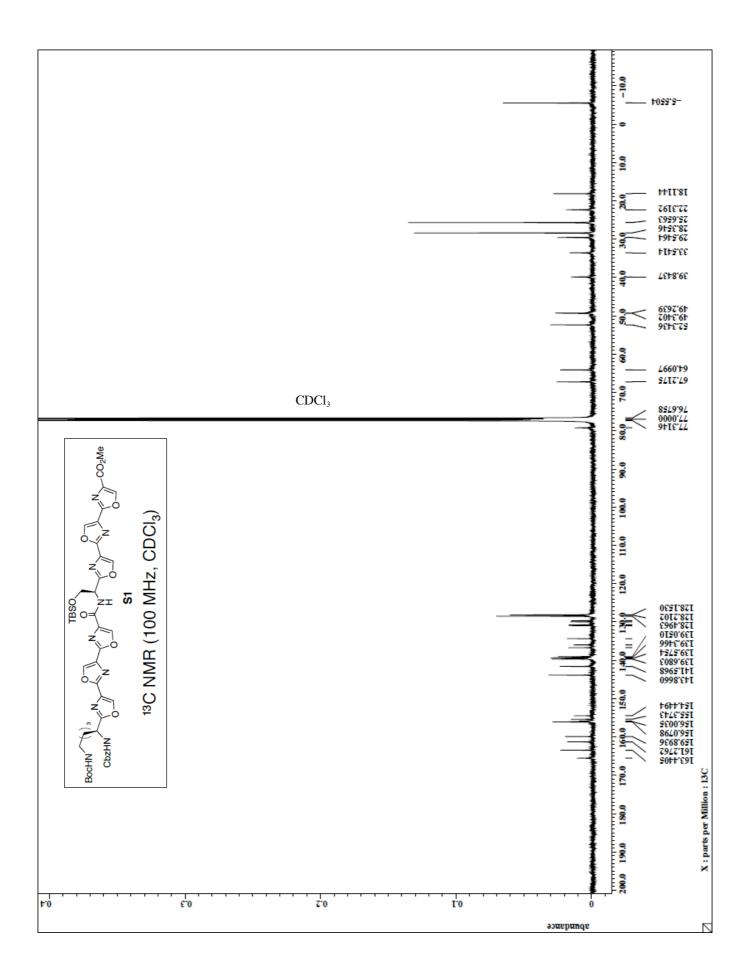
To a solution of **11** (25.3 mg, 36.0 µmol) in MeCN (10 mL), was added Cs_2CO_3 (58.6 mg, 0.18 mmol), *N*-bromosuccineimide (7.0 mg, 0.40 mmol) at room temperature and was heated to 65 °C. After 14 h, the reaction mixture was filtered through a pad of celite and eluted with CHCl₃. The residue was purified by silica gel (CHCl₃/AcOEt/MeOH 3:2:1) to give heptaoxazole **13** as a pale yellow solid (9.0 mg, 36%). TLC $R_f = 0.2$ (CHCl₃/EtOAc/MeOH 3:2:2).

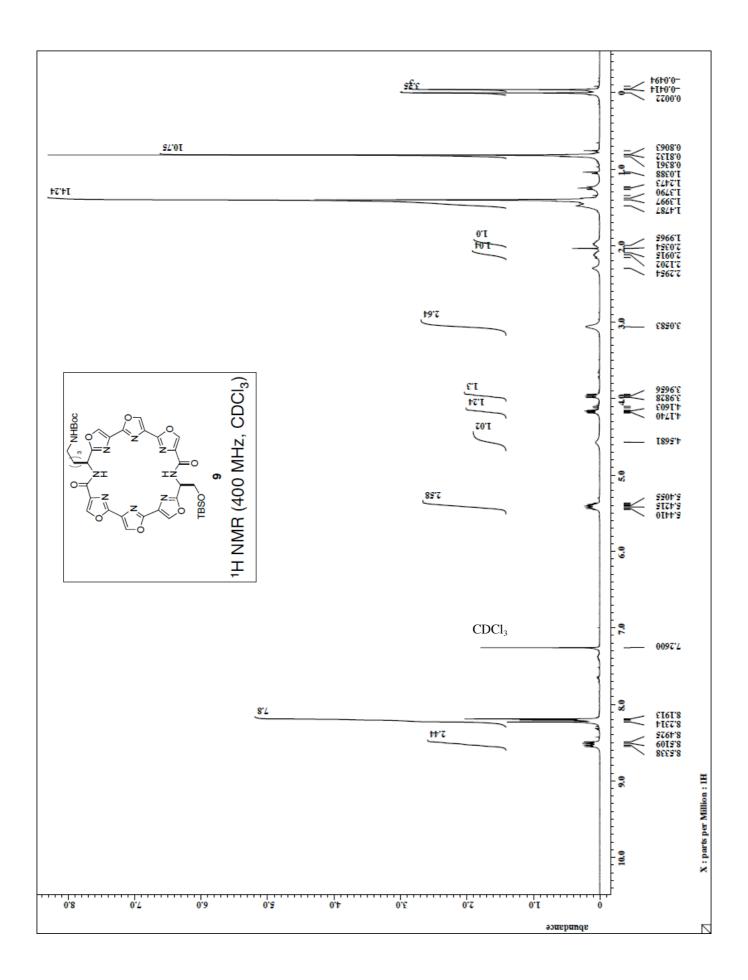
Spectral data for **12**: ¹H NMR (400 MHz, [D₆]DMSO) d 9.08 (s, 1H), 9.04 (s, 1H), 9.03 (s, 1H), 9.02 (s, 1H), 8.92 (s, 1H), 8.87 (s, 1H), 8.52 (br, 1H), 6.81 (t, J = 5.0 Hz, 1H), 5.40 (dt, J = 5.5, 6.9 Hz, 1H), 4.83 (d, J = 10 Hz, 1H), 4.72 (d, J = 10 Hz, 1H), 2.82 (m, 2H), 2.48 (m, 4H), 2.00 (br, 1H), 1.88 (br, 1H), 1.32-1.27 (br, 13H); HRMS (ESI, M+Na) calcd for $C_{36}H_{32}N_{10}O_{12}Na$ 819.2098, found 819.2092. TLC R_f = 0.6 (CHCl₃/EtOAc/MeOH 3:2:2).

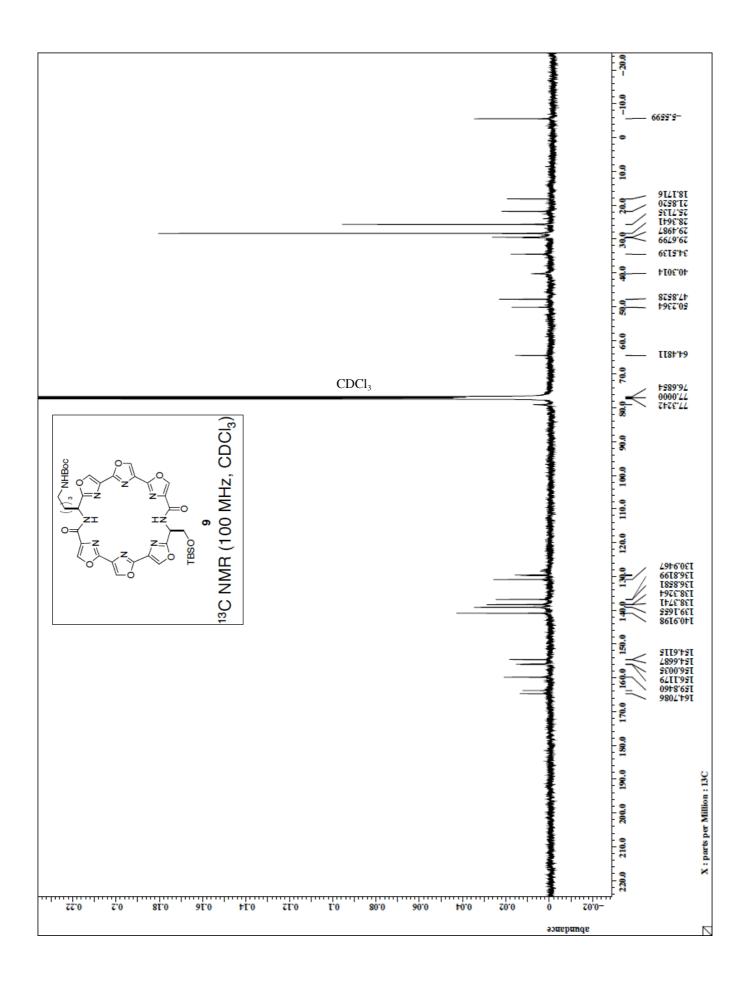
Spectral data for **13**: $[\alpha]_D^{25} = 14.1$ (*c* 0.3, MeOH); ¹H NMR (400 MHz, DMSO d-6) *d* 9.00 (s, 1H), 8.95 (s, 1H), 8.94 (s, 1H), 8.90 (s, 1H), 8.86 (s, 1H), 8.85 (s, 1H), 8.82 (s, 1H), 8.44 (br, 1H), 6.73 (dd, J = 5.0, 6.0 Hz, 1H), 5.45 (br, 1H), 2.76 (dt, J = 5.0, 5.9 Hz, 2H), 1.98 (br, 1H), 1.83 (br, 1H), 1.26 (br, 13H); ¹³C NMR (100 MHz, CD₃OD) *d* 165.5, 161.6, 158.4, 157.9, 157.5, 157.3, 156.2, 144.5, 142.4, 142.3, 142.0, 141.2, 140.3, 139.8, 137.7, 131.4, 130.8, 130.6, 130.0, 79.7, 40.9, 35.0, 30.6, 28.7, 22.5; HRMS (ESI, M+Na) calcd for $C_{32}H_{27}N_9O_{10}Na$ 720.1779, found 720.1773.

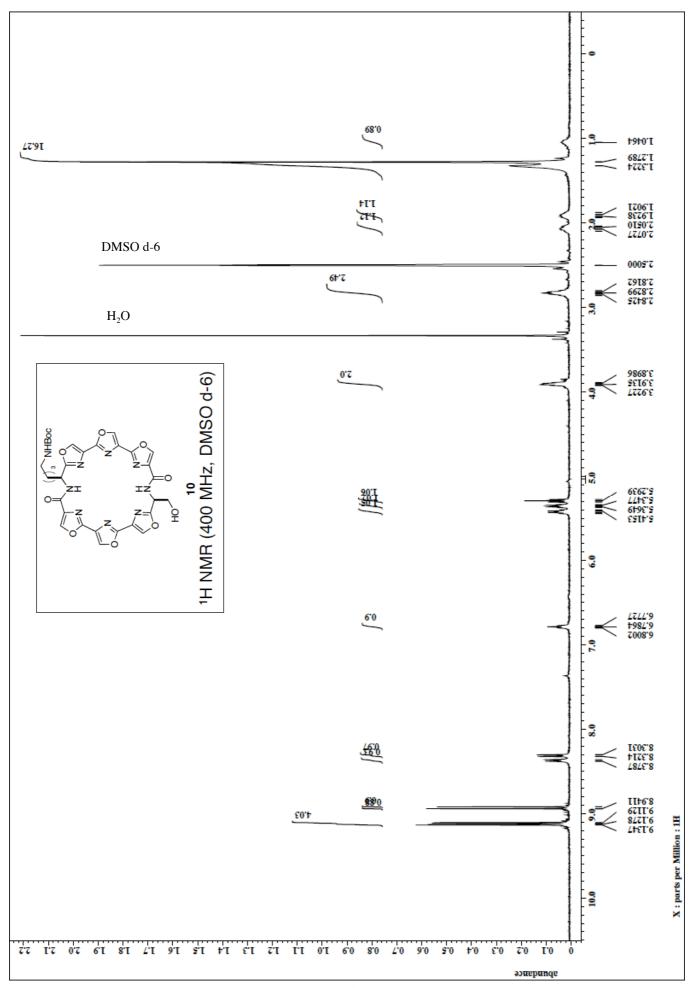
L1H1-7OTD (6)

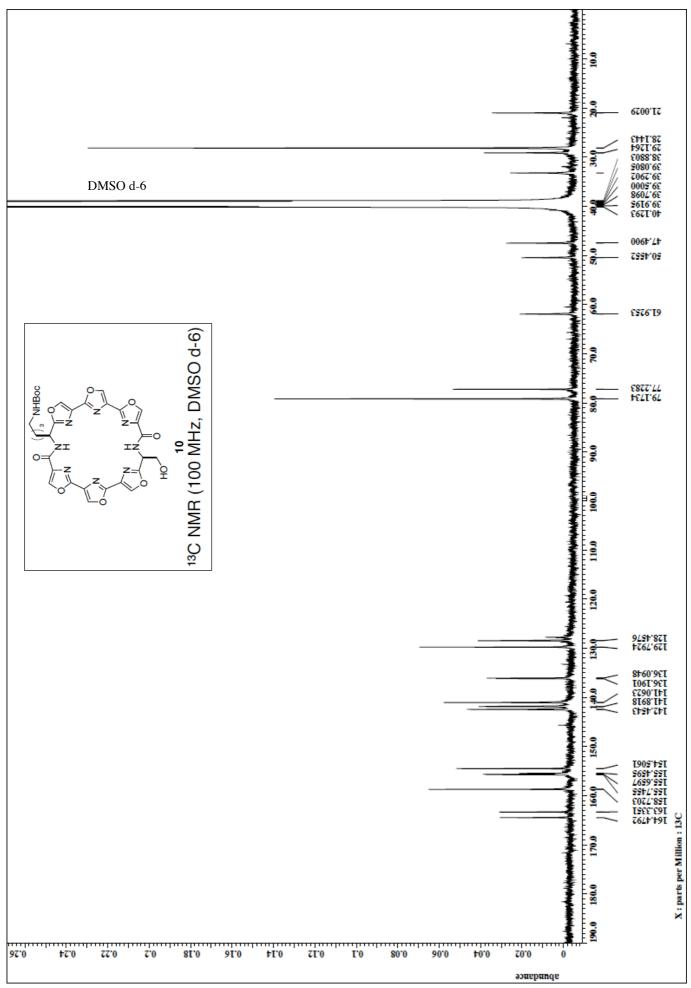

To a solution of **13** (31.0 mg, 44.4 μ mol) in CHCl₃ (9.5 mL), was added TFA (0.5 mL) and the mixture was stirred for 24 h. The reaction mixture was concentrated in vacuo to give L1H1-7OTD (**6**) as a white solid (27.0 mg, 99%).

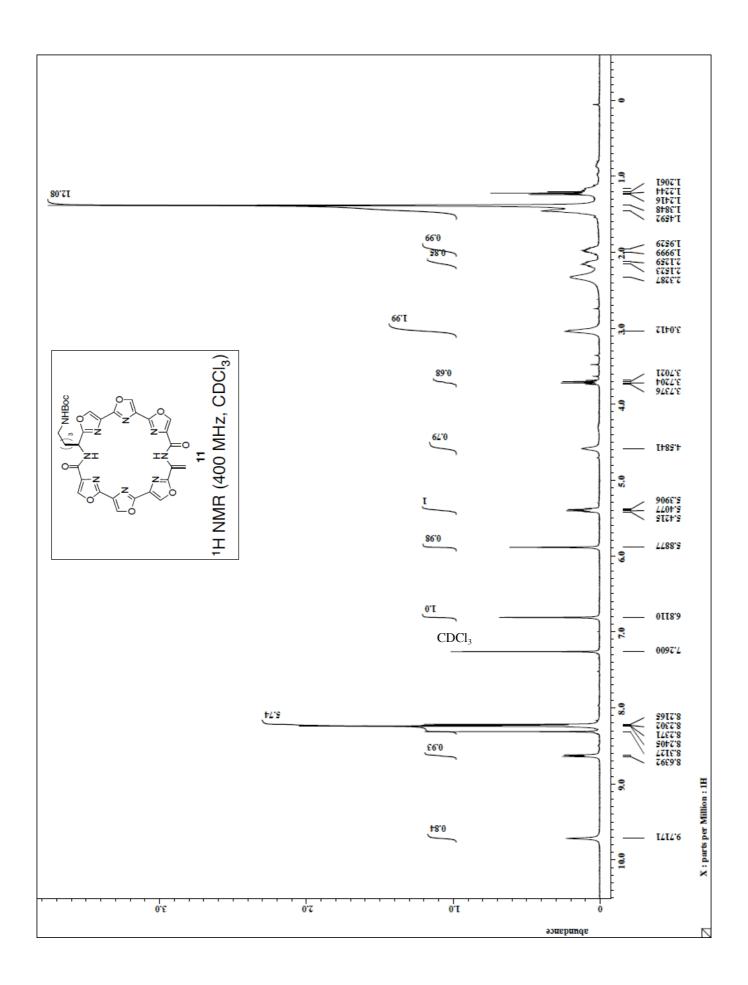

Spectral data for L1H1-7OTD (6): $[\alpha]_D^{25} = -77.2$ (*c* 0.9, MeOH); ¹H NMR (400 MHz, $[D_6]$ DMSO) *d* 8.97 (s, 1H), 8.93 (s, 1H), 8.86 (s, 1H), 8.83 (br, 2H), 8.71 (s, 1H), 8.66 (s, 1H), 8.06 (br, 2H), 7.62 (br, 1H), 5.33 (dt, J = 4.6, 5.5 Hz, 1H), 3.22 (br, 2H), 2.06 (m, 1H), 1.70 (br, 3H), 1.24 (br, 1H), 0.91 (br, 1H); ¹³C NMR (100 MHz, DMSO d-6) *d* 163.1, 158.6, 155.7, 155.3, 155.2, 154.8, 154.2, 142.8, 142.6, 140.9, 140.8, 140.6, 140.4, 139.9, 139.7, 139.1, 139.0, 138.7, 138.5, 135.7, 129.4, 128.8, 128.7, 128.6, 127.9, 47.8, 47.6, 32.4, 26.5, 19.5; HRMS (ESI, M+H) calcd for $C_{27}H_{20}N_9O_8$ 598.1435, found 598.1467.

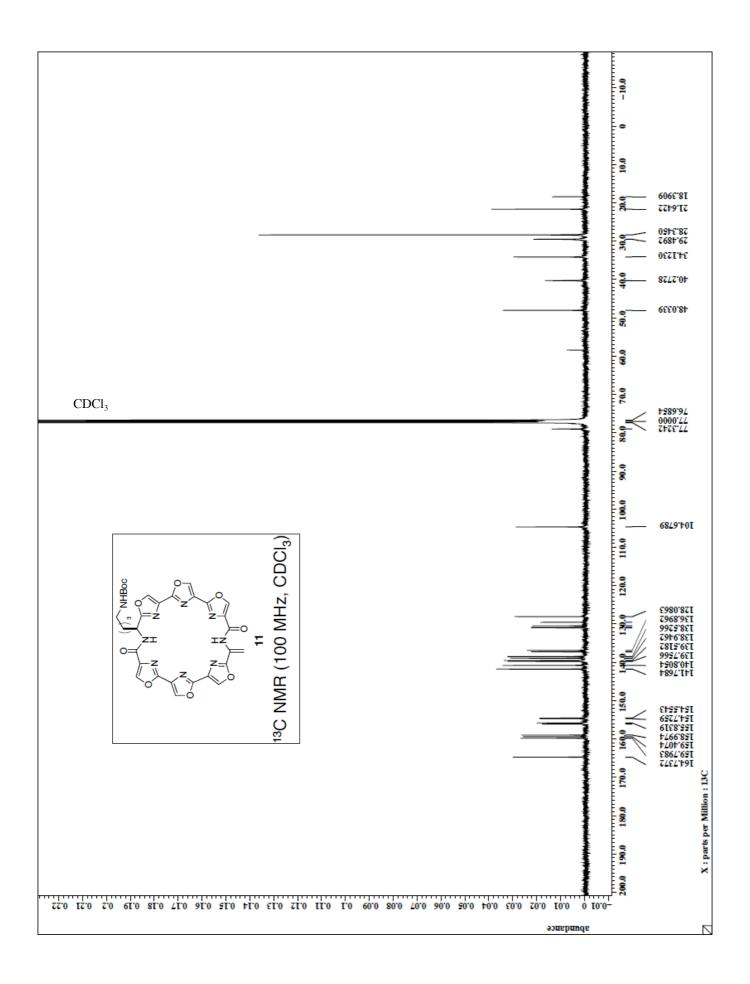

L1A1-7OTD (14)

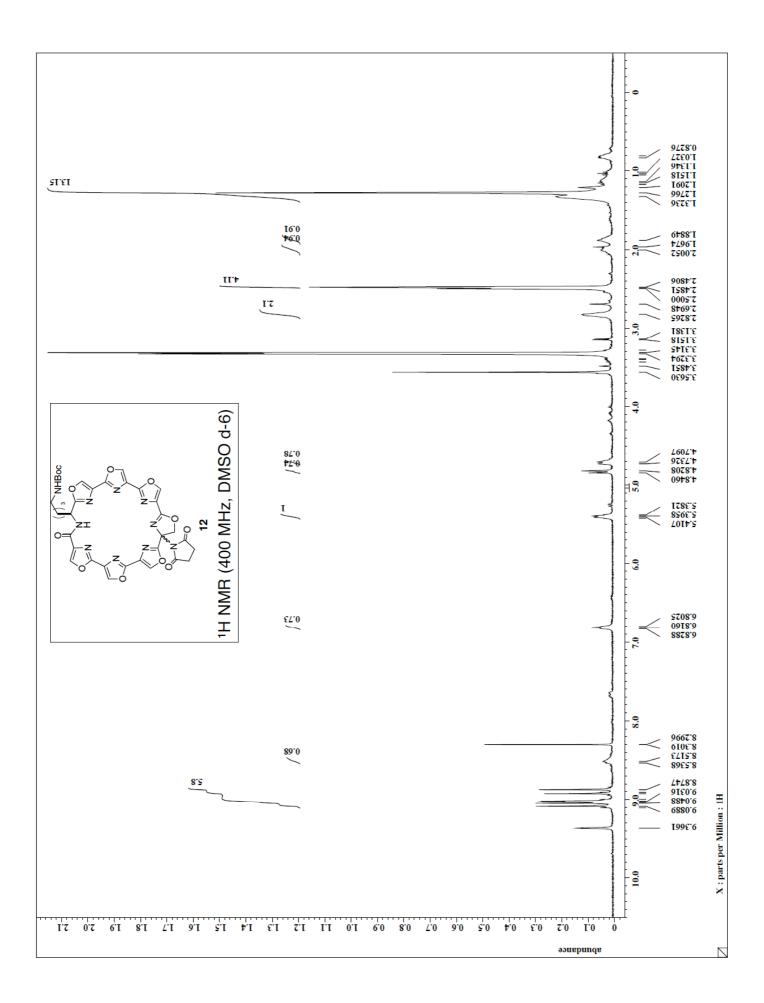

To a solution of **6** (18.0 mg, 30.1 μ mol) in CH₂Cl₂ (2 mL) was added Ac₂O (1 mL) and the reaction mixture was stirred at 70 °C. After 13 h, the reaction mixture was concentrated in vacuo and the residue was chromatographed on silica gel (CHCl₃/MeOH 3:2) to give L1A1-7OTD (**14**) as a brown powder (11.5 mg, 64%). TLC $R_f = 0.1$ (CHCl₃/EtOAc/MeOH 3:2:2).

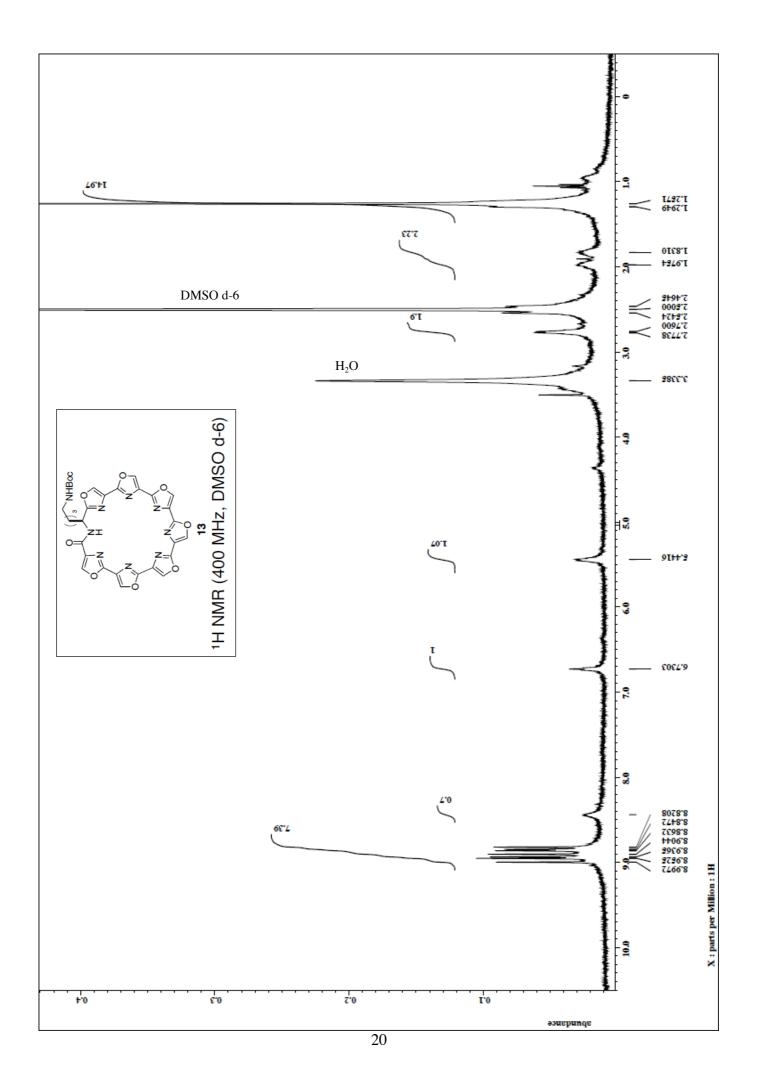

Spectral data for L1A1-7OTD (**14**): $[\alpha]_D^{25} = 1.3$ (*c* 1.2, CHCl₃:MeOH = 5:1); ¹H NMR (400 MHz, $[D_6]$ DMSO) *d* 8.97 (s, 1H), 8.94 (s, 1H), 8.90 (s, 1H), 8.88 (s, 1H), 8.82 (s, 1H), 8.81 (m, 2H), 8.47 (d, J = 7.0 Hz, 1H), 7.76 (t, J = 5.2 Hz, 1H), 5.43 (dt, J = 5.5, 7.0 Hz, 1H), 2.88 (dt, J = 5.2, 6.5 Hz, 2H), 1.96 (m, 1H), 1.84 (m, 1H), 1.67 (s, 3H), 1.28 (br, 3H), 1.00 (br, 1H); ¹³C NMR (100 MHz, DMSO d-6) *d* 168.8, 163.8, 159.4, 155.7, 155.6, 155.4, 155.3, 155.2, 154.4, 143.2, 140.7, 139.7, 138.9, 138.5, 136.4, 129.8, 129.4, 129.3, 129.2, 128.5, 47.6, 38.2, 33.7, 28.6, 22.5, 21.3; HRMS (ESI, M+Na) calcd for $C_{29}H_{21}N_9O_9Na$ 662.1360, found 662.1343.

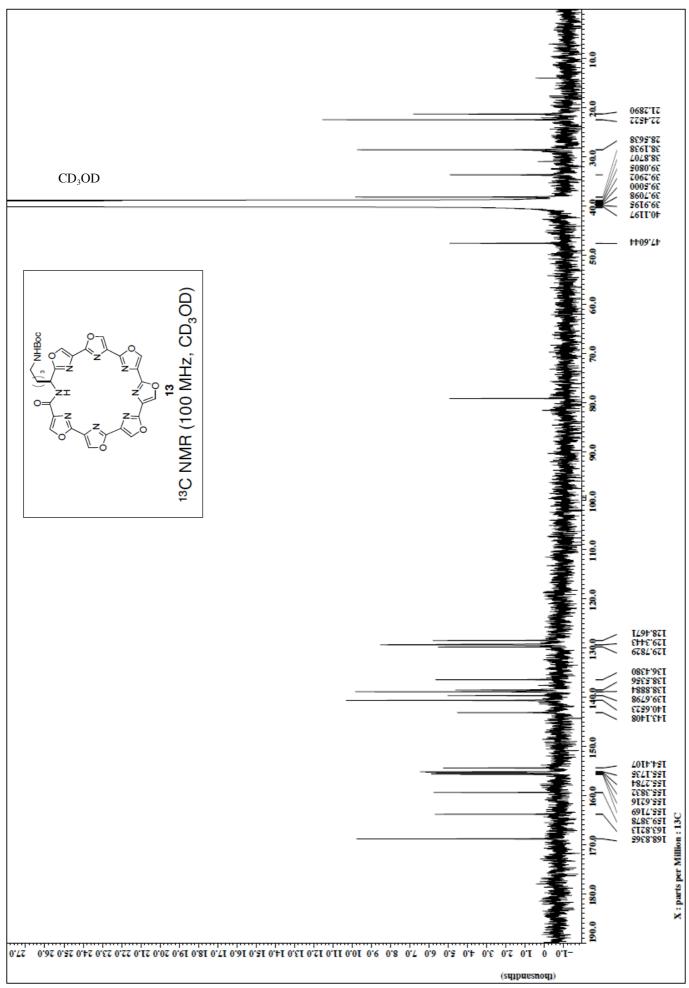


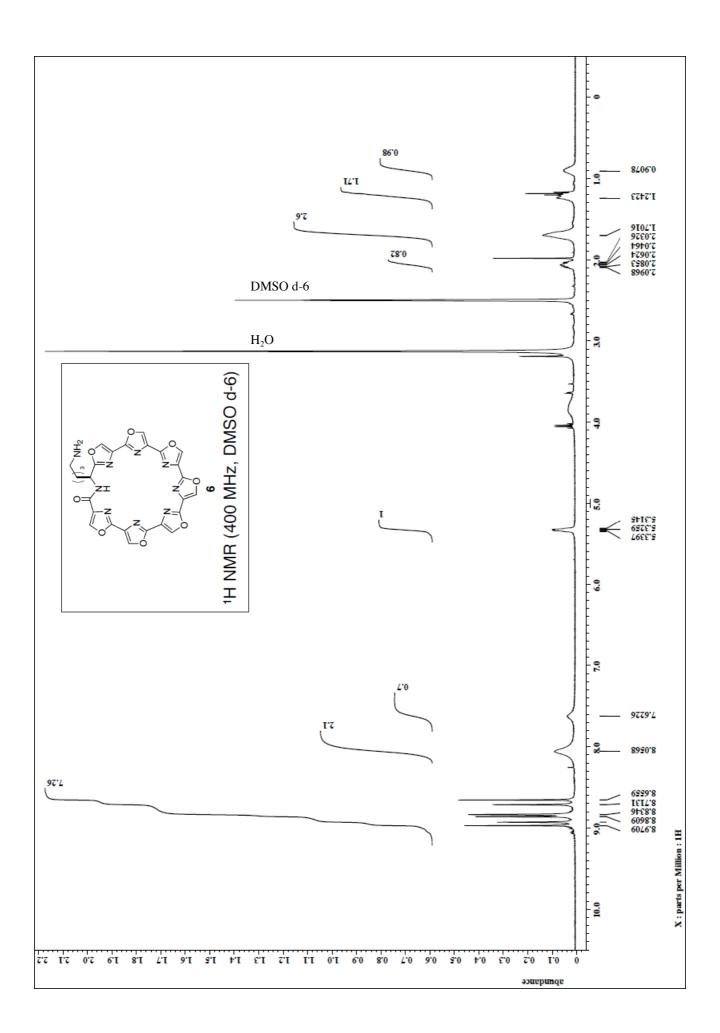


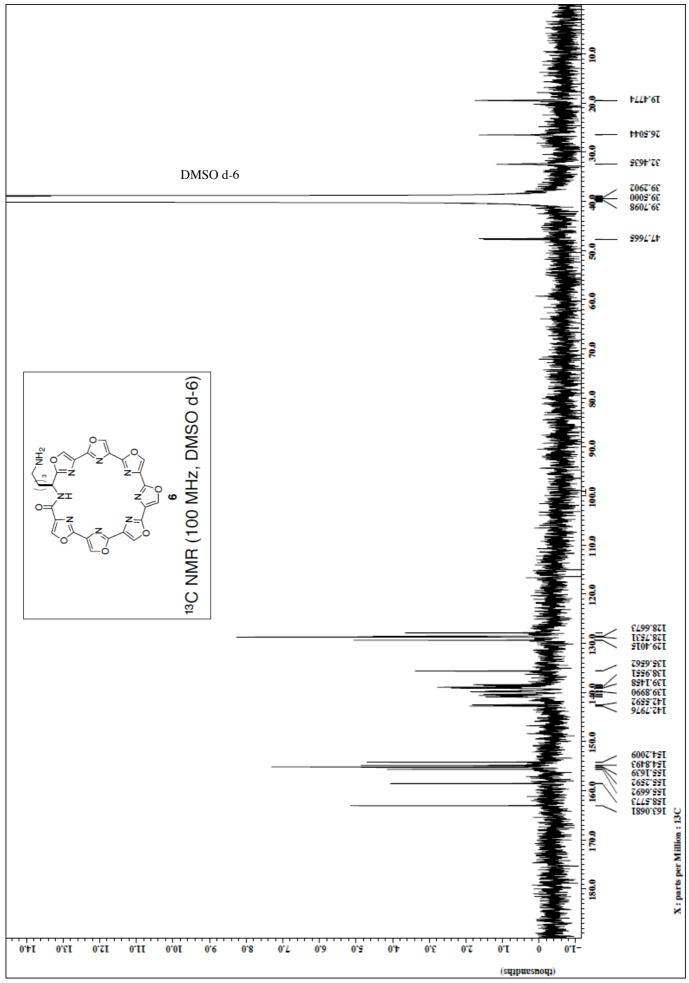


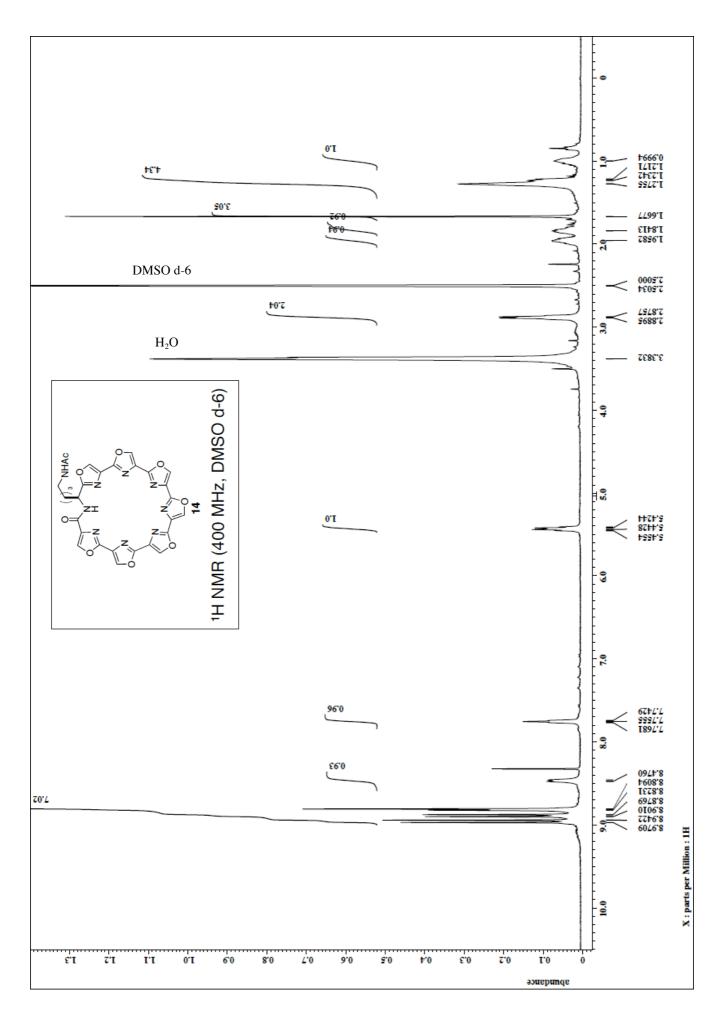


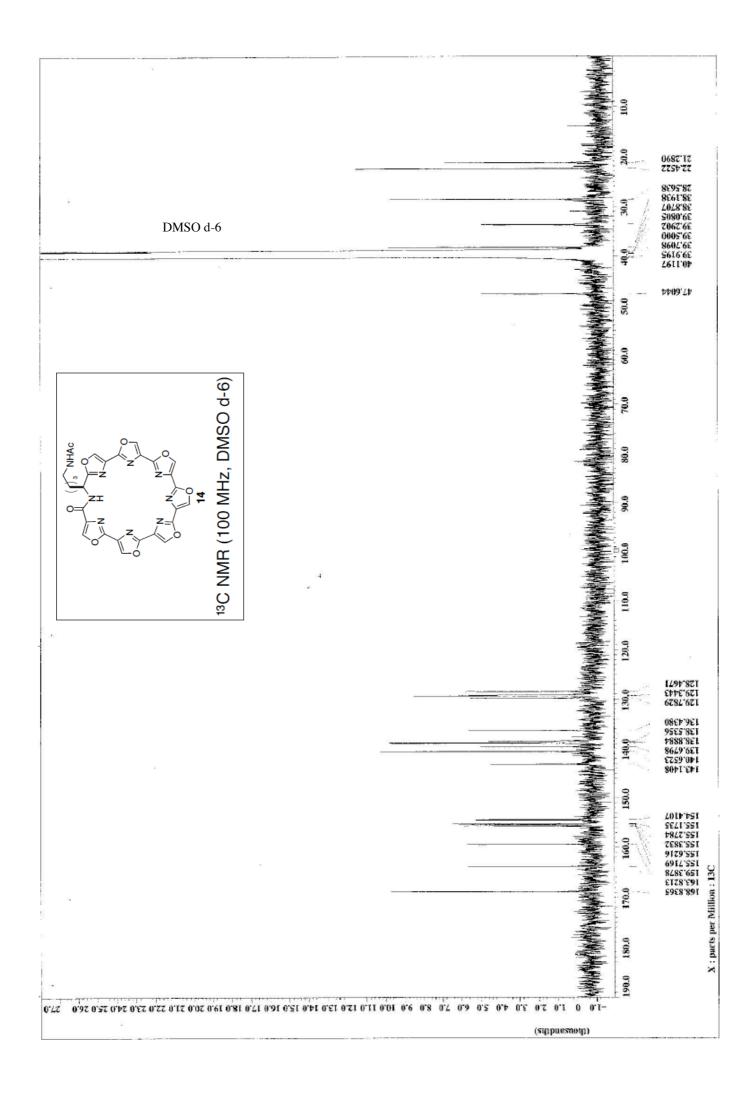












CD experiment

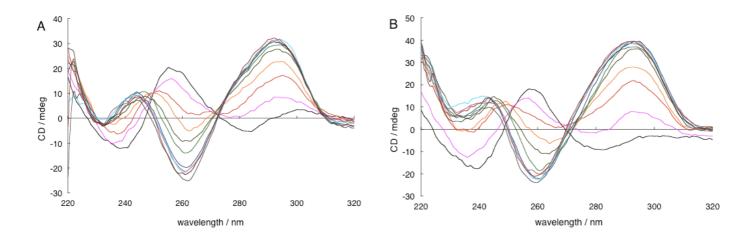


Figure S1. CD spectra of 10 μM ss-telo24 in Tris-HCl buffer (50 mM, pH 7.6, no salt added) in the presence of (A) 5-50 μM of L1H1-7OTD (6) and (B) 10-100 μM of L1A1-7OTD (14). All CD spectra were a representation of three averaged scans taken at 25 °C. The signal baselines were corrected for signal contributions due to the buffer and DMSO for the samples containing 6 and 14.

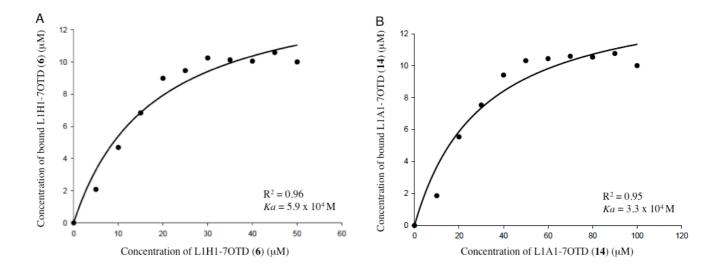


Figure S2. Ka values of L1H1-7OTD (6) and L1A1-7OTD (14) against ss-telo24 were calculated by one site saturation model of SigmaPlot^R ver.11 on the basis of CD/mdeg values at 292 nm in figure S1. (A) The binding constant Ka of L1H1-7OTD (6) was obtained with 5.9 x 10⁴ M. (B) In the case of L1A1-7OTD (14), Ka was obtained with 3.3 x 10⁴ M.

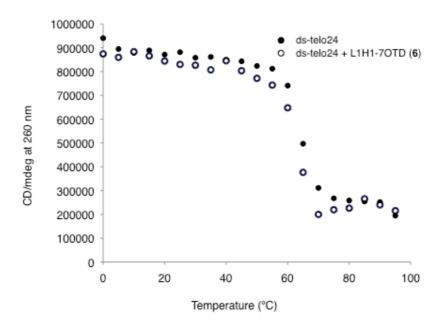


Figure S3. The CD melting curves of ds-telo24 (10 μ M) at 260 nm in the absence or presence of L1H1-7OTD (6) (50 μ M).

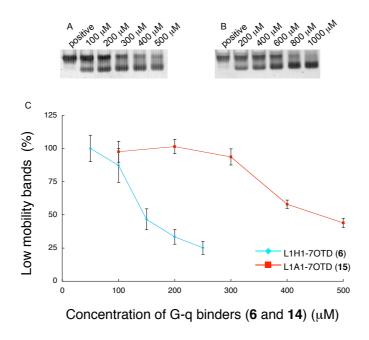


Figure S4. Effects of L1H1-7OTD (6) and L1A1-7OTD (14) on the formation of intramolecular G-quadruplex with ss-telo24 oligonucleotide. (A) ss-telo24 (50 μ M) was incubated for 60 min with various concentrations of L1H1-6OTD (6) in 50 mM Tris-HCl buffer (pH 7.6). After incubation, samples were mixed with ficol 400 and run a 12% native PAGE with 1 x TBE at 4 °C. All oligonucleotides were stained by Stains-all. (B) L1A1-6OTD (14) was used as G-quadruplex ligand. (C) The quantification of the fluorescent intensity by using phosphorimager. The oligonucleotides were quantified using ImageQuant 5.1 from Molecular Dynamics. Results represent means \pm SEM of four independent experiments. EC₅₀ values were calculated by the following equation. (intensity of the low mobility band in the presence of 6 or 14) / (intensity of positive control band).

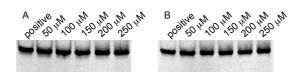


Figure S5. Evaluation of the interaction with ds-telo24 and L1H1-7OTD (6). EMSA of ds-telo24 (25 μM) in the presence of 7OTDs by native PAGE was performed. The ds-telo24 was incubated in the presence of various concentrations of (A) L1H1-7OTD (6) and (B) L1A1-7OTD (14) for 60 min in 50 mM Tris-HCl buffer. After incubation, samples were mixed with ficol 400 and run a 12% native PAGE with 1 x TBE at 4 °C. All oligonucleotides were stained by ethidium bromide.

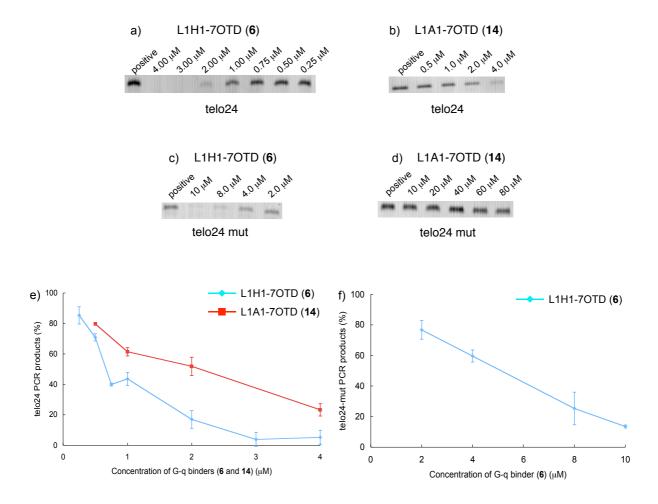


Figure S6. PCR stop assay of L1H1-7OTD (6) and L1A1-7OTD (14). Top panel presented the PCR product; a) 6-telo24, b) 14-telo24, c) 6-telo24 mut, d) 14-telo24 mut. Lower panel presented the quantification of the fluorescent intensity by using phosphorimager; e) (6 and 14)-telo24, f) 6-telo24 mut. Results represent means +/-SD of three independent experiments. PCR inhibitory activities were calculated by the following equation. (intensity of the band in the presence of 6 or 14) / (intensity of positive control band).

MTT assay A 125 **B** 125 100 100 Viability (%) Viability (%) 75 L1H1-7OTD (6) L1H1-7OTD (6) Doxorubicine Doxorubicine 50 50 25 25 0 0

100

10

0.001

0.01

0.1

Concentration of L1H1-7OTD (6) and Doxorubicine (μM)

Figure S7. Dose-response curve of 6 days incubation of (A) HeLa cells and (B) Saos-2 cells in the presence of L1H1-7OTD (6) (open and blue squares) or Doxorubicin (open and black circles). Results represent means \pm SD of five independent experiments.

0.001

0.01

0.1

Concentration of L1H1-7OTD (6) and Doxorubicine (μM)

10

100