27. Kakuma Nagasawa, Einosuke Koshimura, and Seiichi Okazaki: Studies on Follicular Hormones. VIII.1) Quantitative Analysis of Estrone and Estradiol in Pregnant Mare and Stallion Urine by Paper Chromatography, measuring the Area of Colored Spots.

(Research Division, National Hygienic Laboratory*)

The authors had reported²⁾ a quantitative analysis of estrone in pregnant mare and stallion urine by the Kober's color reaction3) but its result gave an over-estimate of estrone because the contaminating estradiol appeared in the same color, and they later published a chromatographic analysis⁴⁾ measuring the area of colored spots on the alumina-impregnated filter paper.5)

In the present series of experiments, the statistical examination of the chromatographic analysis by two-and-two dose assay, described in the biological assay method of the British Pharmacopoeia, 6) was applied to the known amounts of estrone and estradiol. The fiducial limits of error of the present experiments (cf. Experiment I) were less than that of bioassay, e.g., $80 \sim 125\%$ with p=0.95 of smear test⁷ or $81 \sim 124\%$ with p=0.95 of rats' uterine weight increasing method,8) therefore chromatographic method was fairly This method was applied to the quantitative analysis of estrone and estradiol in the urine of pregnant mare and stallion. Only very small amounts of free estrogens were found in the pregnant mare urine after it was ice-cooled as soon as the mare urinated, brought to the laboratory, and extracted rapidly by the method previously reported.⁹⁾ except the treatment of the benzene extract with 0.1 N NaOH (cf. Experiment In stallion urine stored for about 3 weeks at room temperature, some bacterial hydrolysis⁹⁾ might have occured, about equal amounts of free and conjugate estrone and estradiol were found, and besides these, two other spots were also obtained, whose nature could not be identified.

Levin¹⁰ reported that stallion urine contained an average 54,000 R.U./L. of estrogens, 42~90% of which depended on estradiol. In the present experiment, about equal amounts in weight of estrone and estradiol were found, i.e., 75% of total estrogenic activity depended on estradiol when it was assumed that the activity of estradiol was three times more potent than that of estrone (cf. Experiment II). The authors presumed that the reason why some¹¹⁾ reported finding rather large amounts of free steroids in urine was due to a bacterial or enzymatic hydrolysis of the conjugate during its storage.

The authors extend their gratitude to Teikoku Hormone Mfg. Co. and Taiyō Seiyaku K. K., for supplying the urine for the present series of experiments.

Tamagawa Yoga-machi, Setagaya-ku, Tokyo (長沢佳熊, 越村栄之助, 岡崎精一)。

¹⁾ Paper read before the Monthly Meeting of the Pharmaceutical Society of Japan, November 27, 1954; Part VII: Bull. Hyg. Lab. (Tokyo), 72, 45(1954).

²⁾ K. Nagasawa, E. Koshimura: Bull. Hyg. Lab. (Tokyo), 71, 1(1953).

S. Kober: Biochem. Z., 239, 209(1931). 3)

E. Koshimura, S. Okazaki: This Bulletin, 2, 65(1954).I. E. Bush: Biochem. J., 50, 370(1952). 4)

Brit. Pharmacopoeia VII, 778(1953).

C.W. Emmens: "Hormones, A Survey of their Properties and Uses", Pharmaceutical Press, London, 1951.

H. D. Lauson, G. G. Heller, J. B. Golden, E. L. Severinghaus: Endocrinol., 24, 35(1935).

K. Nagasawa, E. Koshimura: Bull. Hyg. Lab. (Tokyo), 72, 37(1954).

¹⁰⁾ L. Levin: J. Biol. Chem., 185, 725(1945).

¹¹⁾ H. Cohen, R. W. Bates: Endocrinol., 45, 86 (1949).

Experimental

I. Statistical Examination of the Quantitative Analysis of Estrone and Estradiol by Paper Chromatography, measuring the Area of Colored Spot-Two amounts, 7.50 γ and 15.00 γ of Aseries (standard) estrone (2.50 mg./cc.) and two amounts, 6.75γ and 13.50γ of B-series (sample) estrone (2.25 mg./cc.), were applied to the alumina-impregnated Toyo Filter Paper No. 50 (2×40 cm.). ratios of the high amount to the low amount should be equal in both standard and sample. strips were used for each amount. After developing and coloring, the area of the spots was measured (these methods were described in the previous report4). The results are shown in Table I.

TABLE I.

	A-	Ser i es (Sta	ıdard)		B-Series (Sample)						
Strip No.	Amount of estrone	Log amount of estrone	Area of spot mm ²	Deviation from mean	Strip No.	Amount of estrone	Log amount of estrone	Area of spot mm ²	Deviation from mean		
		(x)		(d)			(x)		(d)		
1	7.50	0.8751	52	Ó	1	6.75	0.8293	36	0		
2	7.50	0.8751	48	-4	2	6.75	0.8293	40	4		
3	7.50	0.8751	52	0	3	6.75	0.8293	32	-4		
4	7.50	0.8751	56	4	4	6.75	0.8293	36	0		
Mear	$(y) \cdots$		52 (S_1)	Mear	$(y) \cdots$		36 (T_1)		
1	15.00	1.1761	120	4	1	13.50	1.1303	104	-2		
2	15.00	1.1761	112	-4	2	13.50	1.1303	100	-6		
3	15.00	1.1761	116	0	3	13.50	1.1303	116	10		
4	15.00	1.1761	116	0	4	13.50	1.1303	104	-2		
Mear	$(y)\cdots$		116 (S_2)	Mear	$(y) \cdots$		106 (T_2)		

From the above values, potency ratio (R) and fiducial limits of error (f.l.e.) were calculated. $I = \log 2 = 0.3010 \; ; \quad E = (T_1 - T_2 + S_2 - S_1)/2 = 67 \; ; \quad F = (T_1 + T_2 - S_1 - S_2)/2 = -13 \; ; \\ b = E/I = 222.6 \; ; \quad M = F/b = -0.0584 = \overline{1}.9416$

R=antilog M=0.874, which was 97.1% of the theoretical value.

 $s^2 = \sum (d^2) / \sum (n-1) = 20.0$; $V = s^2 / n = 5.0$

at p=0.05 with 12 degrees of freedom, t=2.18.

 $t \text{ (From data)} = (T_1 + S_2 - S_1 - S_2)/2\sqrt{V} = 1.22$, which was less than 2.18.

Therefore, the slopes were not significantly different (t=1.22 was between p=0.3 and 0.2).

A=V=5.0; $B=A/I^2=55.2$; $g=Bt^2/b^2=0.005$, which was less than 0.1. Therefore, the calculation was made as g=0

 $\log f.1.e. = 2 \pm t\sqrt{(A+BM^2)/b} = f.1.e. = 95.0 \sim 105.9\%$

The regression line, $Y = \bar{y} + b(x - \bar{x})$, was calculated as follows:

	x	y	n	nx	ny	nx^2	nxy	ny^2
	0.8293	36	4	3.3172	144	2.75095	119.419	5184
	0.8751	52	4	3.5004	208	3,06320	182.021	10816
	1.1303	106	4	4.5212	424	5.11031	479.247	44520
	1.1761	116	4	4.7044	464	5.53284	545.709	53824
Total	4.0108	310	16	16.0432	1240	16.45730	1326.396	114344
Mean	$\bar{x} 1.0027$	\bar{y} 77.5				•		
						$(\sum nx)^2/\sum n$	$(\sum nx)(\sum ny)/\sum x$	$i \left(\sum ny\right)^2/\sum n$
	b = 83.048	0.3933 = 3	211.16			16.064	1243.348	96100

Therefore, the regression equation was Y=77.5+211.16(x-1.0027). The linearity of the regression line was examined as follows:

0.3933

Adjustmen	t for mean	96100	
Nature of variation	Degrees of freedom	Sum of squares	Mean square
Regression	1	17536.15	
Deviation from regression	2	94731.8	47365.9
Between amounts	3	112268.0	
Within amounts	12	336726.5	28060.54
Total	15	448994.5	

F=4.67 (5%) with 1 and 13 degrees of freedom.

F(From data) = 47365.9/28060.54 = 1.69, which was less than 4.67.

Therefore, there was no serious evidence of inequality of the regression coefficients.

The results of estrone are shown in Table II and those of estradiol in Table III.

18244

83.048

Vol. 3 (1955)

		Standard		Table San	II.			
Ept. No.	Strip No.	High amount 15.00 γ	Low amount 7.50 γ	${ m High} \ { m amount} \ 12.00 \ \gamma$	Low amount 6.00 γ	t (þ)	R*	f.l.e. % (p=0.95)
		Are	ea of spot (
1 {	1 2 3 4	128 124 112 120	76 72 80 80	100 108 104 104	72 60 64 64	1.14(0.3~0.2)	97.8	92.2 136.5
2 {	1 2 3 4	200 188 188 184	80 76 72 72	164 160 160 152	68 68 60 60	4.07(0.01~0.001)	106.1	95.4 104.8
3 {	$\begin{array}{c}1\\2\\3\\4\end{array}$	88 88 92 88	60 60 60 64	80 80 80 80	48 48 48 52	1.16(0.3~0.2)	97.4	98.9 101.1
4 {	$\frac{1}{2}$	$\frac{120}{120}$	76 72	116 108	64 60	0.82(0.5~0.4)	108.3	$\begin{array}{c} 90.6 \\ 120.4 \end{array}$
5	$\frac{1}{2}$	124 128	72 76	108 112	68 64	$1.00(0.4 \sim 0.3)$	105.1	$\begin{array}{c} 91.3 \\ 108.6 \end{array}$
6 {	1 2	108 112	72 68	96 96	64 60	1.73(0.2~0.1)	101.6	$\substack{91.2\\109.6}$
,		15.00 γ	7.50γ	13.50γ	6.75 γ		0	04.0
7 {	$\begin{matrix}1\\2\\3\\4\end{matrix}$	120 112 116 116	52 52 48 56	104 104 100 116	36 40 32 36	1.23(0.3~0.2)	97.1	94.8 105.4
8	$\begin{matrix}1\\2\\3\\4\end{matrix}$	148 144 140 140	72 64 64 64	136 128 128 140	60 60 64 68	1.60(0.2~0.1)	104.1	95.3 104.7
9 {	1 2	100 100	72 64	88 92	68 60	1.00(0.4~0.3)	93.2	81.5 122.8
* .		of the theor		•				
		Standard		Table Sar	III. nple			
Ept. No.	Strip No.	High amount 15.00 γ	Low amount 7.50 γ	High amount 12.00 γ	Low amount 6.00γ	t (p)	R*	f.1.e. % (p=0.95)
		Are	a of spot (
1	1 2 3 4	92 88 92 84	68 68 72 64	80 88 84 84	60 64 64 64	0.08 (0.9<)	94.2	83.0~ 120.4
· 2 {	1 2	$15.00 \ \gamma$ 92 100	7.50 γ 68 68	13.50 γ 100 92	6.75γ 44 52	1.16(0.4~0.3)	104.3	85.5~ 116.5
* .	%	of theoretica	l value.					

II. Quantitative Analysis of Estrone and Estradiol in Pregnant Mare and Stallion Urine—Chromatographic method was the same as for Experiment I. The results are summarized in Table W.

				1	able iv.							
		Estrone						Estradiol				
	Free		Conjugate		Total	Free		Conjugate		Total		
Material	γ/cc	%*	γ/cc	%*	γ/cc	γ/cc	%**	γ/cc	%**	γ/cc		
P.M.U.	0.7†	0.9	81.0(95.2~ 105.0)	99.1	81.7	0.4	1.9	20.5(86.6~ 115.5)	98.1	20.9		

<i>"</i>	$1.9(94.7)$ ~ 104.7	1.4	$138.1(95.5 \sim 104.7)$	98.6	140.0	$1.4(82.6)$ ~ 121.0	3.8	35.5(91.2~ 110.1)	96.2	36.9
//	4.3(85.5 - 117.0)	4.1	$100.7(82.6)$ $\sim 118.2)$	95.9		$2.2(86.4)$ ~ 115.6	13.2	15.0(83.5~ 119.9)	87.2	17.2
"	0.6†	1.5	39.5(94.4~ 106.0)	98.5	40.1	0.3†	13.6	1.9(91.1~ 109.7)	86.4	2,2
Average	3.2	2.1	89.8	97.9	91.9	1.1	5.7	18.2	94.3	19.3
S. U.	17.6	44.9	21.6	55.1	39.2	19.6	46.6	19.9	50.4	39.5

P. M. U. · · · · · Pregnant mare urine.

S. U.....Stallion urine.

† ·····Dilution Method.

()....f.l.e. % with degrees of freedom and p=0.95.

*Free estrone+estrone after hydrolysis were 100%.

**....Free estradiol+estradiol after hydrolysis were 100%.

Summary

Two-and-two dose assay method was applied for the quantitative analysis of estrone and estradiol by paper chromatographic analysis, measuring the area of spots, and fairly satisfactory results were obtained. In a fresh urine of a pregnant mare, an average 2% of free estrone and 6% of free estradiol, 98% of conjugate estrone, and 94% of conjugate estradiol were found by this method. About equal amounts of estrone ($39 \, \gamma/cc$.) and estradiol ($40 \, \gamma/cc$.) were determined in the stored stallion urine.

(Received January 31, 1955)

28. Morizo Ishidate and Takeichi Sakaguchi: Metal Chelate Compounds of Tetracycline Derivatives. I. Aureomycin.

(Pharmaceutical Institute, Medical Faculty, University of Tokyo,* and Pharmaceutical Faculty, University of Chiba**)

A patent¹⁾ of American Cyanamid Co. claims that Aureomycin (chlorotetracycline) can be precipitated with calcium or magnesium hydroxide at pH 8.5. Albert²⁾ reported that Aureomycin and Terramycin (oxytetracycline) combine strongly with ions of heavy metals, particularly with ferric ion. Weidenheimer *et al.*³⁾ prepared Aureomycin-metal complexes having therapeutic properties superior to those of the free base or its acid salts, and Kämmerer⁴⁾ reported that the presence of Co⁺⁺ diminished the activity of Aureomycin.

During our investigation of color reactions between Aureomycin or tetracycline and metal ions, especially with Zr, Th, and UO₂, it became apparent that the reaction represented a specific instance of a very general reaction involving those compounds which contain hydroxyl and carbonyl groups in the *peri*-position or an enolized hydroxyl group of 1,3-diketone, and that the form of metal complexes is similar to that of 1-hydroxyan-thraquinone and its derivatives.

The present paper deals with the application of this chelation to the determination

¹⁾ Brit. Pat. 690,381 (April 22, 1953); Japan. Patent Publication No. 6049/1954.

²⁾ A. Albert: Biochem. J. (1953) (in press).

³⁾ F. Weidenheimer, et al.: U.S. Pat. 2,640,842(June 2, 1953).

⁴⁾ H. Kämmerer, A. Eberle: Klin. Wochshr., 30, 1083 (1952).