$232\sim235^{\circ}$, $(\alpha)_{D}^{21}+117.8^{\circ}$ (UV λ_{max}^{EroH} 241 mm (log & 4.16); IR $\lambda_{max}^{cBCl_3}$ m : 3.01, 5.72, 5.90, 6.01, 6.18), which contained a five-membered ring ketone. Since its ultraviolet spectrum and color reaction precluded the presence of a β -diketone, it was highly probable that the newly produced ketone occupies the 15-position, and both purpnigenin and purprogenin contain a 14,15-glycol group. Orientation of the 15-hydroxyl group was inferred to be α , in view of the acetate formation, but that of the 14-hydroxyl group is still to be clarified.

From these results it seems to be appropriate to assign tentative formulae (I) and (II), respectively, to purpnigenin and purprogenin.

UDC 547.836.3.07

Synthesis of rac-Tetrahydrorotundine

The writers have been engaged in the synthesis of rotundine, a main alkaloid of Stephania rotunda Loureiro, to which the structure of 2-methyl-3,9,10-trimethoxy-6,7-dihydro-11bH-benzo[a]quinolizine (I) had been forwarded by H. Kondo and Matsuno.¹⁾ Sugasawa and Mizukami²⁾ recently synthesized rac-dihydrorotundine. The corresponding 1,2,3,4-tetrahydro derivative (IX) appeared to be a suitable intermediate for this synthesis, in which case partial dehydrogenation of 1,2,3,4-positions would be possible.

Various procedures for this synthesis were examined and the ring-closure of N-substituted pyridone was tried but only the N-substituted 2-chloropyridinium salt, which

¹⁾ H. Kondo, T. Matsuno: Yakugaku Zasshi, 64A, 28(1944); 64B, 113, 274(1944).

²⁾ S. Sugasawa, K. Mizukami: This Bulletin, 6, 539(1958). cf. K. Mizukami: Ibid., 6, 312(1958).

easily converted to the corresponding 2-pyridone by the action of sodium hydroxide, was obtained.³⁾ Accordingly, the ethyl ester (III) was prepared by ring closure of the piperidone (II), which was obtained by condensation of 3,4-dimethoxyphenethyl bromide and 4-methyl-5-ethoxycarbonyl-2-piperidone⁴⁾ in the presence of sodium hydride. In this case, the reductive condensation of diethyl α -cyano- β -methylglutarate with homoveratrylamine was also tried according to the procedure of Preobrazhenskii⁵⁾ but the objective compound (II) was not obtained as the main product.⁶⁾

The Curtius degradation was then applied to the preparation of the amino derivative (VI), m.p. $302 \sim 303^{\circ}$ (decomp.) (Anal. Calcd. for $C_{16}H_{24}O_2N_2 \cdot 2HCl \cdot \frac{1}{2}H_2O$: C, 53.63; H, 7.51; N, 7.82. Found: C, 53.25; H, 7.67; N, 7.99), via the hydrazide (IV), m.p. $220\sim221^{\circ}$ (Anal. Calcd. for $C_{17}H_{25}O_3N_3 \cdot \frac{1}{2}H_2O$: C, 62.17; H, 7.98; N, 12.80. Found: C, 61.68; H, 7.73; N, 13.33), and benzylurethan (V), m.p. $207 \sim 208^{\circ}$ (Anal. Calcd. for $C_{24}H_{30}O_4N_2$: C, 70.22; Found: C, 69.70; H, 7.19; N, 7.28). The amino derivative (VI) was H, 7.37; N, 6.82. then diazotized with sodium nitrite in acetic acid according to Akiya's method⁷⁾ and the objective hydroxyl compound (VII) was obtained as a viscous oily substance, which was purified as its methiodide of m.p. $223\sim225^{\circ}(Anal. \text{ Calcd. for } C_{16}H_{23}O_3\text{N}\cdot\text{CH}_3\text{I}\cdot1\frac{1}{2}H_2\text{O}: \text{ C},$ 45.74; H, 6.50; N, 3.14. Found: C, 45.77; H, 6.48; N, 4.80). In order to prove the presence of a hydroxyl group in (VII), its methanesulfonate (VIII), m.p. 255~257° (decomp.) (Anal. Calcd. for $C_{17}H_{25}O_5NS\cdot CH_3I\cdot H_2O$: C, 41.99; H, 5.83. Found: C, 41.99; H, 6.04), was This hydroxyl compound (VII) was then methylated with diazomethane in the presence of fluoroboric acid in chloroform⁸⁾ and this methyl ether (IX) was found to be a methiodide, m.p. $240\sim241^{\circ}(Anal.\ Calcd.\ for\ C_{17}H_{25}O_3N\cdot CH_3I\cdot\frac{1}{2}H_2O:\ C,\ 48.87;\ H,\ 6.56;$ N, 3.17. Found: C, 48.56; H, 6.29; N, 3.34).

³⁾ a) S. Sugasawa, S. Akaboshi, Y. Ban: *Ibid.*, 7, 236(1959). b) Y. Ban, et al.: *Ibid.*, 7, 609(1959). c) T. Kametani, Y. Nomura: *Ibid.*, 8(1960), to be published. d) T. Kametani, Y. Nomura, K. Fukumoto: Yakugaku Kenkyu, 31, 673(1959).

⁴⁾ T. Kametani, Y. Nomura: Yakugaku Kenkyu, 31, 678(1959).

⁵⁾ R. P. Evstigneeva, R. S. Livshits, L. I. Zakharkin, M. S. Bainova, N. A. Preobrazhenskii: Doklady Akad. Nauk S. S. S. R., 75, No. 4, 539(1950) (C. A., 45, 7577(1951)).

⁶⁾ T. Kametani, Y. Nomura: Unpublished data.

⁷⁾ S. Akiya, T. Osawa: This Bulletin, 7, 277(1959).

⁸⁾ M. Neeman, M.C. Casero, J.D. Robert, W.S. Johnson: Tetrahedron, 6, 36(1959).

Vol. 8 (1960)

In order to prove the structure of diazotization product (VII), it was oxidized with pyridine-chromic acid complex. The objective cyclic ketone (X) was thereby obtained as a crystalline methiodide of m.p. $234\sim236^{\circ}$ (decomp.), identical with the melting point reported in the literature.²⁾ It was therefore found that the substance (IX) had a six-membered ring.

Pharmaceutical Institute, School of Medicine, Tohoku University, Sendai. Tetsuji Kametani (亀谷哲治) Yukio Nomura (野村幸雄)

February 11, 1960.