Benzotriazole Derivatives

Acylation of benzotriazole (\mathbb{V}) should give an unsymmetric compound (XXIX) and a symmetric one (XXX). In the symmetric model compound, the aromatic protons exhibited the pattern of A_2B_2 system (Fig. 1, A, B), while in the unsymmetric compounds

the pattern of this system disappeared (Fig. 1, C, D).

Since the nuclear magnetic resonance spectra of N-aryloxyacylbenzotriazoles synthesized showed no A_2B_2 system, these compounds should be assigned to 1-aryloxyacylbenzotriazoles (XXIX).

The authors wish to express their deep gratitude to Dr. T. Harukawa of these laboratories for his encouragement and to Takeda Chemical Industries, Ltd. for permission to publish this report. Thanks are also due to Miss F. Kasahara for the NMR spectra measurement.

Research Laboratories, Takeda Chemical Industries, Ltd., Juso-Nishino-cho, Higashiyodogawa-ku, Osaka, Japan

Michihiko Ochiai (落合道彦) Toshiya Kamikado (上門敏也)

Received August 29, 1964

(Chem. Pharm. Bull.) 12(12)1520~1523(1964)

UDC 547.94.02:582.757.2

Structure and Stereochemistry of Norsecurinine and Dihydronorsecurinine

Two alkaloids have now been isolated from the roots of Securinega virosa PAX. et Hoffm. grown in Formosa. The first base has a molecular formula C₁₀H₁₂O₂N [the hydrochloride, m.p. 225° (decomp.), IR $\nu_{\rm max}^{\rm Nujol}$ cm $^{-1}$: 1821, 1770, 1635, UV: $\lambda_{\rm max}^{\rm EiOH}$ 254 m μ (ϵ (17,600), $(\alpha)_D^{20}$ -309° (c=1.24, EtOH) (Anal. Calcd. for $C_{12}H_{14}O_2NC1$: C, 60.12; H, 5.88; N, Found: C, 60.02; H, 5.36; N, 5.70); the methiodide, m.p. 231~232° (Anal. Calcd. for $C_{13}H_{16}O_2NI$: C, 45.23; H, 4.67; N, 4.05. Found: C, 45.19; H, 4.75; N, 4.16); the picrate, m.p.258 \sim 260° (decomp.) (Anal. Calcd. for $C_{18}H_{16}O_8N_5$: C, 50.00; H, 3.73; N, 12.96. Found: C, 50.27; H, 3.47; N, 12.92)]. The free base [(α)_D²³ -272° (c=6.9, EtOH), IR $\nu_{\text{max}}^{\text{CCI}_4}$ cm⁻¹: 1802, 1770, 1640, UV: $\lambda_{\text{max}}^{\text{EiOH}}$ 256.5 m μ (ε 22,000), obtained as an oil from the hydrochloride] showed the same nuclear magnetic resonance, infrared and ultraviolet spectra as those reported by Iketubosin and Mathieson¹⁾ for norsecurinine [m.p. $81 \sim 82^{\circ}$, $[\alpha]_{p}^{20}$ -19.5° (c=0.2, EtOH), IR $\nu_{\text{max}}^{\text{CCI}_4}$ cm⁻¹: 1802, 1770, 1640, UV: $\lambda_{\text{max}}^{\text{EiOH}}$ 255.5 m μ (ϵ 22,000); the methiodide, m.p. $194\sim195^{\circ}$; the picrate, m.p. $232\sim233^{\circ}$]. This proves both alkaloids to be However, there is a considerable discrepancy in the physical constants beidentical. tween the specimens obtained by both groups. The lower specific optical rotation shown by the Iketubosin and Mathieson's specimen may be ascribable to contamination of its enantiomer as has been observed in case of Securinega suffruticosa Rehd. var. amamiensis Furusawa.2)

¹⁾ G.O. Iketubosin, D.W. Mathieson: J. Pharm. and Pharmacol., 15, 810 (1963).

²⁾ S. Saito, T. Tanaka, T. Iwamoto, C. Matsumura, N. Sugimoto, Z. Horii, M. Makita, M. Ikeda, Y. Tamura: Yakugaku Zasshi, 84, 1126 (1964).

Iketubosin, *et al.* have proposed a planar structure, I, for norsecurinine on the basis of infrared, ultraviolet, nuclear magnetic resonance and mass spectral evidences. However, no chemical evidence has been provided. The following degradation and synthesis provide a chemical support to structure (I).

Treatment of norsecurinine with zinc-dust and sulfuric acid, followed by lithium aluminum hydride reduction, gave an oily base (\mathbb{II}), characterized as the picrate, m.p. $170\sim172^{\circ}$ (decomp.). The structure of \mathbb{II} was proved by comparison of its infrared spectrum with that of racemic \mathbb{II} [the picrate, m.p. $170\sim173^{\circ}$ (decomp.)], which was synthesized by cyclization³⁾ of 1-phenethyl-2-pyrrolidinone (\mathbb{II}) and subsequent hydrogenation as shown in Chart 1.

The second base has a molecular formula, $C_{12}H_{15}O_2N$, m.p. $135\sim136^\circ$, mol. wt. 205 (mass spec.*1), IR $\nu_{\max}^{\text{Nujol}}$ cm⁻¹: 1820, 1755, 1645, UV: $\lambda_{\max}^{\text{EIOH}}$ 214 mµ (ε 14,440), [α]₅₈₉ -13°, [α]₃₀₀ -1110° (c=1.07, dioxane), which has already been reported in a previous paper.²⁾ The molecular formula, infrared, ultraviolet and nuclear magnetic resonance spectra suggest⁴⁾ that this base may be the 4,5-dihydro derivative (II) of norsecurinine. This assignment was confirmed definitely by sodium borohydride reduction⁵⁾ of I to II, m.p. $135\sim136^\circ$. This conversion also indicates that both alkaloids possess the same stereochemistry. Previously,²⁾ we designated this alkaloid "Virosine," but would like to change this name into "Dihydronorsecurinine" because the name "Virosine" was found to be used already for an alkaloid from *Vinca rosea* Linn.*^{2,6)}

The optical rotatory dispersion (ORD) curves*³ of norsecurinine (I) and its hydrochloride (Fig. 1) show a single strong negative Cotton effect which arises from the transoid diene chromophore conjugated with the γ -lactone [[α]₂₇₄ -16,500°, [α]₂₅₀ +8,300° (c=0.00241, dioxane) for the free base and [α]₂₆₅ -19,000°, [α]₂₃₅ +24,500° (c=0.00204, MeOH) for the hydrochloride]. The helicity rule⁷⁾ of the transoid diene, which has been successfully applied in securinine and allosecurinine,⁸⁾ predicts that an absolute configuration of norsecurinine at C₉₀ should be S-configuration. The same conclusion is obtained

^{*1} Mass spectrum was measured in Japan Electron laboratory.

^{*2} The authors thank Dr. G. H. Svoboda for his kind advice.

^{*3} ORD curves were measured with a Rudolph automatic recording spectropolarimeter at $20{\sim}25^{\circ}$.

³⁾ V. Boekelheide, J.C. Godfrey: J. Am. Chem. Soc., 75, 3679 (1953).

⁴⁾ S. Saito, K. Kotera, N. Shigematsu, A. Ide, N. Sugimoto, Z. Horii, M. Hanaoka, Y. Yamawaki, Y. Tamura: Tetrahedron, 19, 2085 (1963).

⁵⁾ cf. I. Satoda, M. Murayama, J. Tsuji, E. Yoshii: Tetrahedron Letters, 1962, 1199.

⁶⁾ G. H. Svoboda: J. Am. Pharm. Assoc., Sci. Ed., 47, 834 (1958).

⁷⁾ U. Weiss, H. Ziffer: Experientia, 19, 108, 660 (1963).

⁸⁾ Z. Horii, M. Ikeda, Y. Tamura, S, Saito, M. Suzuki, K. Kotera: This Bulletin, 12, 1118 (1964).

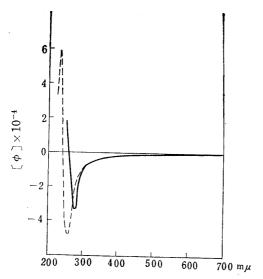


Fig. 1. Optical Rotatory Dispersion Curves of Norsecurinine (I) (——) in Dioxane and its Hydrochloride (——) in Methanol

Fig. 2. Optical Rotatory Dispersion Curves of α -Ketol (V) in Methanol

from the ORD study on the α -ketol (V), m.p. 119 \sim 121°, [IR $\nu_{\rm max}^{\rm Nujol}$ cm $^{-1}$: 3380 (OH), 1718 (C=O) (Anal. Calcd. for $C_{10}H_{15}O_2N$: C, 66.27; H, 8.34. Found: C, 66.21; H, 8.86)], which was obtained by lithium aluminum hydride reduction of dihydronorsecurinine (II) followed by ozone oxidation. The ORD curve of V shows a negative Cotton effect [(α)₃₀₅ -2,400°, [α)₂₆₂ +4,200° (c=0.131, MeOH)] (Fig. 2). Comparison of the ORD curve of V with that

of an α -ketol⁹⁾ (V), derived from securinine, or application of the octant rule¹⁰⁾ predicts that an absolute configuration of norsecurinine at C_{90} should be S-configuration.

Norsecurinine is, therefore, represented by either Ia or Ib and dihydronorsecurinine by either Ia or Ib. The stereochemistry at $C_{9\alpha}$ will be discussed in a subsequent paper.

Osaka research Laboratory, Tanabe Seiyaku Co., Ltd., Kajima-cho Higashiyodogawa-ku, Osaka	Seiichi Saito (斎藤清- Tadasu Tanaka (田中 京 Keishi Kotera (小寺啓 Hideo Nakai (仲井英雄 Norio Sugimoto (杉本典	雅) 司) 雄)
Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka-fu	Zen-ichi Horii (堀井善- Masazumi Ikeda (池田正 Yasumitsu Tamura (田村恭:	登)

Received September 14, 1964

(Chem. Pharm. Bull.) 12(12)1523~1525(1964)

UDC 547.92.02

On the Structure of Pergularin

The isolation of sarcostin (I), metaplexigenin (II), benzoylramanone (III), deacylcynanchogenin (IV), utendin (V), pergularin (VI), and two other aglycones from *Metaplexis joponica* Makino has been reported previously. In this communication, the experimental result leading the structure of pergularin (VI) is described. Pergularin (VI), m.p. $220\sim234^{\circ}$, $C_{21}H_{32}O_5\cdot \frac{1}{2}H_2O$ (*Anal.* Calcd.: C, 67.55; H, 8.85. Found: C, 67.65; H, 9.32). $\alpha_{589}^{19}-33^{\circ}$ (c=0.1, MeOH, from ORD measurement). IR ν_{max}^{Nitol} cm⁻¹: 3550, 3450, 1720, 1690. Although VI showed two bands in the carbonyl region of the infrared spectrum,* it gave only a monooxime (VII) which revealed no carbonyl absorption. Therefore, VI possesses only one carbonyl group. Very similar facts were reported in the case of deacylmetaplexigenin (IIa). Acetylation of VII with acetic anhydride-pyridine afforded a diacetate (VIII), m.p. $130\sim137^{\circ}$, $C_{25}H_{36}O_7$ (*Anal.* Calcd.: C, 66.94; H, 8.09. Found: C, 66.97; H, 8.46). The nuclear magnetic resonance spectrum of pergularin (VII) showed three singlet at 8.96 (18-CH₃), 8.29 (19-CH₃), 7.43 (17-COCH₃) τ in pyridine.* The optical rotatory dispersion curves of pergularin (VII), and its acetate (VIIII), in methanol showed negative Cotton effect.

⁹⁾ Z. Horii, M. Ikeda, Y. Yamawaki, Y. Tamura, S. Saito, K. Kotera: Tetrahedron, 19, 2101 (1963). 10) W. Klyne: *Ibid.*, 13, 29 (1961).

^{*1} Pergularin (VI) is practically insoluble to CCl₄ and CHCl₃.

^{*2} Pergularia japonica Thunb. is the synonym of Metaplexis japonica Makino.

^{*3} In this paper, 10 p.p.m. value (from tetramethylsilane, used as internal standard) is used as τ .

¹⁾ H. Mitsuhashi, T. Nomura, Y. Shimizu, I. Takemori, E. Yamada: This Bulletin, 10, 811 (1962). In the report, pergularin was expressed as crystal 3, and utendin as crystal 4.

²⁾ H. Mitsuhashi, T. Nomura: Ibid., 11, 1333 (1963).

³⁾ Idem: Ibid., in press.

⁴⁾ H. Mitsuhashi, T. Nomura, M. Hirano: Presented as a paper at the Annual Meeting of the Pharmacognostical Society of Japan, Sept. 19, 1964, Kanazawa.

⁵⁾ H. Mitsuhashi, T. Nomura: Steroids, 3, 271 (1964).