Chem. Pharm. Bull. 12(12)1530~1530(1964)

UDC 547.92.07

Some Observations of Oxygenation of C2- or C3-Oxo- 5α -steroids Possessing C_{11} -Oxo-group

Recently, Barton¹⁾ and Camerino²⁾ reported the oxygenation of various oxosteroids with oxygen in alkali medium, but the oxygenation of C_{2} - and C_{3} -oxosteroids possessing a C_{11} -oxo-group is not mentioned.

Here, the writers wish to compare the oxygenation of C_2 - or C_3 -oxo- 5α -steroids with the corresponding oxosteroids having a C_{11} -oxo-group, in order to examine whether or not the neighbouring effects of a C_{11} -oxo-group*1 is shown on this oxidation reaction.

TABLE I.

		TABLE I.		
	***	Oxidation	Products	
Material	2,3-Dione	2-Hydroxy-1-en- 3-one acetate	3-Hydroxy-3-en- 2-one acetate	3,4-Dione
Cholestan-2-one Cholestan-3-one	m.p. 163~167° (isolated as 2-hydroxycholest-1-en-3-one) NMR: 3.65 τ (s)	not isolate	m.p. 136.5~138° NMR: 3.86τ(d)	
25D,5 α -Spirostan- 2-one 25D,5 α -Spirostan- 3-one	NMR: 3.68 τ (s) 4.35 τ (d) (as enols mixture)	not isolate	m.p.: 237.5~240° NMR: 3.88 τ (d)	
25D,5 α -Spirostan- 2,11-dione 25D,5 α -Spirostan- 3,11-dione	m.p. $233\sim237^{\circ}$ UV: $270\sim271 \text{ m}\mu$ NMR: 3.25τ (s) 5.64τ (d) (as enols mixture)	m.p. 254~258° NMR: 2.88τ(s)	1. 0.03 t (u) U	.p. 253~257° V: 277~279 mμ MR: 3.86 τ (s) ^α)
17 <i>β</i> -Hydroxy- androstane- 3,11-dione	m.p.: 170~173° UV: 270.5 mμ (ε 16,000) NMR: 3.20 τ (s)	m.p.: 202~203°b) UV: 236 mμ (ε 9,500) NMR: 2.83 τ (s)	m.p.: $225\sim 228^{\circ b}$ m. UV: 238 m_{μ} UV	p.: $187.5 \sim 192.5^{\circ}$ V: 277.5 m_{μ} ($\epsilon 11.700 \sim 12.200$)

a) The signal disappeared after D₂O was added.

As summerized in the accompanying table, C_2 - or C_3 -oxo-5lpha-steroids were oxidized to the same $C_{2,3}$ -dioxosteroid with oxygen. Both C_2 - or C_3 -oxosteroid having a 11-oxo group also gave the same 2,3,11-triketosteroid, but in the case of $C_{3,11}$ -dioxo-steroid a small amount of 3,4,11-trioxosteroid*2 was obtained. The latter was identified by the synthesis from 3,11-dioxo-5 β -steroid by the method reported by Camerino.²⁾ In view of the above facts, it is interesting to note that C_3 -oxo- 5α -steroid is attacked at the position 2 by oxygen, but $C_{3,11}$ -dioxo- 5α -steroid is attacked partially at C_4 . It is probable that the distortion of A ring, due to the trigonal bond of the carbonyl group at C11, somewhat changes the direction of enolisation in the case of $C_{3,11}$ -dioxo- 5α -steroids.

Shionogi Research Laboratory, Shionogi and Co., Ltd., Fukushima-ku, Osaka

Shigekatsu Nakajima (中島重勝) Ken'ichi Takeda (武田健一)

Received October 17, 1964

b) Presont values as diacetate.

 $^{^{*1}}$ The neighbouring effects of C_{11} -substituents have been previously reported. For example, the addition reaction of $25D-5\beta$ -spirost-2-ene with C_{11} -substituents was affected by the directing effects and gave an abnormal result. (K. Takeda, et al.: Steroids, 2, 27 (1963)). The ratio of the formation of 2,3-dione and 3,4-dione is 9:1.

¹⁾ a) E. J. Bailey, J. Elks, D. H. R. Barton: Proc. Chem. Soc., 1960, 214. b) E. J. Bailey, D. H. R. Barton, J. Elks, J. F. Templeton: J. Chem. Soc., 1962, 1578.

²⁾ B. Camerino, B. Patelli, R. Sciaky: Tetrahedron Letters, No. 16, 554 (1961).