(Chem. Pharm. Bull.) 12 (7) 779 ~ 783

UDC 547.92:582.572.2

110. Ken'ichi Takeda, Tameto Okanishi, Hitoshi Minato, and Ariyoshi Shimaoka: Studies on the Steroidal Components of Domestic Plants. XLV.*1

Constituents of Hosta Species. (2*2).

(Shionogi Research Laboratory, Shionogi & Co., Ltd.*3)

In the preceding paper*2 of this series, the steroidal constituents of the Hosta species; Hosta Plantaginea Asch., H. Sieboldiana Engler, and H. longipes Metsum., were investigated and gitogenin (\mathbb{N} a) was found to be the major component in all cases. In this paper we report the results of a detailed investigation of the steroidal components of H. montana F. Maekawa var. lilüflora F. Maekawa.

From the neutral fraction of the saponified methanol extract of the dried whole plant (1.5 kg.), the chloroform extract (11.2 g.) was obtained. As the paper chromatogram of this extract showed many spots, it was chromatographed on alumina and recrystallized to give the five compounds ($A\sim E$) shown in the Table I.

		m.p. (°C)	$[\alpha]_{\mathrm{D}}$	Rf value	Yield (g.)
Compound A	(Tigogenin, Ia)	204~205	-65.3	0.88	1, 080
Compound B	(Hecogenin, IIa)	$262\sim\!263$	+ 3.2	0.83	0.066
Compound C	(9-Dehydrohecogenin, Ⅲa)	$225\sim\!227$	-8.7	0.77	0.042
Compound D	(Gitogenin, Na)	$268 \sim 270$	-65.4	0.63	1.210
	(Neogitogenin Va)	$248 \sim 250$	-80.6	0.65	0.012
Compound E	(Manogenin, VIa)	$243\sim\!245$	- 3.1	0.48	0.050
-	(9-Dehydromanogenin, Wa)	$236\sim238$	-18.4	0.45	0, 132

TABLE I. Sapogenins obtained from the Chloroform Extract

Compound A (Ia), Rf value of 0.88, had the empirical formula $C_{27}H_{44}O_3$ and afforded the acetate (Ib), m.p. $204{\sim}206^{\circ}$, $[\alpha]_D$ -71.5° . The compounds (Ia and Ib) were shown to be respectively tigogenin and its acetate by mixed melting point determinations and comparisons of infrared spectra and $[\alpha]_D$ values.

Compound B (\mathbb{I} a), $C_{27}H_{42}O_4$, Rf value of 0.83, afforded the acetate (\mathbb{I} b), m.p. 248~250°, [α]_D -3.3°. The compounds (\mathbb{I} a and \mathbb{I} b) were identical with hecogenin and its acetate respectively by mixed melting point determinations and comparisons of infrared spectra.

Compound C (\mathbb{I} a), C₂₇H₄₀O₄, Rf value of 0.77, UV: λ_{max} 238 m μ (ε 13,600), afforded the acetate (\mathbb{I} b), m.p. 216 \sim 217°, [α]_D -6.3°. These compounds were established to be identical with 9-dehydrohecogenin and its acetate synthesized from hecogenin by mixed melting point and infrared spectra.

As compound D, m.p. $243\sim250^\circ$, shows two spots at Rf values of 0.63 and 0.65 in the paper chromatogram, it is obvious that compound D is a mixture of two sapogenins. By the repetition of alumina chromatography and fractional recrystallization of its acetate, two sapogenins, m.p. $268\sim270^\circ(\text{Na})$, Rf value of 0.63, and m.p. $248\sim250^\circ(\text{Va})$, Rf value of 0.65, were obtained. These compounds both corresponded to the empirical

^{*1} Part XLIV. A. Akahori: Phytochemistry, to be published.

^{*2} Part (1). K. Takeda, T. Okanishi, A. Shimaoka: Ann. Rept. Shionogi Res. Lab., 5, 633 (1955).

^{*3} Fukushima-ku, Osaka (武田健一, 岡西為人, 湊 均, 島岡有昌).

Chart 1.

formula $C_{27}H_{44}O_4$ and gave the diacetates (Nb), m.p. $242\sim244^{\circ}$, $[\alpha]_{D}$ -96.2° and Vb, m.p. $213\sim214^{\circ}$, $[\alpha]_{D}$ -71.7°, respectively. The compounds (Na and Nb) were shown to be gitogenin and its diacetate, and the compounds (Va and Vb) to be neogitogenin and its acetate by mixed melting point, infrared spectra and $[\alpha]_{D}$ values.

Compound E, m.p. $228\sim235^\circ$, also is a mixture of two sapogenins, because it shows two spots at Rf values of 0.45 and 0.48 in the paper chromatogram and two bands at 1705 (carbonyl group) and 1673 cm⁻¹ (conjugated carbonyl group) in the infrared spectrum. The separation of these two sapogenins was performed by refluxing with Girard reagent T in ethanol for 10 minutes to give compound ($\mathbb{M}a$), $C_{27}H_{42}O_5$, m.p. $243\sim245^\circ$, [α]_D -3.1° , Rf value of 0.48, and compound ($\mathbb{M}a$), $C_{27}H_{40}O_5$, m.p. $236\sim238^\circ$, [α]_D -18.4° , UV: λ_{max} 237 m μ (ε 13,200), Rf value of 0.45. Compound ($\mathbb{M}a$) afforded the diacetate ($\mathbb{M}b$), m.p. $253\sim255^\circ$, [α]_D -45.0° . The compounds ($\mathbb{M}a$ and $\mathbb{M}b$) were shown to be respectively manogenin*4 and its diacetate by mixed melting point and infrared spectra. Compound ($\mathbb{M}a$) gave the diacetate ($\mathbb{M}b$), m.p. $261\sim263^\circ$, [α]_D -63.1° . The physical constants of $\mathbb{M}a$ and $\mathbb{M}b$ are consistent with those of 9-dehydromanogenin.¹⁾ Moreover, when compound ($\mathbb{M}a$)

^{*4} The authors are very grateful to Dr. G. Rosenkranz for sending them the sample of managenin.

¹⁾ R. B. Wagner, R. F. Forker, P. F. Spitzer: J. Am. Chem. Soc., 73, 2494 (1951).

was reduced with lithium in liquid ammonia, it gave manogenin (Ma) and agavogenin²⁾ (M). Therefore, compound (Ma) was confirmed to be 9-dehydromanogenin.

It is interesting to note that sapogenins isolated from H. Maekaw var. $lil \ddot{u}flora$ F. Maekawa are all A/B trans sapogenin having a 3β -hydroxyl group.

$$VIIa \xrightarrow{\text{Li}} VIa + HO \xrightarrow{\text{HO}} VIII$$

$$VIII \text{Chart 1.}$$

Experimental*5

Isolation of the Sapogenins from the Whole Plant—The dried and sliced whole plant (collected in Akigami, Gifu) (1.5 kg.) was extracted with 80% hot MeOH (5 L. \times 4) giving a deep brown syrup, which was extracted with Et₂O (3 L. \times 2). The Et₂O-insoluble residue (450 g.) was dissolved in a solution of conc. H₂SO₄ (200 g.) in 50% EtOH (4 L.), refluxed for 6 hr. in a steam bath and poured into a great amount of H₂O. The mixture was neutralized with Na₂CO₃, left overnight at room temperature and filtered off, and the insoluble sapogenins were refluxed with 5% KOH-EtOH (1 L.) for 1 hr. The solution was poured into H₂O (1 L.) and extracted with benzene (1 L. \times 3) giving a deep brown syrup (11.2 g.). The risidue was dissolved in benzene (300 ml.) and chromatographed on Al₂O₃ (500 g.; see Table II).

I ABLE II.	Alumina	Chromatogram	OI (ne	Benzene	Extract

Fraction No.	Solvent	Rf value	Yield (g.)
1~10	benzene, benzene-CHCl ₃ (9:1)		
$11 \sim \! 26$	benzene-CHCl ₃ (5:1)	0.88	3.430
$27 \sim 31$	η (5:1)	0.88, 0.83	0.080
$32\sim\!35$	" (1:1)	0.83	0.220
$36 \sim 38$	"	0.83, 0.77	0.134
$39 \sim 40$	"	0.77	0.035
$41 \sim 48$	CHCl ₃	0.77, 0.63	0. 120
$49{\sim}61$	CHCl ₃ -MeOH (98:2)	0.77, 0.63	0.565
$62{\sim}65$	n (95:5)	0.63	0.895
$66{\sim}72$	"	0. 63, 0. 48	2.127
$73 {\sim} 79$	<i>y</i> (9:1)	0.63, 0.48	0.304
$80{\sim}87$	η $(5:1)$	0.48	0. 220

Compound A (Tigogenin, Ia)—Fractions (11 \sim 26) were recrystallized from Me₂CO giving tigogenin (Ia, 1.08 g.) as colorless prisms, m.p. $204\sim205^{\circ}$, $[\alpha]_{\rm D}^{23}-65.3\pm3^{\circ}({\rm c}=0.47)$, Rf value 0.88. Anal. Calcd. for C₂₇H₄₄O₃: C, 77.83; H, 10.65. Found: C, 77.95; H, 10.71. Acetate (Ib), colorless prisms, m.p. $204\sim206^{\circ}$, $[\alpha]_{\rm D}^{24}-71.5\pm2^{\circ}({\rm c}=1.03)$. Anal. Calcd. for C₂₉H₄₆O₄: C, 75.94; H, 10.11. Found: C, 76.06; H, 10.08.

^{*5} All melting points were taken on the Kofler block and uncorrected. Unless otherwise specified UV spectra were taken in 95% EtOH, and IR spectra and [a] values in CHCl3. Paper partition chromatography was carried out with the solvent system of toluene-AcOH (50:3) by the ascending method.³⁾

²⁾ R. E. Marker, R. B. Wagner, P. R. Ulshafer, E. L. Wittbecker, D. P. J. Goldsmith, C. H. Ruof: J. Am. Chem. Soc., 69, 2167 (1947).

³⁾ T. Okanishi, A. Akahori, F. Yasuda: Ann. Rept. Shionogi Research Lab., 8, 927 (1958).

Compound A and its acetate are identical with tigogenin (Ia) and its acetate (Ib) by mixed melting points, IR spectra and $[\alpha]_D$ values.

Compound B (**Hecogenin, Ha**) — Fractions (32 \sim 35) were recrystallized from MeOH giving hecogenin ($\rm IIa$, 66 mg.) as colorless plates, m.p. 262 \sim 263°, [α] $_{\rm D}^{23}$ +3.2±3°(c=0.527), Rf value 0.83. *Anal.* Calcd. for $\rm C_{27}H_{42}O_4$: C, 75.31; H, 9.83. Found: C, 75.45; H, 9.90. Acetate ($\rm IIb$), colorless prisms, m.p. 248 \sim 250°, [α] $_{\rm D}^{24}$ -3.3±2°(c=0.517). *Anal.* Calcd. for $\rm C_{29}H_{44}O_5$: C, 73.69; H, 9.38. Found: C, 74.03; H, 9.38.

Compound B and its acetate are identical with hecogenin (IIa) and its acetate (IIb) by mixed melting points and IR spectra.

Compound C (9-Dehydrohecogenin, IIIa)—Fractions (36 \sim 40) were rechromatographed on Al $_2$ O $_3$ and recrystallized from MeOH giving 9-dehydrohecogenin ($\rm IIa$, 42 mg.) as colorless plates, m.p. 225 \sim 227°, [α] $_D^{23}$ -8.7±4° (c=0.472), Rf value 0.77, UV: $\lambda_{\rm max}$ 238 m $_{\rm I}$ (ϵ 13,600). Anal. Calcd. for C $_{27}$ H $_{40}$ O $_4$: C, 75.66; H, 9.41. Found: C, 75.53; H, 9.51. Acetate ($\rm III$ b), colorless plates, m.p. 216 \sim 218°, [α] $_D^{24}$ -6.3±3° (c=0.462). Anal. Calcd. for C $_{29}$ H $_{42}$ O $_5$: C, 74.01; H, 9.00. Found: C, 73.82; H. 9.12.

Compound C and its acetate are identical with 9-dehydrohecogenin ($\mathbb{II}a$) and its acetate ($\mathbb{II}b$) by mixed melting points and IR spectra.

Compound D (Gitogenin, IVa and Neogitogenin, Va)—Fractions (66~79) (2.43 g.) were dissolved in a solution of Girard reagent T (3.0 g.) in EtOH (50 ml.) and AcOH (5 ml.) and refluxed for 2.5 hr. in an oil bath, and then the non-ketonic fraction (compound D, 2.1g.) and the ketonic fraction (compound E, 210 mg.) were obtained. The non-ketonic fraction and fractions ($62\sim65$) in the Table II were crystallized from MeOH to give compound D (2.2 g.), m.p. $243\sim250^\circ$, Rf values 0.63 and 0.65, which was chromatographed on Al_2O_3 giving Na (220 mg.), m.p. $266\sim268^\circ$ and a mixture of Na and Va (1.75 g.). The mixture was dissolved in Ac2O(11 ml.), refluxed for 1 hr. and allowed to stand overnight at room tempera-The separated crystalline substance was collected, washed with H_2O and recrystallized from MeOH giving Nb(1.2 g.), colorless needles, m.p. $242\sim244^{\circ}$, $[\alpha]_{D}^{23}-96.2\pm2^{\circ}(c=0.93)$. Anal. Calcd. for $C_{31}H_{48}O_{6}$: C, 72.06; H, 9.36. Found: C, 71.99; H, 9.55. The mother liquor of the separation of Nb was diluted with H₂O and the precipitated crystals (43 mg.) was collected. Recrystallization from MeOHhexane afforded Vb (16 mg.), colorless needles, m.p. $213\sim214^{\circ}$, $(\alpha)_{D}^{24}-71.7\pm6^{\circ}$ (c=0.34). Anal. Calcd. for $C_{31}H_{48}O_6$: C, 72.06; H, 9.36. Found: C, 72.07; H, 9.32. The diacetate (Nb or Vb) was saponified with 5% K_2CO_3 -MeOH giving Na, colorless prisms (from benzene) m.p. 268 \sim 270°, $(\alpha)_D^{24}$ -65.4 \pm 4° (c= 0.529), Rf 0.63 (Anal. Calcd. for C₂₇H₄₄O₄: C, 74.95; H, 10.25. Found: C, 74.89; H, 10.18) or Va, colorless prisms (from MeOH), m.p. $248\sim250^{\circ}$, $[\alpha]_{D}^{23}-80.6\pm10^{\circ}(c=0.067)$, Rf 0.65 (Anal. Calcd. for $C_{27}H_{44}O_4$: C, 74.95; H, 10.25. Found: C, 74.70; H, 10.18). Dibenzoate of Na, colorless prisms, m.p. 226~228° (from MeOH-CHCl₃), $[\alpha]_0^{24}$ -110.8 \pm 2° (c=1.098). Anal. Calcd. for C₄₁H₅₂O₆: C, 76.84; H, 8.18. Found:

Compound (Na) and its acetate (Nb) or compound (Va) and its acetate (Vb) are respectively identical with gitogenin and its acetate or neogitogenin and its acetate by mixed melting points, IR spectra and $[\alpha]_D$ values.

Compound E (Manogenin, VIa and 9-Dehydromanogenin, VIIa)——The ketonic fraction (210 mg.) of fractions $(66\sim79)$ and fractions $(80\sim87)$ (220 mg.) in the Table II were recrystallized from MeOH to give compound E (310 mg.), m.p. 228~235°, Rf values 0.45 and 0.48. Compound E (310 mg.) was dissolved in a solution of Girard reagent T (1 g.) in EtOH (30 ml.) and AcOH (3 ml.), refluxed for 10 min. in an oil bath, poured into a solution of ice H₂O (100 ml.) and 10% Na₂CO₃ (25 ml.), alkalized to pH 9.0 and extracted with Et₂O. The Et₂O layer was washed with H₂O, dried over Na₂SO₄ and evaporated leaving a crystalline substance (crude VIIa, 220 mg.). The aqueous layer was acidified to pH 1.0 with conc. HCl, left for 1 hr. at room temperature and extracted with Et2O. The Et2O extract was washed with 10% Na2CO3, dried over Na₂SO₄ and evaporated leaving a crystalline substance (crude VIa, 86 mg.), which was chromatographed on Al_2O_3 and recrystallized from MeOH to give Va(50 mg.), colorless needles, m.p. 243 \sim 245°, $[\alpha]_D^{23} - 3.1 \pm 2^{\circ} (c = 0.932)$, Rf value 0.48 (Anal. Calcd. for $C_{27}H_{42}O_5$: C, 72.61; H, 9.48. Found: C, 72.88; H, 9.43). Diacetate (Wb), colorless needles (from MeOH), m.p. $253\sim255^{\circ}$, $(\alpha)_{D}^{22}-45.0\pm2^{\circ}$ (c= 0.798) (Anal. Calcd. for $C_{31}H_{46}O_{7}$: C, 70.16; H, 8.74. Found: C, 70.04; H, 8.68). The crude Wa was chromatographed on Al₂O₃ and recrystallized from MeOH-AcOEt to give VIIa (132 mg.), colorless prisms, m.p. 236 \sim 238°, (a) $_{\rm D}^{24}$ $-18.4\pm4^{\circ}$ (c=0.505), Rf value 0.45, UV: $\lambda_{\rm max}$ 237 m $_{\rm H}$ (ϵ 13,200), IR: $\nu_{\rm max}$ 1673 cm⁻¹ (Anal. Calcd. for $C_{27}H_{40}O_5$: C, 72.94; H, 9.07. Found: C, 73.21; H, 9.28). Diacetate (Mb), colorless prisms (from MeOH), m.p. $261\sim263^{\circ}$, $[\alpha]_{\rm D}^{23}-63.1\pm3^{\circ}$ (c=0.699). Anal. Calcd. for $C_{31}H_{44}O_7$: C, 70.43; H, 8.39. Found: C, 70.00; H, 8.29.

Compound (Ma) and its acetate (Mb) are identical with manogenin and its acetate by mixed melting points and IR spectra. The physical data of Ma and Mb are in good agreement with those of 9-dehydromanogenin in the literature.

Reduction of VIIa with Lithium in Liquid Ammonia—A solution of Wa (45 mg.) in tetrahydrofuran (2 ml.) was added dropwise to a solution of Li (20 mg.) in liq. NH_3 (10 ml.) with stirring at -70° . Then,

NH₄Cl (50 mg.) was added to this solution and liq. NH₃ was evaporated at room temperature. The residue was diluted with H₂O, extracted with CHCl₃, washed with H₂O, dried over Na₂SO₄ and evaporated leaving a crystalline substance (43 mg.), which was chromatographed on Al₂O₃ to give manogenin (Wa, 25 mg.), m.p. $243\sim245^{\circ}$ and W (4 mg.), colorless needles (from AcOEt), m.p. $240\sim241^{\circ}$, $[\alpha]_{\rm D}^{23}-62\pm5^{\circ}$ (c=0.38), Rf value 0.18. Anal. Calcd. for C₂₇H₄₄O₅: C, 72.28; H, 9.89. Found: C, 72.50; H, 10.01. The physical data of W is consistent with those of agavogenin in the literature.²)

Summary

The steroidal constituents of *Hosta montana* F. Maekawa *var. lilüflora* F. Maekawa was investigated, and seven sapogenins were isolated. These sapogenins were tigogenin (Ia), hecogenin (IIa), 9-dehydrohecogenin (IIa), gitogenin (Va), neogitogenin (Va), manogenin (VIa) and 9-dehydromanogenin (VIa).

(Received February 21, 1964)

(Chem. Pharm. Bull.) 12 (7) 783 ~ 788

UDC 547.785.5.07

111. Shirō Takahashi and Hideo Kanō: Benzimidazole N-Oxides. III.*1

The Reactivity of 1-Methylbenzimidazole 3-Oxide.

(Shionogi Research Laboratory, Shionogi & Co., Ltd.*2)

In previous papers, it was reported that benzimidazole N-oxide exists in two tautomeric forms; the N-oxide form and N-hydroxy form, and that the reactivity of N-alkoxybenzimidazole, a derivative of the latter, is similar to that of ordinary heteroaromatic N-oxide or N-alkoxyquarternary salt.*

The present work is concerned with the reactivity of 1-methylbenzimidazole 3-oxide (I), the N-oxide group of which is fixed in contrast to that of 1-unsubstituted benzimidazole N-oxide. The preparation and catalytic deoxygenation of I has been already reported.¹⁾

Treatment of I with phosphorus trichloride, which is a known procedure²⁾ for deoxygenation of amine N-oxide, gave a mixture of 1-methylbenzimidazole (II) and 1-methyl-2-chlorobenzimidazole (III) in a nearly equal yield.

By the reaction with acetic anhydride, I gave a product, the analytical value of which corresponded to the one expected from the reaction of other heteroaromatic N-oxides; I-methyl-2-acetoxybenzimidazole (\mathbb{N}). But, as in the case of benzimidazole N-oxide³⁾, there is a possibility that the product may be I-methyl-3-acetyl-2-benzimidazolinone (\mathbb{V}). The infrared spectrum of this compound supports the structure (\mathbb{V}), showing a very strong, rather broad band at 1720 cm⁻¹ (in Nujol mull).

It was reported*¹ that 1-ethoxybenzimidazole reacted readily with hydrazine hydrate and sodium hydrogensulfite. I also reacted with these reagents to give 1-methyl-2-hydrazinobenzimidazole (\mathbb{M}) and sodium 1-methyl-2-benzimidazolesulfonate (\mathbb{M}), respectively. But the rates of these reactions were slower than those with 1-ethoxybenzimidazole.

^{*1} Part II. S. Takahashi, H. Kanō: This Bulletin, 12, 282 (1964).

^{*2} Fukushima-ku, Osaka (高橋史郎, 加納日出夫).

¹⁾ S. Takahashi, H. Kanō: This Bulletin, 11, 1375 (1963).

²⁾ M. Hamana: Yakugaku Zasshi, 71, 263 (1951).

³⁾ D. J. Kew, P. F. Nelson: Austral J. Chem., 15, 792 (1962).