Chem. Pharm. Bull. 17(9)1778—1781(1969)

UDC 547.53.03:547.82.03:543.422.25

Studies on the Proton Magnetic Resonance Spectra in Aromatic Systems. XIV.¹⁾ On the meta ¹H and ¹³C Chemical Shift of Monosubstituted Benzene and Pyridine Series

Yoshio Sasaki and Miyoko Suzuki

Faculty of Pharmaceutical Sciences, Osaka University2)

(Received September 25, 1968)

Meta ¹H and ¹³C chemical shifts of monosubstituted benzene and pyridine derivatives have been correlated with respect to the substituent constants σ_i and σ_{π} , and following results are presented.

- a) The π -electronic contributions observed among both ¹H and ¹³C shifts are positive.
 - b) Above conclusions are also reliable in substituted pyridines.

Introduction

Recently, the difference between π -electron charge density from the corrected aromatic ring ¹H chemical shift and that from Hueckel molecular orbital calculation has been observed in an excess charge density of substituent's *meta* position, namely, that of the former is positive, whereas the latter negative, and this problem was settled by refining the mathematical treatment.³ Nevertheless, on the origin of discrepancy observed in *meta* position, some doubts are remain unsettled. Formerly, several groups of workers^{4–6} have discussed on the origin of *meta* ¹H shift, and concluded that they were controlled mainly from the linear combination of inductive and resonance contribution, etc.

TABLE I. Calculated and Observed meta ¹H Chemical Shifts (ppm) of Monosubstituted Benzenes

Substituent	Effective shielding constant	$D_{m{i}}$	ΔE	d_m rev.	$\Delta E + d_m$ rev.	d_m
NR_2	-1.57	-1.26	-0.05	+0.15	+0.10	$+0.13^{a)}$
OH	-2.56	-2.05	-0.08	+0.09	+0.01	$+0.13^{a}$ $+0.12^{a}$
OR	-2.36	-1.89	-0.07	+0.08	$+0.01 \\ +0.01$	
${ m Me}$	-0.47	-0.38	-0.01	+0.03	$+0.01 \\ +0.02$	$+0.06^{a}$
Ac	-1.70	-1.36	-0.05	-0.08	+0.02 -0.13	$+0.10^{b}$
CO_2R	-1.55	-1.24	-0.05	-0.06	-0.13 -0.11	-0.09^{b_0} -0.10^{c_0}

 $d_m = meta$ shielding parameter

 d_m rev. = revised *meta* shielding parameter

- a) S. Castellano, C. Sun and R. Kostelnik, Tetrahedron Letters, 1967, 5205
- b) J. S. Martin and B.P. Daily, J. Chem. Phys., 39, 1722 (1963)

c) P. Diehl, Helv. Chim. Acta, 44, 829 (1961)

1) Part XIII: Y. Sasaki, M. Hatanaka and M. Suzuki, Yakugaku Zasshi, 89, 64 (1969).

2) Location: Toneyama 6-5, Toyonaka, Osaka.

3) Y. Sasaki and M. Suzuki, Chem. Pharm. Bull. (Tokyo), 17, 1090 (1969).

4) R.R. Fraser, Can. J. Chem., 38, 2226 (1960).

5) J.S. Martin and B.P. Daily, J. Chem. Phys., 39, 1722 (1963).

6) R.W. Taft and H.D. Evans, J. Chem. Phys., 27, 1427 (1957).

In this work, both ¹H and ¹³C chemical shifts of monosubstituted benzene and pyridine series have been analysed with respect to the substituent constants σ_i and σ_{π} , and semiquantitative contribution from π as well as sigma electronic effect—in other word, field effect⁸⁾ have been examined.

Results and Discussion

1. meta ¹H Chemical Shift

In this section, the details among revised9) and observed meta 1H chemical shifts are summarised in Table I, and which showed comparable agreement with $\Delta E + d_m$ rev. and d_m . Where, ΔE is a field effect component estimated from Branch & Calvin's approximation¹⁰⁾ and σ_i fraction of substituted alkyl derivatives,¹¹⁾ instead of Buckingham's electric field model.¹²⁾

Table II. Separation of Sigma and π Electronic Fraction of meta ¹³C Chemical Shifts of Monosubstituted Benzenes (ppm)

Substituent	δ_c meta	D_{p_i-meta}	D _{i-meta}
Me	-0.3	+0.12	-0.18
OMe	-0.9	+0.36	-0.54
NH_2	-1.3	+0.52	-0.78
-	-0.9	+0.36	-0.54
NMe_2	-0.2	-0.08	-0.12
Ac	-1.7	+0.68	-1.02
OH	-0.8	-0.32	-0.48
$ ext{NO}_2$ $ ext{C}_6 ext{H}_5$	$-0.3 \\ -0.4$	+0.16	-0.24

Namely, sigma electronic contribution of a substituent ΔE in aliphatic system is expressed as below:

$$\Delta E = \varepsilon^n \times D_i \tag{1}$$

where D_i =effect of substituent on an adjacent atom

n = number of bonds between substituent and functional group

 $\varepsilon = \text{empirical number } 1/3$

Moreover, as is shown in the previous study,11) the effective shielding constants13) have been shown in terms of σ_i –0.25 σ_{π} , then we are able to estimate tentatively σ_i fraction D_i and ΔE values of $meta^1H$ shifts.

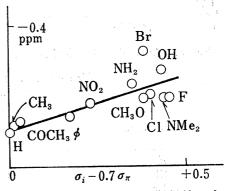


Fig. 1. meta 13C Chemical Shifts of Monosubstituted Benzenes

⁷⁾ Y. Yukawa and Y. Tsuno, J. Chem. Soc. Japan. (Pure Chemistry Section), 86, 873 (1965).

⁸⁾ M.J.S. Dewar and P.J. Grisdale, J. Am. Chem. Soc., 84, 3539 (1962); 84, 3548 (1962).

⁹⁾ Y. Sasaki and M. Suzuki, Chem. Pharm. Bull., (Tokyo), 16, 1187 (1968).

¹⁰⁾ G.E. Branch and M. Calvin, "The Theory of Organic Chemistry," Prentice Hall, Englewood Cliffs, N.J., 1946, Sec.25.

¹¹⁾ Y. Sasaki, S. Ozaki and M. Suzuki, Chem. Pharm. Bull. (Tokyo), 16, 2120 (1968).

¹²⁾ A.D. Buckingham, Can. J. Chem., 38, 300 (1960).

¹³⁾ B.P. Daily and J.N. Shoolery, J. Am. Chem. Soc., 77, 3977 (1955).

Substituent	Observed	⊿CH₄	$D_{m{i}}$	$1/27 imes D_{i}$
CH ₄	130.8	0		
$\hat{ ext{MeF}}$	53.3	-77.5		
MeCl	103.8	-27.0		
${f MeBr}$	119.3	-11.5		
Me_2O	69.3	-61.5	-43.7	-1.62
Me_3N	81.2	-49.6	-35.2	-1.30
MeNO ₂	71.4	-59.4	-42.2	-1.56
Acetone	104.0	-26.8	-19.0	-0.70
Me ₂ SO	85.2	-45.6	-32.4	

Table III. Alkyl ¹³C Chemical Shift and Sigma Electronic Fraction (ppm)

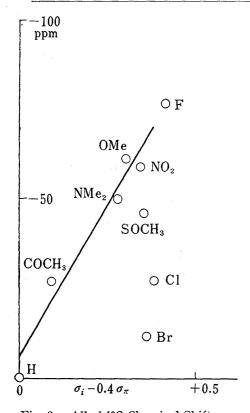


Fig. 2. Alkyl ¹³C Chemical Shifts

2. meta ¹³C Chemical Shift

In this section, observed *meta* ¹³C chemical shifts of monosubstituted benzenes¹⁴⁾ have been treated similarly as in section 1, and proved linear with σ_i —0.7 σ_{π} (cf. Fig. 1 and Table II).

Consequently, it is concluded that in *meta* ¹³C chemical shifts of monosubstituted benzenes the *pi*-electronic—in other words, resonance—effect contribution is positive.

3. Alkyl ¹³C Chemical Shift

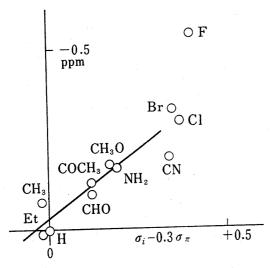
In this section, alkyl ¹³C chemical shifts¹⁵⁾ have been correlated with substituent constants, and proved linear with σ_i —0.4 σ_{π} (cf. Fig. 2).

From above relation, substituent's sigma electronic or field effect contributions D_i and those on meta positions $1/27 \times D_i$ are estimated (cf. Table III), and, fortunately, D_{i-meta} in Table II shows comparable correspondence with $1/27 \times D_i$ in Table III.

Table IV. meta ¹³C Chemical Shifts of Monosubstituted Pyridines from Pyridine Reference (ppm)

Substituent	2-Pyr	idine	3-Pyridine	4-Pyridine
	C-4	C-6	Č-5	Č –2
F	-5.4	-2.3		
Cl	-3.0	0	-0.9	
Br	-3.3	-0.4	-1.0	-1.2
NH_2	-1.7	1.6		1.0
OMe	-1.8	2.6		
Et	0.1	0.8	0.4	0.8
Me	-0.8	0.8	0.4	0.5
CN	-0.8	0.8	0.4	0.5
CHO	-1.3	0.1	-0.5	-0.9
\mathbf{Ac}	-1,0	2.1	0.2	-0.8

¹⁴⁾ G.E. Maciel and J.J. Natterstad, J. Chem. Phys., 42, 2427 (1965).


¹⁵⁾ H. Spiesecke and W.G. Schneider, J. Chem. Phys., 35, 722 (1961).

meta 13C Chemical Shifts of 2-, 3- and 4-Substituted Pyridines

Recently, ¹³C chemical shifts of 2-, 3- and 4-substituted pyridines have been presented by Retcofsky and Friedel¹⁶⁾ (cf. Table IV).

In the previous papers of this series, 17,18) the corrected ring ¹H chemical shifts of meta position in 3- and 4-substituted series have been treated with substituent constants σ_{π} , and positive correlations are acknowledged. But, in the present step, contrary to ¹H resonance, the correction terms from ring current, nitrogen magnetic anisotropy and electric field effects are not known in ¹³C resonance.

Then, in the analogous way, meta 13C shifts of above three series have been analysed directly with respect to substituent constants (cf. Fig. 3a—c), and following results are obtained.

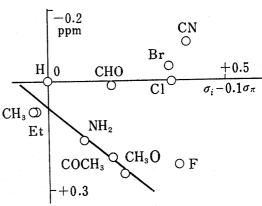
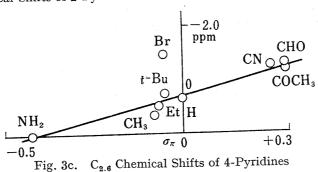



Fig. 3b. C₆ Chemical Shifts of 2- Pyridines

Fig. 3a. C₄ Chemical Shifts of 2-Pyridines

 $C_4 \infty \sigma_i - 0.4 \sigma_\pi$ 2-pyridines $C_6 \infty \sigma_i - 0.1 \sigma_\pi$ $C_5\infty$? 3-pyridines 4-pyridines

Consequently, it is concluded that positive π -electronic effect is operative in meta position. And, an anomalous behaviour observed in C-6 shift of 2-pyridines suggests that negative sigma electronic effect plays an important role. This is because the contribution from $C_6 \rightarrow N$ sigma bond polarisation is reduced as that of C₂-substituent sigma bond, which is opposed to $C_2 \rightarrow N$ sigma bond polarisation, increases.

It is a pleasure to appreciate the valuable discussions we have had with Assoc. Acknowledgement Prof. Dr. K. Nishimoto, Department of Chemistry, Faculty of Science, Osaka City University, on this topic.

¹⁶⁾ H.L. Retcofsky and R.A. Friedel, J. Phys. Chem., 71, 3592 (1967); 72, 2619 (1968).

¹⁷⁾ Y. Sasaki, M. Hatanaka, I. Shiraishi, M. Suzuki and K. Nishimoto, Yakugaku Zasshi, 89, 21 (1969).

¹⁸⁾ Y. Sasaki, M. Suzuki and M. Hattori, Chem. Pharm. Bull. (Tokyo), 17, 1515 (1969).