(Chem. Pharm. Bull.) **20**(12)2626—2633(1972)

UDC 547.789.1.04:547.491.4.04

Studies on Organic Sulfur Compounds. IX.¹⁾ The Reaction of Ethoxy-carbonyl Isothiocyanate with 4,5-Substituted 2-Aminothiazoles²⁾

MITSUO NAGANO, TAKASHI MATSUI, JUNZO TOBITSUKA, and Kozo Oyamada

Agricultural Chemical Research Laboratories, Sankyo Co., Ltd.3)

(Received May 20, 1972)

The Reactions of ethoxycarbonyl isothiocyanate (23) with 4,5-substituted 2-aminothiazoles (24) afforded thiazolo [3,2-a]-s-triazine-4-thio-2-ones (25), N-alkoxycarbonyl-N'-(2-thiazolyl)thioureas (26), alkyl-N-(2-thiazolyl)carbamates (27), ethyl-N-ethoxycarbonyl thiocarbamate (28) and thiocyanic acid (7). However, in the cases of the amines whose pKa values were smaller than that of 2-aminothiazole (24-a) or the amines which had some substituents on the 4-position of 24, the corresponding cyclic compounds (25) could not be obtained. A series of these phenomena was discussed in connection with basicities of 2-aminothiazoles (24) and the steric hindrance of the substituents on the 4-position of 24.

In the previous paper,¹⁾ the reactions of alkoxycarbonyl isothiocyanates (2) with 2-aminothiazole (1) were reported to give thiazolo[3,2-a]-s-triazine-4-thio-2-one (3), N-alkoxycarbonyl-N'-(2-thiazolyl)thioureas (4), alkyl-N-(2-thiazolyl)carbamates (5), alkyl-N-alkoxycarbonyl thiocarbamates (6) and thiocyanic acid (7). In these reactions, there seemed to be some relationships among the processes of the formation of the three products (3, 4 and 5). We are particularly interested in investigating the mechanism of the formation of 3.

The studies on the tautomeric problems of 2-aminothiazoles have been undertaken by many chemists. It is known that the basicity of 2-aminothiazole (1) is lower than that of aniline, and a proton adds preferentially to the ring nitrogen atom, thus 8 is formed by the alkylation of 1 with alkyl halides, except under strongly alkaline conditions where the intermediate anion (9) probably reacts with alkyl halides to give 10.4) Iwai and Hiraoka⁵⁾ ob-

tained 2-imino-3-(2-propynyl)-4-thiazoline (13) from 2-aminothiazole (1) and 2-propynyl bromide (11) by a similar reaction. It has been reported that the reactions of 2-amino-

¹⁾ Part VIII: M. Nagano, T. Tobitsuka, T. Matsui, and K. Oyamada, Chem. Pharm. Bull. (Tokyo), 20, 2618 (1972).

²⁾ The Third Sympodium of Heterocyclic Compounds, Tokyo, November 1970. Perliminary Report, p. 33.

³⁾ Location: Hiromachi, Sinagawa-ku, Tokyo.

⁴⁾ A.R. Katritzky and J.M. Lagowski, "Heterocyclic Chemistry," Methuen, London, 1960, p. 233—234.

⁵⁾ I. Iwai and T. Hiraoka, Chem. Pharm. Bull. (Tokyo), 12, 813 (1964).

thiazole (1) and sulfonyl halides generally afford disulfonyl compounds (17) and monosulfonyl compounds (18).6-10) Angyal11) has explained the machanism of the formation of 17 and 18 wherein the first reaction product would be the cation (14) which in the alkaline medium would lose a proton to yield 15, and this intermediate 15 would react readily with a second molecule of a sulfonyl halide to yield 17 which would be easily hydrolyzed to 18 by acids or It has been also shown that the rate of the reaction of 2-amino-4-phenylthiazole with toluene-p-sulfonyl chloride is very slow; not only the disubstituted product but also the monosubstituted product is slowly formed.¹¹⁾ Goerdeler, et al.¹²⁻¹⁵⁾ have reported that in the

reactions of acyl isothiocyanates (19) with amidines (20) (or amidinoids), which lead to triazine thiones (21), the lower the basicity of 20 and the carbonyl activity of 19 are, the greater the yield of 21 is; and on the contrary, the higher the basicity of (20) and the activity of 19 are, the greater the yields of acyl amidines (22) and thiocyanic acid (7) are. From above in-

formation, presumably the basicity and substituent groups at the 4-position of 2-aminothiazole may exert some influence on such an addition reaction. We wish now to report the reactions of ethoxycarbonyl isothiocyanate (23) and some 4,5-substituted 2-aminothiazoles.

Ethoxycarbonyl isothiocyanate (23) was treated with 5-alkyl-2-aminothiazoles (24-b, **24-c**, **24-d**, and **24-e**), whose pK_a values were larger than that of 2-aminothiazole (pK_a : 5.34), to afford 7-alkylthiazolo[3,2-a]-s-triazine-4-thio-2-ones (25-b, 25-c, 25-d, and 25-e), N-ethoxycarbonyl-N'-(5-alkyl-thiazol-2-yl)thioureas (26-b, 26-c, 26-d, and 26-e), ethyl-N-(5-alkylthiazol-2-yl)carbamates (27-b, 27-c, 27-d, and 27-e), ethyl-N-ethoxycarbonyl thiocarbamate (28) and thiocyanic acid (7). The rates of the reactions of 23 with 2-amino-4-methyl-thiazole (24-j, pK_a : 5.86) and 2-amino-4,5-dimethylthiazole (24-m, pK_a : 6.29) were so fast that the starting amines could not be recovered, and the thiazolyl thioureas (26-j and 26-m) were isolated in good yields, followed by small amounts of the thiazolyl carbamates (27-j and 27-m) and N-ethoxycarbonyl thiocarbamate (28); but, in spite of their larger pK_a values, the corresponding thiazolo[3,2-a]-s-triazine-4-thio-2-one could not be obtained in each case (Chart 2). 2-Amino-5-phenylthiazole (24-f, p K_a : 4.78) was reacted with (23) to afford N-ethoxy-

⁶⁾ Brit. Patent 533, 495 Feb. 14, 1941.

⁷⁾ W.G. Raiziss and W.L. Clemence, J. Amer. Chem. Soc., 63, 3124 (1941).

⁸⁾ P.C. Price and H.R. Reitsema, J. Org. Chem., 12, 269 (1947).

⁹⁾ V.C. Deliwala, K. Ganapachi, and W.M. Shirsat, Proc. Indian Acad. Sci., 18A, 360 (1943).

¹⁰⁾ T.S. Angyal, O.W. Morris, and K.W. Warburton, Aust. J. Sci. Res., A5, 368 (1952).

¹¹⁾ T.S. Angyal, Aust. J. Sci. Res., A5, 374 (1952).

¹²⁾ J. Goerdeler, Q. Report on Sulfur Chemistry, 5, 169 (1970).

¹³⁾ J. Goerdeler and J. Neuffer, Tetrahedron Letters 1967, 2791.

¹⁴⁾ J. Goerdeler and J. Neuffer Chem. Ber., 104, 1580 (1971).

¹⁵⁾ J. Goerdeler and J. Neuffer, Chem. Ber., 104, 1606 (1971).

carbonyl-N'-(5-phenyl-thiazol-2-yl)thiourea (26-f), ethyl-N-(5-phenyl-thiazol-2-yl)carbamate (27-f), 28 and 7. On the other hand, in the case of 2-amino-4-phenylthiazole (24-k, pK_a : 4.32) only one product, namely 1-ethoxycarbonyl-3-(4-phenyl-thiazol-2-yl)thiourea (26-k), was obtained in good yield despite its smaller pK_a value than that of (24-f), but thiocyanic acid (7) could not be formed. However, even in the cases of 5-bromo-(24-g), 5-thiocyanato-(24-h), and 5-nitro-2-aminothiazole (24-i), whose pK_a values were smaller than that of 2-amino-4-phenylthiazole (24-k), the thiazolyl thioureas (26-g, 26-h, and 26-i), the thiazolyl carbamates (27-g, 27-h, and 27-i), (28) and (7) were produced in each case. Furthermore, in the case of 2-aminobenzothiazole (24-l), whose pK_a value was similar to that of (24-k), two compounds (26-l) and (27-l), besides starting amine, were isolated (Chart 2).

It was observed in nuclear magnetic resonance (NMR) spectra that the three thiazolo-[3,2-a]-s-triazine-2-thio-4-ones (25-b, 25-c, and 25-d), which were obtained by the reactions

Table I. The pK_a Values of 2-Aminothiazoles and Isolated Yields of the Products

	A CONTRACTOR OF THE PROPERTY O	***************************************	And the second s					
$R_1 = N$ N = N	pKa (temp. °C)	$R_1 = S$	$\begin{array}{c c} R_1 & S \\ \hline R_1 & N & S \\ \hline R_2 & P-NHCNHCO_2Et \end{array}$	R ₁ - O ₂ Et R ₃ '	$\stackrel{N}{=}_{\mathrm{S}}^{\mathrm{N}}$	R ₁ N R ₂ NHCO ₂ Et EtOÜNHCO ₂ Et	HSCN	Recovered Compd. (24)
$K_2 \setminus S \setminus S$		$R_2 \wedge S \wedge N \wedge 0$ 25	26	g ·	27	28	7	
(*)C) H - a a	5 34 (5 39)16) (96)	29.0 (%) (25-a)	50.0(%) (26- a		7.0 (%) (27-a)	2.8 (%)	+	not isolated
$N_1 = N_2 = 11 \begin{pmatrix} 24 & a \end{pmatrix}$	(22) (20:0) ±0:0	(3)		, ·	- 1			
P - H - P - Me (24-h)	5 88 (25)	39.1 (25-b)	43.2 (26-b)		6.8 (27-b)	2.8	+	not isolated
R — H R — E+ (24- c)			40.5	(6.5 (27-c)	2.8	+	not isolated
$r_1 = r_1, r_2 - r_1 (4 - c)$ $r_2 - r_1 = r_2 - r_2 (2 - d)$			42.5		6.7 (27-d)	2.3	+	not isolated
$N_1 = 11, N_2 = n-11 (27 - n)$ $D_1 = H_1 B_1 = n B_1 (24 - n)$	5 91		39.2		6.6 (27-e)	3.4	+	not isolated
$N_1 = 11, N_2 = n - Du(24 - e)$ 5.51 D H D - C H $(24 - f) / 4 / 78$		t isc			8.9 (27-f)	0.7	+	10.2 (%)
$N_1 = \Pi, N_2 = \bigvee_{\ell} \Pi_{\ell} (2\pi^{-1})$ $D = \Pi P = Pr (2d - \sigma)$		not isolated			2.3 (27-g)	8.0	+	42.3
$N_1 = \Pi$, $N_2 = D_1 \begin{pmatrix} 24 - \mathbf{g} \end{pmatrix}$ $\mathbf{p} = \Pi \cdot \mathbf{p} = \mathbf{C} \mathbf{N} \begin{pmatrix} 24 \cdot \mathbf{k} \end{pmatrix}$		not isolated			2.6 (27-h)	9.0	+	50.9
$N_1 = 11, N_2 = 500 (24 - 11)$ $P = H P = NO (24 - 11)$		not isolated			2.3 (27- i)	1.0	+	57.5
$E_1 = 11, E_2 = 110, E_3 = 1$		not isolated			4.3 (27-j)	1.2	+	not isolated
$R_1 = C_6H, R_2 = H(24-K)$	4.32	not isolated	77.5 (26-K)		not isolated	not isolated	trace	8.3 (%)
N	4.32 (4.51) ¹⁶⁾ (27)	not isolated	66.5 (26-1)		15.3 (27-1)	not isolated	+	6.5
$\mathbb{R}_1 = \mathbb{R}_2 = \mathbb{M}e \ (24-m)$	6.29 (26)	not isolated	84.8 (26-m)		6.0 (27-m)	1.4	+	not isolated

¹⁶⁾ A. Albert. R. Goldace, and J. Philips, J. Chem. Soc., 1948, 2240.

of ethoxycarbonyl isothiocyanate (23) with 5-alkyl-2-aminothiazoles (24-b, 24-c, and 24-d), existed in two tautomeric forms in a solvent. For example, the peak of 6-H of 7-ethyl-thiazolo[3,2-a]-s-triazine-4-thio-2-one (25-c) was observed at $2.10\,\tau$ and $2.94\,\tau$ with an intensity ratio of 2 to 1 in dimethyl sulfoxide (DMSO). The two tautomers of this cyclic compound were supposed to be the keto-forms (25-c and 29) rather than the enol-form (30) on the basis of the IR spectrum (>C=O: 1690 cm⁻¹), and by the comparison with the chemical shifts of the 6-H of 7-ethyl-4-methylthiothiazolo[3,2-a]-s-triazine-2-one (31: 2.44 τ), 7-ethyl-3-methylthiazolo[3,2-a]-s-triazine-4-thio-2-one (32: 2.08 τ) and 7-ethyl-2-methylthiothiazolo[3,2-a]-s-triazine-4-one (33: 2.18 τ) in DMSO.

From above mentioned facts, it became clear that in the reaction of ethoxycarbonyl isothiocyanate (23) with 2-aminothiazoles (24), the rates of the reactions were dependent on the basicity of the amines (24), but the sorts and the yields of the reaction products might be attributed to both the basicity of (24) and the steric hindrance of the substituent groups at 4-position of (24). However, the mechanism of the formation of three compounds (25, 26, and 27) remains to be solved. The structures of the isolated products were confirmed on the basis of analytical and spectral data. The pK_a values of 2-aminothiazoles and the yields of isolated products are summarized in Table I.

Experimental¹⁷)

 pK_a Measurements—The pKa values of 2-aminothiazoles (24) were determined by the spectrophotometric method¹⁸) in aqueous solution containing 4% alcohol.¹⁹)

General Method for the Reactions of Ethoxycarbonyl Isothiocyanate (23) with 4,5-Substituted 2-Aminothiazoles (24)—To a solution of 2-aminothiazoles (0.01 mole) in AcOEt (30 ml), a solution of ethoxycarbonyl isothiocyanate (0.011 mole) in AcOEt (20 ml) was added dropwise at 0—5°, and the mixture was allowed to stand over night and then the reaction solution was refluxed for 2 hr, washed with aqueous NaHCO₃ and H₂O, and dried over anhyd. Na₂SO₄. After removal of the solvent under reduced pressure, the residue was eluted with AcOEt-benzene on silica gel, and the isolated compounds were refined by recrystallization.

Reaction of 23 with 2-Amino-5-methyl-thiazole (24-b) — 1.45 g of 23 was treated with 1.16 g of 24-b to afford four compounds (25-b, 26-b, 27-b, and 28). 7-Methyl-thiazolo[3,2-a]-s-triazine-4-thio-2-one (25-b), 0.78 g, pale yellow needles from acetone, mp 250—252° (decomp.). Anal. Calcd. for $C_6H_5ON_3S_2$: C, 36.19; H, 2.53; N, 21.10; S, 32.19. Found: C, 36.10; H, 2.47; N, 21.37; S, 32.01. Mass Spectrum: $M^+=199$. IR $v_{\text{max}}^{\text{Muso}}$ cm⁻¹: 3150 (\rangle NH), 1690 (\rangle C=O). NMR (DMSO- d_6) τ (J=Hz): 7.76 and 7.66 (1: 4, d, J=1.0): methyl protons), 2.94 and 2.08 (1: 3, q, J=1.0): methyn proton), ca. 1.0 and ca. —2.60 (1: 3, broad: \rangle NH). N-Ethoxycarbonyl-N'-(5-methyl-thiazol-2-yl)thiourea (26-b). 1.11 g, pale yellow prisms from benzene, mp 173—174°. Anal. Calcd. for $C_8H_{11}O_2N_3S_2$: C, 39.15; H, 4.52; N, 17.12; S, 26.13. Found:

¹⁷⁾ All melting points were uncorrected. NMR spectra were obtained in the specified solvents on a Varian A-60 spectrometer. Mass spectrum was determined on a JEOL JMS-OISG spectrometer.

¹⁸⁾ A. Albert and E.P. Serjent, "Ionization Constants of Acids and Bases," Methuen, London, 1962.

¹⁹⁾ pKa Measurements were carried out on the Beckman model DB spectrometer at the temperature shown in Table I.

C, 39.23; H, 4.44; N, 17.22; S, 26.33. IR $\nu_{\text{max}}^{\text{Nuiol}}$ cm⁻¹: 3180 (>NH), 1730 (>C=O). NMR (CDCl₃) τ (J= Hz): 8.62 (3H, t, J=7.0), 7.51 (3H, d, J=1.5), 5.56 (2H, q, J=7.0), 2.56 (1H, q, J=1.5), ca. 1.54 (1H), ca. -3.12 (1H). UV $\lambda_{\text{max}}^{\text{BioH}}$ m μ (\$\varepsilon\$): 232 (8500), 261.5 (16800), 313 (11200). Ethyl N-(5-methylthiazol-2-yl)-carbamate (27-b)*, 0.124 g, colorless needles from isopropyl ether, mp 149—150°. Anal. Calcd. for C₇H₁₀-O₂N₂S: C, 45.16; H, 5.14; N, 15.05; S, 17.19. Found: C, 45.48; H, 5.49; N, 15.00; S, 17.04. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3180 (>NH), 1718 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.60 (3H, t, J=7.0), 7.64 (3H, d, J=1.5), 5.68 (2H, q, J=7.0), 2.97 (1H, q, J=1.5), ca. -2.30 (1H). UV $\lambda_{\text{max}}^{\text{BioH}}$ m μ (\$\varepsilon\$): 262.5 (9800). *This compound (27-b) agreed with the sample prepared from (24-b) and methyl chloroformate in the presence of triethyl amine. ²⁰ Ethyl N-ethoxycarbonyl thiocarbamate (28) (0.05 g) agreed with the sample prepared by treatment of 23 with ethyl alcohol. ¹ Thiocyanic acid (7) was detected by the color reaction with ferric chloride.

Reaction of 23 with 2-Amino-5-ethylthiazole (24-c)——1.45 g of (23) was treated with 1.30 g of 2-amino-5-ethylthiazole (24-c) to afford three compounds (25-c, 26-c, and 27-c) besides 0.05 g of (28). 7-Ethylthiazolo[3,2-a]s-triazine-4-thio-2-one (25-c), 0.785 g, colorless needles from acetone, mp 212—214° (decomp.). Anal. Calcd. for $C_7H_7ON_3S_2$: C, 39.44; H, 3.31; N, 19.72; S, 30.01. Found: C, 39.68; H, 3.39; N, 19.37; S, 29.57. IR $v_{\text{main}}^{\text{Nuloi}}$ cm⁻¹: 3200 (\rangle NH), 1690 (\rangle C=O). NMR (DMSO- d_6) τ (J=Hz): 8.82 and 8.78 (1: 2, t, J=7.0, methyl protons), 6.28 and 6.26 (1: 2, q, d, J_1 =7.0, J_2 =1.3, methylene protons), 2.94 and 2.10 (1: 2, t, J=1.3: methyn proton), ca. 0.84 and -1.98 (1: 2, broad, -NH). UV $\lambda_{\text{main}}^{\text{EioH}}$ mµ (ϵ): 245 (8600), 284 (11900), 314 (5300). N-Ethoxycarbonyl-N'-(5-ethylthiazol-2-yl)thiourea (26-c), 1.05 g, colorless needles from ethyl acetate, mp 166—167° (decomp.). Anal. Calcd. for $C_9H_{18}O_2N_3S_2$: C, 41.70; H, 5.06; N, 16.21; S, 24.68. Found: C, 41.49; H, 5.23; N, 16.19; S, 24.71. IR $v_{\text{main}}^{\text{Nuloi}}$ cm⁻¹: 3170 (\rangle NH), 1740 (\rangle C=O). NMR (CDCl₃) τ (J=Hz): 8.70 (3H, t, J=7.0), 8.68 (3H, t, J=7.0), 7.77 (2H, q, d, J_1 =7.0, J_2 =1.0), 5.68 (2H, q, J=7.0), 2.75 (1H, t, J=1.0), ca. 1.60 (1H), ca. -2.56 (1H). UV $\lambda_{\text{main}}^{\text{EioH}}$ mµ (ϵ): 232.5 (8600), 261 (17000), 312 (10800). Ethyl N-(5-ethyl-thiazol-2-yl)carbamate (27-c)*, 0.13 g, colorless needles from isopropyl ether, mp 104—105°. Anal. Calcd. for $C_8H_{12}O_2N_2S$: C, 47.99; H, 6.04; N, 13.99; S, 15.98. Found: C, 47.84; H, 6.22; N, 13.82; S, 15.92. IR $v_{\text{main}}^{\text{Nuloi}}$ cm⁻¹: 3200 (=NH), 1730 (\rangle C=O). NMR (CDCl₃) τ (J=Hz): 8.71 (3H, t, J=7.0), 8.65 (3H, t, J=7.0), 8.23 (2H, q, d, J1=7.0, J2=1.0), 5.67 (2H, q, J1=7.0), 2.96 (1H, t, J1=1.0), ca. -1.0 (1H). *This compound (27-c) agreed with the sample prepared from 24-c and ethyl chloroformate in the presence of triethyl amine. 20)

Methylation of 7-Ethylthiazolo[3,2-a]-s-triazine-4-thio-2-one (24-c) with Methyl Iodide— —A mixture of 2.13 g of 24-c, methyl iodide (1.8 g), triethyl amine (1.2 g) and AcOEt (50 ml) was refluxed for 5 hr, and the reaction mixture was washed with satd. aqueous NaHCO3 solution and then H2O, dried over anhyd. Na₂SO₄. After removal of solvent the residue was eluted with AcOEt-benzene over silica gel to afford two products (31 and 32). 7-Ethyl-4-methylthiothiazolo[3,2-a]-s-triazine-2-one (31), 0.65 g, colorless needles from benzene, mp 170—171°. Anal. Calcd. for C₈H₉ON₃S₂: C, 42.29; H, 3.99; N, 18.50; S, 28.17. Found: C, 42.40; H, 4.30; N, 18.31; S, 28.25. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1666 (\rangle C=O), 1617 (\rangle C=N- or \rangle C=C \langle). NMR (DMSO d_6) τ (J = Hz): 8.77 (3H, t, J = 7.5), 7.35 (3H, s), 7.25 (2H, q, t, $J_1 = 7.5$, $J_2 = 1.3$), 2.44 (1H, t, J = 1.3). UV $\lambda_{\max}^{\text{BtOH}} \ \text{m}\mu$ (ϵ): 244.3 (16100), 273.5 (14500). 7-Ethyl-3-methylthiazolo[3,2-a]-s-triazine-4-thio-2-one (32)*, 1.13 g, colorless needles from AcOEt, mp 148—149°. Anal. Calcd. for $C_8H_9ON_3S_2$: C, 42.29; H, 3.99; N, 18.50; S, 28.17. Found: C, 42.62; H, 4.24; N, 18.05; S, 27.92. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1696 (>C=O), 1622 (>C=C< or >C=N-). NMR (DMSO- d_6) τ (J=Hz): 8.77 (3H, t, J=7.5), 7.25 (2H, q, t, J₁=7.5, J₂=1.2), 6.39 (3H, s), 2.08 (1H, t, J=1.2). UV $\lambda_{\max}^{\text{EiOH}}$ m μ (ε): 242.5 (6600), 268 (11400), 291.2 (15300). *0.8 g of 32 was oxidized with Hg (AcO)₂ to give 0.4 g of 34. 7-Ethyl-3-methylthiazolo[3,2-a]-s-triazine-2,4-dione (34), colorless needles from acetone, mp 168—169°. Anal. Calcd. for C₈H₉O₂N₃S: C, 45.50; H, 4.30; N, 19.90; S, 15.15. Found: C, 45.52; H, 4.33; N, 19.63; S, 14.93. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1740 (>C=O), 1670 (>C=O), 1620 (>C=C\(\) or >C=N-). NMR (DMSO- d_6) τ (J=Hz): 8.79 (3H, t, J=7.0), 7.28 (2H, q, t, J1=7.0, J2= 1.3), 6.78 (3H, s), 2.48 (1H, t, J=1.3). UV $\lambda_{\max}^{\text{BtOH}}$ m μ (ϵ): 240 (5800), 288 (9700).

Preparation of 7-Ethyl-2-methylthio-thiazolo[3,2-a]-s-triazine-4-one (33)——2.59 g of N-ethoxycarbonyl-N'-(5-ethyl-thiazol-2-yl)thiourea (26-c) was heated at 170—180° under N₂ gas for 5 minutes, and the residue was solved in acetone (100 ml). To the solution methyl iodide (1.8 g) and triethyl amine (1.2 g) were added, and the mixture was refluxed for 3 hr, and the reaction mixture was washed with satd. aqueous NaHCO₃, H₂O and dried over anhd. Na₂SO₄. After removal of solvent, the residue was recrystallized from benzene to afford 0.4 g of (33) as colorless needles of mp 135—137°. Anal. Calcd. for C₈H₉ON₃S₂: C, 42.29; H, 3.99; N, 18.50; S, 28.17. Found: C, 42.37; H, 3.72; N, 18.34; S, 28.15. IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1702 (>C=O), 1600 (>C=C< or >C=N-). NMR (DMSO-d₆) τ (J=Hz): 8.72 (3H, t, J=7.5), 7.50 (3H, s), 7.12 (2H, q, d, J₁=7.5, J₂= 1.3), 2.18 (1H, t, J=1.3). UV $\lambda_{\rm max}^{\rm EtOH}$ m μ (\$): 246 (7000), 267 (8100), 314 (20000).

Reaction of 23 with 2-Amino-5-*n*-propylthiazole (24-d)—1.45 g of 23 was treated with 1.42 g of (24-d) to afford three products (25-d, 26-d and 27-d) besides 0.04 g of (28). 7-*n*-Propylthiazolo[3,2-*a*]-*s*-triazine-4-thio-2-one (25-d), 0.84 g, colorless needles from AcOEt, mp 192—193°. *Anal.* Calcd. for $C_8H_9ON_3S_2$: C, 42.27; H, 3.99; N, 18.49; S, 28.21. Found: C, 42.08; H, 4.17; N, 18.30; S, 27.80. IR ν_{max}^{Nujol} cm⁻¹: 3170 (>NH), 1680 (>C=O). NMR (DMSO- d_6) τ (J=Hz): 9.05 and 9.03 (1: 2, t, J=7.0, methyl protons), 8.39

²⁰⁾ U.S.A. Patent 2850503 Sept. 2, 1958.

and 8.36 (1: 2, $J_1 = J_2 = 7.0$: methylene protons), 7.54 (2H, t, d, $J_1 = 7.0$, $J_2 = 1.0$, methylene protons: overlap to the peaks of DMSO), 2.91 and 2.06 (1: 2, t, J = 1.0, methyn proton), ca. 0.97 and ca. -1.78 (1: 2, broad: >NH). N-Ethoxycarbonyl-N'-(5-n-propylthiazol-2-yl)thiourea (26-d), 1.16 g, colorless needles from benzene, mp 119—121° (decomp.). Anal. Calcd. for $C_{10}H_{15}O_2N_3S_2$: C, 43.95; H, 5.53; N, 15.37; S, 24.43. Found: C, 43.95; H, 5.66; N, 15.15; S, 24.11. IR v_{\max}^{Nulot} cm⁻¹: 3170 (>C=O). NMR (CDCl₃) τ (J = Hz): 9.03 (3H, t, J = 7.0), 8.66 (3H, t, J = 7.0), 8.29 (2H, q, t, $J_1 = J_2 = 7.0$), 7.23 (2H, t, d, $J_1 = 7.0$), $J_2 = 1.0$), 5.62 (2H, q, J = 7.0), 2.75 (1H, t, J = 1.0), ca. 1.52 (1H), ca. -2.64 (1H). UV $\lambda_{\max}^{\text{EiOH}}$ mµ (s): 233 (8300), 261.5 (15400), 314 (11500). Ethyl-N-(5-n-propylthiazol-2-yl)carbamate (27-d)*, 0.13 g, colorless needles from n-hexane-benzene, mp 118—119°. Anal. Calcd. for $C_9H_{14}O_2N_2S$: C, 50.46; H, 6.59; N, 13.08; S, 14.94. Found: C, 50.10; H, 6.59; N, 12.72: S, 14.92. IR v_{\max}^{Nulot} cm⁻¹: 3210 (>NH), 1740 (>C=O). NMR (CDCl₃) τ (J = Hz): 9.02 (3H, t, J = 7.0), 8.62 (3H, t, J = 7.0), 8.31 (2H, q, t, $J_1 = J_2 = 7.0$), 7.36 (2H, t, d, $J_1 = 7.0$, $J_2 = 1.0$), 5.66 (2H, q, J = 7.0), 2.92 (1H, t, J = 1.0), ca. -2.48 (1H). UV $\lambda_{\max}^{\text{EiOH}}$ mµ (s): 263.5 (10300). *This compound (27-d) agreed with the sample prepared from 24-d and ethyl chloroformate in the presence of triethyl amine.

Reaction of 23 with 2-Amino-5-n-butylthiazole (24-e)—1.45 g of 23 was treated with 1.42 g of 24-e to afford three products (25-e, 26-e and 27-e) besides 0.06 g of (28). 7-n-Butylthiazolo[3,2-a]-s-triazine-4thio-2-one (25-e), 0.92 g, colorless needles from benzene, mp 174-175°. Anal. Calcd. for C₉H₁₁ON₃S₂: C, 44.81; H, 4.60; N, 17.42; S, 26.53. Found: C, 44.53; H, 4.65; N, 17.31; S, 26.53. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 2170 (\rangle NH), 1690 (-C=O). NMR (DMSO- d^6) τ (J=Hz): 9.14 (3H, t, J=6.2), 8.92—8.16 (4H, m), 7.28 (2H, t, d, $J_1=7.0$, $J_2=1.0$), 2.10 (1H, t, J=1.0), ca. -3.04 (1H). N-Ethoxycarbonyl-N'-(5-n-butylthiazolol-2-10) yl)thiourea (26-e), 1.125 g, colorless needles from ethyl acetate, mp 103—104°. Anal. Calcd. for C₁₁H₁₇- $O_2N_3S_2$: C, 45.99; H, 5.97; N, 14.63; S, 22.08. Found: C, 45.78; H, 5.84; N, 14.52; S, 21.71. IR v_{\max}^{Nujol} cm⁻¹: 3200 (-NH), 1732 (=C=O). NMR ((CD₃)₂C=O] τ (J=Hz): 9.06 (3H, t, J=7.0), 8.48 (3H, t, J=7.0), 8.88— 8.06 (4H, m), 7.18 (2H, t, d, $J_1=7.0$, $J_2=1.0$), 5.65 (2H, q, J=7.0), 2.72 (1H, t, J=1.0), ca. -0.42 (1H), ca. -2.90 (1H). UV $\lambda_{\max}^{\text{EtoH}} \ \text{m}\mu$ (ϵ): 232 (8100), 262 (16800), 314 (11700). Ethyl N-(5-n-butylthiazolol-2yl)carbamate (27-e)*, 0.15 g, colorless needles from n-hexane-benzene, mp 91—92°. Anal. Calcd. for $C_{10}H_{16}$ - $O_2N_2S: C, 52.62; H, 7.07; N, 12.27; S, 14.02.$ Found: C, 52.17; H, 7.04; N, 12.13; S, 14.10. IR $\nu_{\max}^{\text{Nujol}}$ cm⁻¹: 3220 (\rangle NH), 1730 (\rangle C=O). NMR (CDCl₃), (J=Hz): 0.06 (3H, t, J=6.2), 8.92—7.98 (4H, m), 8.62 (3H, m), 8.6 t, J=7.0), 8.23 (2H, t, d, $J_1=7.0$, $J_2=1.0$), 5.65 (2H, q, J=7.0), 2.92 (1H, t, J=1.0), ca. -2.76 (1H). UV $\lambda_{\max}^{\text{Bioh}} \ \text{m} \mu$ (e): 263.5 (10400). *This compound (27-e) agreed with the sample prepared from 2-amino-5-nbutylthiazole (24-e) and ethyl chloroformate in the presence of triethyl amine.

Reaction of 2-Amino-5-phenylthiazole (24-f) and 23—In the reaction of 1.45 g of 23 and 1.77 g of 24-f, two compounds (26-f and 27-f), besides 0.18 g of 24-f and 0.02 g, of 28, could be isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(5-phenylthiazol-2-yl)thiourea (26-f), 2.12 g, colorless needles from ethyl acetate, mp 159—160° (decomp.). Anal. Calcd. for $C_{13}H_{13}O_2N_3S_2$: C, 50.81; H, 4.26; N, 13.68; S, 20.82. Found: C, 51.68; H, 4.27; N, 13.13; S, 20.54. IR v_{\max}^{Nujol} cm⁻¹: 3140 (>NH), 1728 (>C=O). NMR [(CD₃)₂C=O] τ (J=Hz): 8.65 (3H, t, J=7.0), 5.64 (2H, q, J=7.0), 2.78—2.14 (5H, m), 2.10 (1H, s), ca. —0.56 (1H, m), ca. —2.94 (1H, m). UV $\lambda_{\max}^{\text{Blob}}$ mμ (ε): 267 (16400), 333 (11500). Ethyl N-(5-phenylthiazol-2-yl)carbamate (27-f)*, 0.22 g, colorless needles from ethyl acetate, mp 201—202°. Anal. Calcd. for $C_{12}H_{12}O_2N_2S$: C, 58.06; H, 4.87; N, 11.29; S, 12.89. Found: C, 57.69; H, 4.88; N, 11.00; S, 12.85. IR v_{\max}^{Nujol} cm⁻¹: 3200 (>NH), 1728 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.58 (3H, t, J=7.0), 5.62 (2H, q, J=7.0), 2.78—2.26 (5H, m), 2.43 (1H, s), ca. —2.70 (1H). UV $\lambda_{\max}^{\text{Blob}}$ mμ (ε): 297.5 (18800). *This compound (27-f) agreed with the sample prepared from 24-f and ethyl chloroformate in the presence of triethyl amine.

Reaction of 23 with 2-Amino-5-bromothiazole (24-g)—In the reaction of 1.45 g of 23 and 1.79 g of 24-g, two products (26-g and 27-g), besides 0.76 g of 24-g and 0.015 g of 28, were isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(5-bromothiazol-2-yl)thiourea (26-g), 1.38 g, pale yellow needles from acetone, mp 175° (decomp.). Anal. Calcd. for $C_7H_8O_2N_3S_2Br$: C, 27.10; H, 2.60; N, 13.55; S, 20.68; Br, 25.76. Found: C, 27.14; H, 2.70; N, 13.36; S, 20.68; Br, 25.98. IR v_{\max}^{Nuiol} cm⁻¹: 3170 (>NH), 1720 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.71 (3H, t, J=7.0), 5.72 (2H, q, J=7.0), 2.28 (1H, s), ca. —1.96 (2H). UV $\lambda_{\max}^{\text{BioH}}$ m μ (ε): 262.5 (16200), 314 (11000). Ethyl N-2-(5-bromothiazolyl)carbamate (27-g), 0.058 g, colorless needles from ethyl acetate, mp 175—176°. Anal. Calcd. for $C_6H_7O_2N_2SBr$: C, 28.69; H, 2.80; N, 11.15; S, 12.76; Br, 31.82. Found: C, 29.02; H, 2.79; N, 11.15; S, 12.76; Br, 31.87. IR v_{\max}^{Nujol} cm⁻¹: 3180 (>NH), 1728 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.60 (3H, t, J=7.0), 5.64 (2H, q, J=7.0), 2.74 (1H, s), ca. —2.18 (1H). UV $\lambda_{\max}^{\text{BioH}}$ m μ (ε): 266 (8600).

Reaction of 23 with 2-Amino-5-thiocyanatothiazole (24-h)——In the reaction of 1.45 g of 23 and 1.57 g of 24-h, two products (26-h and 27-h), besides 0.8 g of 24-h and 0.011 g of 28, were isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(5-thiocyanatothiazol-2-yl)thiourea (26-h), 1.10 g, pale yellow needles from acetone, mp 189—191° (decomp.). Anal. Calcd. for $C_8H_8O_2N_4S_3$: C, 33.34; H, 2.80; N, 19.44; S, 33.31. Found: C, 33.60; H, 2.84; N, 18.99; S, 32.91. IR $\nu_{\max}^{\text{Nijol}}$ cm⁻¹: 3190 (NH), 2130 (SCN), 1715 (C=O). NMR (DMF) τ (J=Hz): 8.66 (3H, t, J=7.0), 5.64 (2H, q, J=7.0), 1.88 (1H, s), ca. -2.10 (1H), ca. -3.30 (1H). UV $\lambda_{\max}^{\text{EtOH}}$ m μ (ε): 248 (15600), 263 (15200), 314 (10800). Ethyl-N-(5-thiocyanato-2-yl)thiourea (27-h)*, 0.05 g, pale yellow prisms from benzene, mp 194—196°. Anal. Calcd. for $C_7H_7O_2N_3S_2$:

C, 36.69; H, 3.08; N, 18.34; S, 27.92. Found: C, 36.24; H, 3.00; N, 18.32; S, 27.79. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3120 (NH), 2150 (SCN), 1730 (SCN),

Reaction of 23 with 2-Amino-5-nitrothiazole (24-i)——In the reaction of 1.45 g of 23 and 1.45 g of 24-i, two products (26-i and 27-i), besides 0.83 g 24-i and 0.018 g of 28, were isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(5-nitrothiazol-2-yl)thiourea (26-i), 0.80 g, pale yellow needles from ethyl acetate, mp 173—174° (decomp.). Anal. Calcd. for $C_7H_7O_4N_4S_2$: C, 30.44; H, 2.92; N, 20.29; S, 23.17. Found: C, 30.43; H, 2.83; N, 20.54; S, 23.42. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3150 (>NH), 1730 (>C=O). NMR [(CD₃)₂C=O] τ (J=Hz): 8.65 (3H, t, J=7.0), 5.51 (2H, q, J=7.0), 1.46 (1H, s), ca. —0.92 (1H), ca. —3.32 (1H). UV $\lambda_{\text{max}}^{\text{BioH}}$ m μ (ε): 240 (15700), 277.5 (11900). 354 (10300), 432.5 (5900). Ethyl-N-(5-nitrothiazol-2-yl)carbamate (27-i)*, 0.05 g, pale yellow needles from ethyl acetate, mp 197—198°. Anal. Calcd. for $C_6H_7O_4N_3$ S: C, 33.19; H, 3.24; N, 19.35; S, 14.73. Found: C, 33.61; H, 3.34; N, 11.05; S, 14.67. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3160 (>NH), 1735 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.58 (3H, t, J=7.0), 5.54 (2H, q, J=7.0), 1.72 (1H, s), ca. —1.60 (1H). UV $\lambda_{\text{max}}^{\text{EtoH}}$ m μ (ε): 231 (6600), 340 (11400), 417.5 (2600). *This compound (27-i) agreed with the sample prepared from 24-i and ethyl chloroformate in the presence of triethyl amine.

Reaction of 23 with 2-Amino-4-methylthiazole (24-j)——In the reaction of 1.45 g of 23 and 1.16 g of 24-j, two products (26-j and 27-j), besides 0.022 g of 28, were isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(4-methylthiazol-2-yl)thiourea (26-j), 2.14 g, colorless needles from isopropyl ether, mp 140—141° (decomp.). Anal. Calcd. for $C_8H_{11}O_2N_3S_2$: C, 39.17; H, 4.52; N, 17.12; S, 26.15. Found: C, 39.09; H, 4.56; N, 17.32; S, 26.01. IR v_{\max}^{Nuloi} cm⁻¹: 3200 (NH), 1725 (C=O). NMR (CDCl₃) τ (J= Hz): 8.66 (3H, t, J=7.0), 7.61 (3H, d, J=1.0), 5.68 (2H, q, J=7.0), 3.38 (1H, q, J=1.0), ca. 0.89 (1H), ca. -2.70 (1H). UV $\lambda_{\max}^{\text{EtoH}}$ mμ (ε): 228 (10000), 264 (14900), 3310 (10700). Ethyl-N-(4-methylthiazol-2-yl)-carbamate (27-j)*, 0.08 g, colorless needles from isopropyl ether, mp 103—104°. Anal. Calcd. for C_7H_{10} - O_2N_2 S: C, 45.16; H, 5.41; N, 15.05; S, 17.19. Found: C, 44.46; H, 5.50; N, 15.20; S, 17.10. IR v_{\max}^{Nuloi} cm⁻¹: 3170 (NH), 1720 (C=O). NMR (CDCl₃) τ (J=Hz): 8.66 (3H, t, J=7.0), 7.62 (3H, d, J=1.0), 5.68 (2H, q, J=7.0), 3.53 (1H, q, J=1.0), ca. -0.92 (1H). UV $\lambda_{\max}^{\text{EtoH}}$ mμ (ε): 261.7 (7800). *This compound (27-j) agreed with the sample prepared from 24-j and ethyl chloroformate in the presence of triethyl amine.

Reaction of 23 with 2-Amino-4-phenylthiazole (24-k)——In the reaction of 1.45 g of 23 and 1.76 g 24-k, only one product 26-k, besides 0.14 g of 24-k, was isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(4-phenylthiazol-2-yl)thiourea (26-k), 2.47 g, pale yellow needles from benzene, mp 181—182° (decomp.). Anal. Calcd. for $C_{13}H_{13}O_2N_3S_2$: C, 50.79; H, 4.26; N, 13.67; S, 20.86. Found: C, 50.85; H, 4.45; N, 13.61; S, 20.68. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3170 (>NH), 1736 (>C=O). NMR [(CD₃)₂C=O] τ (J=Hz): 8.65 (3H, t, J=7.0), 5.60 (2H, q, J=7.0), 2.72—2.40 (3H, m), 2.48 (1H, s), 2.16—1.88 (2H, m), ca. -0.45 (1H), ca. -3.22 (1H). UV $\lambda_{\text{max}}^{\text{EioH}}$ m μ (ε): 236 (26500), 264 (27600), 320 (10300).

Reaction of 23 with 2-Aminobenzothiazole (24-1)—In the reaction of 1.45 g of 23 and 1.50 g of 24-1, two compounds (26-1 and 27-1), besides 0.098 g of 24-1, were isolated by column coromatography on silica gel. N-Ethoxycarbonyl-N'-(2-benzothiazolyl)thiourea (26-1), 1.87 g, pale yellow prisms from acetone, mp 189—190° (decomp.). Anal. Calcd. for $C_{11}H_{11}O_2N_3S_2$: C, 46.92; H, 3.94; N, 14.99; S, 22.78. Found: C, 46.97; H, 4.09; N, 14.86; S, 22.64. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3200 (>NH), 1720 (>C=O). NMR (DMF) τ (J=Hz): 8.65 (3H, t, J=7.0), 5.64 (2H, q, J=7.0), 2.78—1.78 (4H, m), ca. —1.88 (1H), ca. —3.17 (1H). UV $\lambda_{\text{max}}^{\text{EiOH}}$ mμ (ε): 258.5 (23800), 307 (22400). Ethyl-N-(2-benzothiazolyl)carbamate (27-1)*, 0.34 g, colorless needles from isopropyl ether, mp 213—214°. Anal. Calcd. for $C_{10}H_{10}O_2N_2S$: C, 54.05; H, 4.54; N, 12.61; S, 14.40. Found: C, 53.99; H, 4.60; N, 12.62; S, 14.32. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3150 (>NH), 1727 (>C=O). NMR (DMF) τ (J=Hz): 8.67 (3H, t, J=7.0), 5.72 (2H, q, J=7.0), 2.90—1.88 (4H, m), ca. —2.12 (1H). UV $\lambda_{\text{max}}^{\text{EiOH}}$ mμ (ε): 265 (14700). *This compound (27-1) agreed with the sample prepared from 24-1 and ethyl chloroformate in the presence of triethyl amine.

Reaction of 23 with 2-Amino-4,5-dimethylthiazol (24-m) — In the reaction of 1.45 g of 23 with 1.30 g of 24-m, two compounds (26-m and 27-m), besides 0.026 g of 28, were isolated by column chromatography on silica gel. N-Ethoxycarbonyl-N'-(4,5-dimethylthiazol-2-yl)thiourea (26-m), 2.20 g, colorless needles from ethyl acetate, mp 162—163° (decomp.). Anal. Calcd. for $C_9H_{13}O_2N_3S_2$: C, 41.70; H, 5.60; N, 16.21; S, 24.68. Found: C, 41.86; H, 5.10; N, 16.29; S, 24.34. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3200 (NH), 1720 (>C=O). NMR [(CD₃)₂C=O] τ (J=Hz): 8.68 (3H, t, J=7.0), 7.78 (3H, s), 7.70 (3H, s), 5.66 (2H, q, J=7.0), ca. —0.34 (1H), ca. —2.14 (1H). UV $\lambda_{\text{max}}^{\text{BtoH}}$ mμ (ε): 228.5 (8600), 264. 5(14800), 320 (10500). Ethyl-N-(4,5-dimethylthiazol-2-yl)carbamate (27-m)*, 0.012 g, colorless needles from benzene, mp 139—140°. Anal. Calcd. for C_8H_{12} - O_2N_2S : C, 47.97; H, 6.04; N, 13.99; S, 15.98. Found: C, 47.94; H, 6.01; N, 13.76; S, 16.10. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3270 (>NH), 1720 (>C=O). NMR (CDCl₃) τ (J=Hz): 8.66 (3H, t, J=7.0), 7.73 (6H, s), 5.70 (2H, q, J=7.0), ca. —1.52 (1H). UV $\lambda_{\text{max}}^{\text{Euch}}$ mμ (ε): 269 (9300). *This compound (27-m) agreed with the sample prepared from 24-m and ethyl chloroformate in the presence of triethyl amine.

Aknowledgement We are greateful to Dr. G. Kuwata, manager of this laboratories. We are also indebted to the members of the Section of Physical Chemistry for the elemental analyses and determination of absorption spectra.