Chem. Pharm. Bull. **20**(4) 657—663 (1972)

UDC 547.834.2.057:547.833.04

Studies of Quinolizine Derivatives. V.¹⁾ Synthesis of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo [a] quinolizines and Their Reactions

Goro Kobayashi, Yoshiro Matsuda, Reiko Natsuki and Masakatsu Sone

Pharmaceutical Faculty, University of Nagasaki2)

(Received March 1, 1970)

Reaction of 3,4-dihydroisoquinolineacetonitrile (I) and methyl 1-cyano-2,2-dimethylthioacrylate (II) gave 3-cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (III). III reacted with various amines to form 1,3-dicyano-2-amino-4-oxo-6,7-dihydrobenzo-[a]quinolizines (IVa—g). III also reacted with active methylene compounds to form 1,3-dicyano-4-oxo-6,7-dihydrobenzo[a]quinolizines (V—IX).

In the reaction of 1,3-dicyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (IIIa) and 2-amino-1,3-dicyano-4-oxo-6,7-dihydrobenzo[a]quinolizine (IVd) with concentrated sulfuric acid, the cyano group in 1-position was found to be easily liberated and that in 3-position was converted into a carboxamide group.

Reduction of 1,3-dicyano-4-oxo-6,7-dihydrobenzo[a]quinolizines (IIIa,b, IVa, Vb) with sodium borohydride in ethanol or N,N-dimethylformamide gave 1,3-dicyano-4-oxo-1,6,7,11b-tetrahydro-9,10-dimetoxybenzo[a]quinolizines (XI, XIIa,b, XIII) by the reduction of quinolizine skeleton.

The previous papers of this series, $^{1,3-5)}$ showed that the reaction of 2-pyridineacetonitriles (I) and methyl 1-cyano-2,2-dimethylthioacrylate (II) gave 3-cyano-2-methylthio-4H-quino-lizin-4-ones (III), their reaction were examined, and that dl-allomatridine was synthesised from III. We applied this knowledge to 3,4-dihydroisoquinolineacetonitriles, obtained 3-cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (III), and examined their reaction.

Synthesis of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[α] quinolizines (IIIa—d)

Condensation of 3,4-dihydroisoquinolineacetonitriles (Ia, c) with methyl 1-cyano-2,2-dimethylthioacrylate (II) gave 1,3-dicyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (II a, c) by melting at 130°.

Condensation of ethyl 3,4-dihydroisoquinoline-1-acetates (Ib, d) with II gave 3-cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (IIIb, d), the ethoxycarbonyl group in 1-position of which appeared to be liberated by a molten state at 100°. Nuclear magnetic resonance (NMR) spectrum (in CF₃COOH) of IIIa exhibits a multiplet of 4 aromatic protons at 7.3—8.4 ppm while that (in CF₃COOH) of IIIb exhibits a multiplet of 5 aromatic protons at 7.2—8.0 ppm. Therefore, the ethoxycarbonyl group at 1-position in IIIb had been clearly liberated (Chart 1 and Table I).

Reaction of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines with Amines

Replacement of methylthio group with an amino group by the reaction of 3-cyano-2-methylthio-4H-quinolizin-4-one derivatives with an amino compound has been reported³⁾ and this method was applied to the reaction of 3-cyano-2-methylthio-4-oxo-6,7-dihydrobenzo-[a]-quinolizines (IIIa—c) with amines. The aminated compounds (IVa—g) were obtained in

¹⁾ Part IV: G. Kobayashi, Y. Matsuda, and R. Natsuki, Yahugahu Zasshi, 91, 1275 (1971).

²⁾ Location: 1-14, Bunkyo-machi, Nagasaki, 852, Japan.

³⁾ G. Kobayashi, S. Furukawa, Y. Matsuda and S. Matsunaga, Yakugaku Zasshi, 89, 203 (1969).

⁴⁾ G. Kobayashi, S. Furukawa, Y. Matsuda, R. Natsuki and S. Matsunaga, Yakugaku Zasshi, 90, 127 (1970).

G. Kobayashi, S. Furukawa, Y. Matsuda, R. Natsuki and S. Matsunaga, Chem. Pharm. Bull. (Tokyo), 18, 124 (1970).

a satisfactory yield from IIIa—c by reaction with amines (benzylamine, cycohexylamine, morpholine, ammonium acetate, piperidine) by melting or by refluxing in ethanol (Chart 2 and Table II).

Reaction of 1,3-Dicyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a] quinolizines (IIIa, c) with Active Methylene Compounds

It had been found previously¹⁾ that the reactions of 3-cyano-2-methylthio-4*H*-quinolizin-4-one derivatives with active methylene compounds resulted in replacement of the methylthio

group with active methylene group when stirred with potassium carbonate in absolute dimethyl sulfoxide at room temperature. We applied this condition to the reaction of IIIa—c with 3,4-dihydroisoquinolineacetonitriles (IIIa—c), methyl malonate, ethyl malonate, or ethyl 2-pyridineacetate as active methylene compound. This replacement reaction of IIIa and IIIc with 3,4-dihydroisoquinolineacetonitrile (Ia) in the presence of sodium hydride in N,N-dimethylformamide gave Va and Vb. Va and Vb were also obtained on heating 2 moles of Ia and Ic with 1 mole of II, in the presence of potassium carbonate in N,N-dimethylformamide on a boiling water bath.

This replacement reaction of IIIa with Ib gave VI which appeared to be a decarboxylated compound. The reaction of IIIa and IIIc with other active methylene compounds (malonates, ethyl 2-pyridineacetate, 2-quinolineacetonitrile) gave VII, VIII, and IX in a similar manner (Chart 3).

Reaction of 1,3-Dicyano-4-oxo-6,7-dihydrobenzo[a] quinolizines with Concentrated Sulfuric Acid

The reaction of the compound IIa with concentrated sulfuric acid gave Xa in which the cyano group in 1-position appeared to be liberated and the cyano group in 3-position was changed to carboxamide by hydrolysis. Elimination of the cyano group in 1-position was evident from the reaction of IIIb without a cyano group in 1-position with concentrated sulfuric acid which gave Xa. The NMR spectrum (in CF_3COOH) of IIIa exhibited absorption

Chart 5

660 Vol. 20 (1972)

for four aromatic protons (7.4—8.4 ppm; 4H, multiplet), while that of Xa showed the presence of five aromatic protons (7.5—8.1 ppm, 5H, multiplet), indicating the presence of aromatic protons in 1-position of Xa. This reaction also occurred in IVd having an amino group in 2-position (Chart 4).

Reduction of Quinolizine Skeleton with Sodium Borohydride

Reduction of ethyl 2-amino-3-cyano-4-oxo-4H-quinolizine-1-carboxylate derivatives with sodium borohydride was found to give ethyl 2-amino-3-cyano-4-oxo-1,6,7,8,9,10-hexahydro-4H-quinolizine-1-carboxylate derivatives. Miyadera, et al. reported that the reduction of benzo[b]quinolizinium bromide with sodium borohydride gave three kinds of reduction products, benzo[b]quinolizidine, 3,6,11,11a-tetrahydro-4H-benzo[b]quinolizine, and 1,6,11,11a-tetrahydro-4H-benzoquinolizine, while Yamada, et al. reaction of cyanopyridines or cyanoquinolines with sodium borohydride for the reduction of cyano group or pyridine skeleton. It had been proved that IV was converted to XI by reduction with sodium borohydride in N,N-dimethylformamide at room temperature without reduction of the cyano group.

This reduction occurred in a similar manner in the case of IIIa, IIIb, and Vd. (Chart 5). Compounds VI and VII, and their reduction product XIII, having the emetine skeleton are very useful for the synthesis of compounds analogous to emetine.

Experimental

Synthesis of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizine Derivatives (IIIa—d)——IIIa,c: A mixture of 0.005 mole of Ia or Ic and 0.005 mole of II was heated in an oil bath at 130—140° for 6 hr and crystals separated out during this time. The crystals were collected and recrystallized from acetone–MeOH (IIIa) or from CHCl₃-MeOH (IIIc).

IIIb,d: (a) A mixture of 0.005 mole of Ib or Ic, 0.005 mole of II, and 0.01 mole of K_2CO_3 in 10 ml absolution N,N-dimethylformamide (DMF) was heated in a boiling water bath for 6 hr, the solvent was

Analysis (%) UVNMR TR $_{
m Yield}$ mp Ш Calcd. Found (CF₃COOH) (KBr) $\lambda_{\text{max}} \, \text{m} \mu$ (°Ĉ) (%)ppmcm-1 $(\log \varepsilon)$ С Η N C H N 221 - -22280 65.52SCH₃ 3.0 (s) a 3.78 14.3365.693.8513.11 $v_{C=0}$ 1660 226 (3.92) $\nu_{\text{C}\equiv\text{N}}$ 2210 276 (3.80) aromatic 4H 7.3—8.4 (m) 374 (3.86) h 240 - 24460 67.154.5110.4466.944.4510.26SCH₃ 2.78 (s) 245 (4.22) $v_{C=0}$ 1630 aromatic vc_{≡N} 2210 262 (4.43) 5H 7.2-8.0 (m) 289 (3.78) 368 (4.47) 250 - 25280 61.19 4.28 11.89 61.444.2311.33 $v_{C=0}$ 1640 257^{a_1} $\nu_{C \equiv N} 2220$ 290a) 402^{a_1} d 273-274 70 62.194.91247a) 8.5361.78 4.79 7.61 $SCH_3 2.77 (s)$ $v_{C=0}$ 1640 268^{a_1} 2-OCH₃ 4.05 (s) $v_{C \equiv N} 2220$ $320^{a_{j}}$ aromatic 2H 7.0 (d) $388^{b)}$ H 7.45 (s)

TABLE I

a) Concentration is unknown because of being insoluble.

b) shoulder

⁶⁾ T. Miyadera and R. Tachikawa, Tetrahedron, 25, 5189 (1969).

⁷⁾ S. Yamada, Y. Kikugawa, I. Saito, M. Kuramoto and H. Watanabe, Abstract of Papers, 2nd Congress of Heterocyclic Chemistry, 54 (1969).

evaporated in vacuo, and water was added to the residual solution. The crystals that precipitated out were collected and recrystallized from acetone-petro. benzine.

(b) A mixture of 0.005 mole of Ib or Ic and 0.005 mole of II was heated in an oil bath at 120° for 4 hr. The crystals separated out during this time. The crystals were collected and recrystallized from acetone-petro. benzine (Table I).

Reaction of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines (IIIa—c) and Amines——IVa—c, e—g: A mixture of 0.3 g of IIIa—c and 0.5 ml of an amines was refluxed in EtOH for 5 hr. After removal of EtOH, the residue was washed with petro. benzine and recrystallized from MeOH-CHCl₃, benzene, or acetone (Table II).

IVd: A mixture of 0.4 g of IIIa and 8 g of AcONH₄ was heated in an oil bath at 145° for 3 hr. After water was added to the reaction mixture, the resulting precipitate was collected, washed with water, and sucked dry. The crystals were recrystallized from MeOH-CHCl₃ (Table II).

TABLE II

		Yield (%)			Analys	sis (%)	IR	7177		
IV	mp (°C)		Calcd.			Found			(KBr)	$rac{ m UV}{\lambda_{ m max} \; m \mu}$
	V */		ć	Н	N	ć	Н	N	cm ⁻¹	$(\log \epsilon)$
a	217	80	74.98	4.58	15.90	75.11	4.60	15.57	ν _{C=0} 1650	256 (4.66)
									$\nu_{\text{C}\equiv\text{N}}$ 2200	340 (4.18)
									<i>v</i> _{N−H} 3320	, ,
b	206-207	70	73.23	5.85	16.27	73.37	6.07	16.01	$v_{C=0}$ 1630	255 (4.65)
									$v_{C \equiv N} 2200$	289 (3.20)
									$v_{ m N-H} \ 3355$	340 (4.05)
c	260 - 261	75	68.66	4.85	16.86	68.29	5.26	16.36	$v_{C=0}$ 1640	2424)
									$v_{C=N}$ 2210	$280^{b_{)}}$
										$306^{b)}$
										360
d	>300	60	68.69	3.84	21.37	68.76	3.74	20.63	$v_{C=0}$ 1650	252 (3.65) ^a
									$v_{C \equiv N} 2210$	275 (4.07)
									$\nu_{\rm N-H} \ 3300$	296 (4.23)
									3400	314 (4.30)
									3480	324 (4.31)
e	239-240	7 5	72.70	5.49	16.96	72.59	5.73	16.78	$v_{C=0}$ 1630	$270^{b)}(4.48)$
									1655	282 (4.49)
									vc _{≡N} 2210	355 (4.23)
f	232-233	80	77.04	5.23	12.84	77.12	5.58	12.18	$v_{C=0}$ 1620	226 (4.47)
									$v_{C=N}$ 2200	334 (4.26)
									$\nu_{\rm N-H} \ 3400$	
g	210-211	7 5	69.89	4.89	13.59	69.31	4.86	13.51	$v_{C=0}$ 1660	247 (4.78)
									$v_{\text{C} \equiv \text{N}} 2200$	292 (3.97)
									$\nu_{ m N-H} \ 3426$	363 (4.34)

a) Concentration is unknown because of being insoluble.

Reaction of 3-Cyano-2-methylthio-4-oxo-6,7-dihydrobenzo[a]quinolizines and Active Methylene Compounds—Va, b: (a) A mixture of 0.35 g of IIIa and 0.50 g of Ia or Ic was added under stirring in 0.1 g of NaH suspended in 10 ml of DMF. The reaction mixture was heated on a boiling water bath for 8 hr, the solvent was evaporated in vacuo, and ice-water was added to the residue. This was extracted with CHCl₃ and the solvent was evaporated. The residue was recrystallized from CHCl₃-MeOH (Table III).

(b) A mixture of 1.7 g of Ia or Ic, 1.0 g of II, and 1 g of K_2CO_3 in 10 ml of DMF was heated on a boiling water bath. After DMF was evaporated *in vacuo*, water was added to the residue. The resulting precipitate was collected, washed with water, and sucked dry. The residue was recrystallized from MeOH-CHCl₃ (Table III).

VI: A mixture of 0.3 g of IIIa, 0.2 g of Ib, and 0.9 g of $\rm K_2CO_3$ in 10 ml of abs. DMF was heated on a boiling water bath for 11 hr. After DMF was evaporated *in vacuo*, ice-water was added to the residue. The resulting precipitate was collected, washed with $\rm H_2O$, and sucked dry. The residue was recrystallized from benzene-acetone (Table III).

b) shoulder

VIIa, b: A mixture of 0.25 g of IIIc and 0.1 g of dimethyl or diethyl malonate added to a suspension of 0.1 g of NaH in 10 ml of DMF with stirring was heated on a boiling water bath for 7 hr. After DMF was evaporated *in vacuo*, ice-water was added to the residue, and the solution was acidified with 10% HCl. The resulting precipitate was collected, washed with water, and the dried precipitate was recrystallized from acetone (Table III).

TABLE III

					Analy	sis (%)		NMD			
	mp (°C)	Yield (%)	Calcd.			Found			NMR (CF ₃ COOH)	IR (KBr)	$\frac{\mathbf{U}\mathbf{V}}{\lambda_{\max}} \frac{\mathbf{W}}{\mathbf{W}}$
			c	H	N	c	Н	N	ppm	cm ⁻¹	$(\log \epsilon)$
Va	288290	70	75.16	4.12	16.86	75.00	4.20	16.34	4H 3 —3.4 (m)	r _{C=0} 1660	$275^{a_{)}}$
									4H 4.15—4.5 (m)	$v_{C \equiv N} 2208$	352
									aromatic	$\nu_{\rm N-H} \ 3350$	380
									8H 7.5 —8.5 (m)		
٧b	> 300	80	67.28	4.71	13.08	66.46	4.73	11.98	4H 3.1 —3.5 (m)	$v_{C=0}$ 1650	274^{a_1}
									4OCH ₃ 4.15 (s)	vc _{≡N} 2200	320
									4H 4.3 —4.7 (m)	$\nu_{ m N-H} \ 3340$	380
									aromatic		
									2H 7.12 (m)		
									2H 8.0 -8.2 (m)		
Ί	275-277	75	76.90	4.65	14.35	77.29	5.19	13.36	5H 3 -3.5 (m)		$231^{a_{1}}$
									4H 4.2 - 4.5 (m)		300
									aromatic		356
									8H 7.3 —8.5 (m)		376
											396
/IIa	R_1 : Et	80	65.18	4.72	10.37	65.26	4.94	9.70	$-CH_3 1.47 (q)$	$v_{C=0}$ 1645	231 (4.43
	151—152								$-CH_{2}-4.5$ (q)	1715	273 (4.29
									-CH $\langle 5.58 (q)$	vc _{≡N} 2180	376 (4.3)
ДЪ	R_1 : Me	75	60.41	4.38	9.61	60.23	4.40	9.22	2-OCH ₃ 3.86 (s)	$v_{C=0}$ 1665	$300^{a_{i}}$
	233235								$2\text{-OCH}_3 \ 3.95 \ (s)$	1750	400
									-CH $\langle 5.2 \text{ (s)} \rangle$	νc _{≡N} 2225	
VIII	245—248	70	66.37	4.71	11.91	66.41	4.68	11.40		$\nu_{C=0}$ 1650	250^{a_0}
										1685	325
										rc _≡ n 2200	377
										ин-н 3305	453
37	> 000	=0	55.54	0.00	10.00	55.40	0.50	10.10			470
X	>300	70	75.54	3.63	16.99	75.10	3.56	16.10	aromatic	ν _{C=0} 1665	$264^{a_{i}}$
									10H 7.6—9.5	vc _{≡0} 2205	311
									2H 4.3—4.9	2220	370
									2H 3.1—3.6	ν _{N-H} 3320	472
											495

a) Concentration is unknown because of being insoluble.

Table IV

X					Analys	sis (%)			NMR	TD	1137
	mp (°C)	Yield (%)	Calcd.			Found			(CF ₃ COOH)	IR (KBr)	$\frac{\mathrm{UV}}{\lambda_{\mathrm{max}} \mathrm{m}\mu}$
			c	H	Ñ	ć	Н	N	ppm	cm ⁻¹	$(\log \epsilon)$
а	248249	60	62.93	4.93	9.79	62.38	5.14	9.31	SCH ₃ 3.2 aromatic 5H 7.5—8.1	ν _{C=0} 1650 ν _{N-H} 3345	231.5 (4.12) 259 (4.26) 360 (4.22)
Ъ	>300	75	65.87	5.13	16.46	65.37	5.29	15.19	-	v _{C=0} 1645 v _{N-H} 3240 3400	225 (4.47) 236 ^a) (4.44) 327 (4.25)

a) shoulder

VIII: A mixture of 0.2 g of IIIc, 0.25 g of ethyl 2-pyridineacetate, and 0.3 g of K_2CO_3 in 10 ml of DMF was stirred at room temperature for 2 hr. The reaction mixture was added into ice-water and the resulting precipitate was filtered. The dried crystals were recrystallized from MeOH-CHCl₃ (Table III).

IX: A mixture of 0.2 g of IIIa, 0.2 g of 2-quinolineacetonitrile and 0.2 g of K_2CO_3 in 10 ml of DMF was stirred at room temperature for 1.5 hr. The reaction mixture was added to ice-water and the resulting precipitate was collected, dried, and recrystallized from MeOH-CHCl₃ (Table III).

Reaction of 3-Cyano-4-oxo-6,7-dihydrobenzo[a]quinolizine Derivatives (IIIa, IIIb, IVd) and conc. H₂SO₄ (Xa, b)——A mixture of 0.2 g of IIIa, IIIb or IVd and 4 ml of conc. H₂SO₄ was heated on a boiling water bath for 1.5 hr. The reaction mixture was poured into ice-water and the resulting precipitate was collected, washed with water, dried, and recrystallized from MeOH (Table IV).

1,3-Dicyano-2-benzylamino-4-oxo-1,6,7,11b-tetrahydro-9,10-dimethoxybenzo[a]quinolizine (XI)—A solution of IVa (0.2 g) in DMF (5 ml) was added under stirring in a solution of NaBH₄ (0.1 g) in DMF (10 ml). Stirring was continued at room temp. for 3 hr. The solution was acidified with AcOH, the solvent was evaporated in vacuo, Na₂CO₃ solution was added to the residue, and the resulting precipitate was collected and recrystallized from MeOH-CHCl₃ (Table V).

Reduction of IIIa,c (XIIa,b)——A solution of IIIa or IIIc (0.25 g) in EtOH (2.0 ml) was added under stirring to ice-cooled solution of NaBH, (0.25 g) in EtOH (10 ml) during 5 min. After being stirred for 7 hr, the resulting mixture was treated as described for XI. The crude crystals were recrystallized from MeOH (Table V).

TABLE V

					NMR (CF ₃ COOH)	IR (KBr)	$rac{ ext{UV}}{\lambda_{ ext{max}} ext{ m} \mu}$				
		Yield (%)	Calcd.					Found			
			ć	Н	N	ć	H	N	ppm	cm ⁻¹	$(\log \epsilon)$
XI	>260	70	69.55	5.35	13.52	69.60	5.39	12.66	1-H 6.9 11b-H 6.22	v _{C=0} 1645 (s) v _{C≡N} 2210 v _{N-H} 3320	290 (4.28)
ХIIа	220	65	65.08	4.44	14.23	64.93	4.49	14.17	SMe 2.95 1-H 5.35 11b-H 4.85	v _{C=0} 1645 v _{C≡N} 2200	277 (3.92) 318 (3.80) 370 (3.86)
ХII b	223—225	60	60.84	4.82	11.83	60.70	4.51	11.96	SMe 2.96 2-0-Me 4.05 1-H 5.35 11b-H 4.85	vc=0 1660 vc≡n 2210	257.5 (4.30) 290 (4.14) 400 (4.31)
XШ	>300	45	67.63	5.06	13. 03	66.51	4.91	12.24		v _{C=0} 1650 v _{C≡N} 2200	$\frac{248^{a_0}}{364}$

a) Concentration is unknown because of being insoluble.

Reduction of Vb (XIII)——(a): A solution of Vb (0.2 g) in DMF (10 ml) was added under stirring to ice-cooled solution of NaBH₄ (0.2 g) in DMF (10 ml) during 5 min. After stirring for 5 hr, the resulting mixture was treated as described for XI. The residue was recrystallized from MeOH-CHCl₃.

(b): A mixture of 0.1 g of XIIb, 0.1 g of Ic, and 0.1 g of K_2CO_3 in 10 ml of DMF was heated on a boiling water bath for 5 hr. The reaction mixture was poured into ice-water, the solution was acidified with $10^\circ_{.0}$ HCl, and the resulting precipitate was recrystallized from MeOH-CHCl₃ (Table V).

Acknowledgement The authors thanks are due to Mrs. H. Mazume of this faculty for microanalysis, to Mr. M. Owatari for UV and IR spectra and to Miss K. Ota for NMR spectra.