Notes

Chem. Pharm. Bull. 26(6)1912—1914(1678)

UDC 547.864'546.922.04.09:615.277.3.011.5

Synthesis of 1-(Methylthio)phenazine Platinum(II) and Its S-demethylated Complexes

Yoshinori Kidani and Kenji Inagaki

Faculty of Pharmaceutical Sciences, Nagoya City University1)

(Received October 26, 1977)

1-(Methylthio)phenazine (mtph) reacts with platinum(II) and palladium(II) in acetone—water to give orange complexes. The mtph coordinates to metal through the sulfur and nitrogen atoms as a bidentate ligand, and the two halogen atoms of the complexes are in *cis*-configuration. When the orange complex, PtCl₂(mtph), was refluxed in N,N-dimethylformamide, a reddish violet S-demethylated complex was produced. On the other hand, PdCl₂(mtph) did not give any demethylated complexes under similar conditions.

Keywords—platinum complex, 1-phenazinethiol; palladium complex, 1-(methylthio)phenazine; 1-phenazinethiol, complex with heavy metal ions; 1-(methylthio)phenazine, metal complexes; S-demethylation reaction of 1-(methylthio)phenazine; antitumor activity, 1-(methylthio)phenazine metal complexes

In the previous paper, the authors reported the preparation of 1-phenazinethiolates of Zn(II), Co(II), Pd(II), and Pb(II) by reaction of metal chlorides with 1-phenazinethiol,²⁾ but were unsuccessful in isolating Pt(II) phenazinethiolate because 1-phenazinethiol probably decomposed in the presence of Pt(II) ions. This paper describes the preparation of the Pt(II) complex of 1-(methylthio)phenazine (abbreviation; mtph) and Pt(II) phenazinethiolate through the S-demethylation reaction of the Pt(II) complex of mtph.

Experimental

Equimolar amounts of K₂PtCl₄ and mtph were mixed in 50% aqueous acetone and the solution was allowed to stand at room temperature for 12 hr. Orange crystals, PtCl₂(mtph) precipitated were collected and washed with water and acetone.

PtBr₂(mtph) was obtained by mixing K₂PtCl₄ and mtph in the presence of a large excess of KBr. PdCl₂ (mtph) was prepared by the same method as PtCl₂(mtph) using K₂PdCl₄.

The S-demethylated complex was prepared by refluxing PtCl₂(mtph) in N,N-dimethylformamide (DMF).

Analytical data of these complexes are shown in Table I

Table I. Elemental Analyses of the Pt(II) and Pd(II) Complexes

Complexes	Calcd.			Found		
Complexes	c	Н	N	c	Н	N
PtCl ₂ (mtph)	31.7	2.0	5.7	31.9	1.8	5.7
PtBr ₂ (mtph)	26.9	1.7	4.8	27.1	1.9	4.9
PdCl ₂ (mtph)	38.7	2.5	6.9	38.5	2.3	6.4
[PtCl(phenazinethiolate)] _n	32.6	1.6	5.8	32.8	1.9	6.5
$[PtBr(phenazinethiolate)]_n$	29.6	1.4	5.8	29.7	1.3	5.7

1) Location: Tanabe-dori, Mizuho-ku, Nagoya 467, Japan.

²⁾ K. Inagaki, Y. Kidani and H. Koike, Chem. Pharm. Bull. (Tokyo), 24, 156 (1976).

Results and Discussion

From the analytical data and molecular model fo PtCl₂(mtph), the following three types of complexes are conceivable: (a) a complex in which mtph coordinates to Pt(II) through the sulfur and nitrogen atoms as a bidentate ligand and the two chloride atoms are in *cis*-configuration, (b) a magnus type complex containing Pt(mtph)₂ and PtCl₄, (c) a dinuclear halidebridged complex in which mtph coordinates to Pt(II) as an unidentate ligand.

The electronic absorption spectrum of $PtCl_2(mtph)$ shows absorption maximum at 385 nm (p-band due to ring nitrogen atoms)³⁾ which is similar to that of the ligand cation (382 nm), and this suggests N-coordination. Infrared spectral bands due to the methyl group of $PtCl_2(mtph)$ shift to lower frequency than that of the ligand, [δ_{sym} : 1320(ligand)—1306 (complex), and δ_{asym} : 1043 (deuterated ligand)—1037 and 1026 (complex)], and this suggests S-coordination. Far-infrared spectrum of $PtCl_2(mtph)$ exhibits three bands at 338, 323 and 287 cm⁻¹, and a shoulder at 310 cm⁻¹. The former two bands disappeared and a new band appeared at 247 cm⁻¹ upon replacing the two chloride ions by two bromide ions, and therefore both the bands at 338 and 323 cm⁻¹ are assigned to the Pt-Cl stretching modes. Occurrence of two Pt-Cl stretching vibration suggests the cis-configuration of both the chloride ions. Pt-S stretching vibrations⁴⁾ of $PtX_2(Me_2S)_2$ (X=Cl, Br, and I) appeared at 311—135 cm⁻¹. Therefore the band at 310 cm⁻¹ is assignable to the Pt-S stretching mode because the mtph itself exhibits only weak band at 290 cm⁻¹. From these spectral data, it is concluded that the $PtCl_2(mtph)$ is the (a) type complex mentioned above.

Table II. Infrared Bands of Metal Complexes of 1-(Methylthio)phenazine

$PtCl_2(mtph)$	$PtBr_2(mtph)$	$PdCl_2(mtph)$	Assignments	
338 s		33 6 s	ν _{M-C1}	
323 s		323 s	$v_{\mathrm{M-Cl}}$	
310 sh	307 m	305 sh	vm_s	
287 m	285 m	287 m	ligand	
	247 m		$v_{\mathrm{M-Br}}$	

¹⁻⁽Methylthio)phenazine exhibits a weak band at 290 cm⁻¹.

S-Demethylation of PtCl₂(mtph)

When PtCl₂(mtph) was refluxed in either N,N-dimethylformamide or cyclohexanone for 2 hr., a reddich violet complex was produced. It is considered that the reddish violet complex is a S-demethylated complex because its infrared spectrum dose not show any bands due to the methyl group. On the other hand, PdCl₂(mtph) did not give any S-demethylated complex under similar conditions. Livingstone, et al. reported that Pd(II) and Pt(II) complexes of 8-(methylthio)quinoline gave the corresponding complexes of 8-quinolinethiol as a result of the S-demethylation reaction, whereas the complexes of 2-methyl-8-(methylthio)quinoline did not give any S-demethylated complex because of steric hindrance due to the methyl group at the 2 position.^{5,6)} A molecular model of PtCl₂(mtph) shows that the hydrogen atom at the 9-position of the phenazine ring and the halide ion which is in the *trans* position relative to the sulfur atom overlap each other in Van der Waals radius. It is of interest that the PtCl₂ (mtph) gives the S-demethylated complex, though it has steric hindrance and PdCl₂ (mtph) dose not give any S-demethylated complex.

³⁾ J.F. Corbett, Spectrochim Acta, 20, 1665 (1964).

⁴⁾ J.R. Allkins and P.J. Hendra, J. Chem. Soc., A, 1967, 1325.

⁵⁾ L.F. Lindoy, S.E. Livingstone and T.N. Locker, Inorg. Chem., 6, 652 (1967).

⁶⁾ P.S.K. Chia and S.E. Livingstone, Aust. J. Chem., 21, 339 (1968).

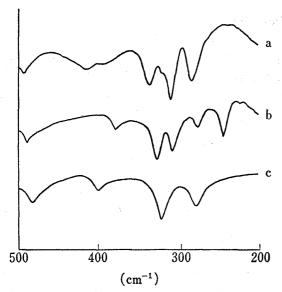


Fig. 1. Infrared Spectra of the Demethylated Complexes and Pd(II)bis-(phenazinethiolate)

- a) $[PtCl(phenazinethiolate)]_n$;
- b) $[PtBr(phenazinethiolate)]_n$;
- c) Pd(phenazinethiolate)2.

The reddish violet S-demethylated complex was not soluble in any of the following solvents; H₂O, DMF, dimethyl sulfoxide and CHCl₃. This suggests polymeric complex formation. Analytical data of this complex are consistent with the polymeric formula, [PtCl(phenazine-Demethylated chloro complex, thiolate) $_n$. $[PtCl(phenazinethiolate)]_n$, exhibits three bands at 336, 310, and 285 cm⁻¹ in the far-infarared spectrum and the corresponding bromo complex, [PtBr(phenazinethiolate)]_n, four bands at $328, 310, 282, \text{ and } 251 \text{ cm}^{-1}$. Unfortunately, the Pt-S stretching vibration of the chloro complex can not be distinguished from the Pt-Cl stretching vibration because of overlapping. Pd(phenazinethiolate)₂ exhibits Pt-S stretching vibration at 329 cm^{-1.7} In the case of the bromo complex, the vibration at 328 and 310 cm⁻¹ may be assigned to Pt-S stretching mode because the Pt-Br stretching vibration appeared at 251 cm⁻¹.

From the analytical data, the molecular model, and the presence of two Pt-S stretching vibrations in the far-infrared spectrum, it seems likely that the demethylated complex is a polymeric one containing thiolo bridges.

Antitumor activity of various Pt(II) complexes has been the subject of investigation for the past few years. Unfortunately, screening result of antitumor activity for $PtCl_2(mtph)$ showed that it was not active against Leukemia L-1210 in CDF_1 mice, i.e., T/C=105% at a dose of 400 mg/kg by i.p. administration.

⁷⁾ Unpublished data.