References and Notes

- 1) Part IV (a); part III, M. Suzuki and Y. Sasaki, Chem. Pharm. Bull., 27, 1797 (1979).
- Job plots was achieved so that the sum of the concentrations comes to $0.07\,\mathrm{M}$. When molar ratios of γ -cdx to orange II are from 0.5 to 1.5, the above phenomenon appears.
- 3) The microscopic texture was viewed using the micro melting measurement apparatus with the polaroid plate $(\times 60)$.
- 4) A. Johansson and T. Drakenberg, Mol. Cryst. Liq. Cryst., 14, 23 (1971).
- 5) P.J. Black, K.D. Lawson, and T.J. Frautt, Mol. Cryst. Liq. Cryst., 7, 201 (1969).
- 6) M. Suzuki and Y. Sasaki, Chem. Pharm. Bull., 27, 609 (1979).
- 7) In preparation.
- 8) M. Suzuki and Y. Sasaki, Chem. Pharm. Bull., 27, 1343 (1979).

Faculty of Pharmaceutical Sciences, Osaka University, 133-1, Yamada-Kami, Suita, Osaka, Japan MIYOKO SUZUKI*
YOSHIO SASAKI

Received October 30, 1980

Chem. Pharm. Bull. 29(2) 587-590 (1981)

Chemical Modification of Lactose. XVI.1) Synthesis of Lacto-N-neohexaose

Reaction of 1,6-anhydro-2,2',3,4'-tetra-O-benzyl- β -lactose (1 mol eq.) with the acetylated oxazoline of N-acetyllactosamine (5 mol eq.) gave the corresponding 1,6-anhydro- β -tetrasaccharide (3, 24.5%) and hexasaccharides (8, 53.5%). The protecting groups of 3 and 8 were removed by the following series of reactions to provide 6'-N-acetyllactosaminyllactose (7) and lacto-N-neohexaose (12), respectively: debenzylation followed by acetylation, acetolysis, and de-O-acetylation. ¹³C-NMR spectral data for 1,6-anhydro- β -derivatives of 7 and 12 are presented.

Keywords—synthesis; human milk oligosaccharide; lacto-N-neohexaose; oxazoline glycosidation method; 6'-N-acetyllactosaminyllactose; 1,6-anhydro- β -tetrasaccharide; 1,6-anhydro- β -hexasaccharide; 1^3 C-NMR

The occurrence and the structure of lacto-N-neohexaose (12) in human milk were reported by Kobata and Ginsburg,²⁾ and the existence of more complex oligosaccharides having 12 as a partial structure has been described.³⁾ We now report a synthesis of 12 together with 6'-N-acetyllactosaminyllactose (7) as a by-product.

A mixture of 1,6-anhydro-2,2',3,4'-tetra-O-benzyl- β -lactose (1)⁴) (1 mol eq.) and the acetylated oxazoline of N-acetyllactosamine (2)⁵) (3 mol eq.) in dry 1,2-dichloroethane containing 0.01 m anhyd. p-toluenesulfonic acid was stirred at 60—65° for 48 hr under nitrogen. After 48 hr, more 2 (2 mol eq.) was added and stirring was continued for further 24 hr. The mixture was neutralized and concentrated to dryness: TLC showed two spots. By column chromatography on Kieselgel 60 (Merck, 70—230 mesh) with CHCl₃-ether-MeOH (7: 7: 1, v/v), the products were separated into tetra- and hexasaccharide fractions. The former was re-chromatographed with CHCl₃-acetone (3: 1) to isolate the protected tetrasaccharide (3, 24.5%) as amorphous powder, $[\alpha]_D^{2i}$ —10.8° (CHCl₃). ¹H-NMR (CDCl₃): 1.84, 1.98, 2.01, 2.06, 2.16 (21H, all s, OAc×6, NAc), 5.51 (1H, s, H-1, β -Glc), 5.65 (1H, d, exchangeable with D₂O, $J_{NH,2''}$ =8.5 Hz, NH), 7.20—7.44 (20H, m, aromatic protons). Hydrogenolytic debenzyl-

ation of 3, followed by acetylation, gave the dodecaacetate (4, 92.4%) as amorphous powder, $[\alpha]_D^{20}$ -27.8° (CHCl₃). ¹H-NMR (CDCl₃): 1.95, 1.96, 2.05, 2.12, 2.13 (36H, all s, OAc×11, NAc), 5.46 (1H, s, H-1, β -Glc), 6.28 (1H, d, exchangeable with D₂O, $J_{NH,2''}=8.5$ Hz, NH). De-O-acetylation of 4 yielded the 1,6-anhydro- β -tetrasaccharide (5, 73.5%), crystallizable from MeOH as needles, mp 197—199°, $[\alpha]_D^{20}$ -34.8° (H₂O). ¹H-NMR (D₂O): 2.51 (3H, s, NAc), 4.55 (1H, d, $J_{1',2'}=8$ Hz, H-1', β -Gal), 4.90 (1H, d, $J_{1'',2''}=7$ Hz, H-1''', β -Gal), 4.98 (1H, d, $J_{1'',2''}=6$ Hz, H-1'', β -GlcNAc), 5.90 (1H, s, H-1, β -Glc). The signals of anomeric protons were assigned by comparison with the found values for 1,6-anhydro- β -lactose (13, 5.30 ppm, s, H-1; 4.48 ppm, d, $J_{1',2'}=8$ Hz, H-1') and methyl β -N-acetyllactosaminide (15, 4.89 ppm, d, $J_{1,2}=J_{1',2'}=8$ Hz, H-1 and H-1').

The aforementioned hexasaccharide fraction was re-chromatographed with CHCl₃-EtOH (19: 1) to isolate the protected hexasaccharide (8, 53.5%) as an amorphous powder, $[\alpha]_D^{2n}$ –13.8° (CHCl₃). ¹H-NMR (CDCl₃): 1.53, 1.83, 1.99, 2.06, 2.09, 2.16 (42H, all s, OAc×12, NAc×2), 5.88 (1H, d, exchangeable with D₂O, $J_{NH,2''}$ or $_{2''''}=8$ Hz, NH), 7.24—7.44 (20H, m, aromatic protons). The octadecaacetate (9) and 1,6-anhydro- β -hexasaccharide (10) were prepared from 8 and 9, respectively, by the procedures similar to those described in the tetrasaccharide series. 9: amorphous powder, $[\alpha]_D^{2n}$ –11.1° (CHCl₃), 88.6% yield. ¹H-NMR (CDCl₃): 1.94, 1.98, 2.06, 2.12, 2.15 (54H, all s, OAc×16, NAc×2), 5.48 (1H, s, H-1, β -Glc), 5.77 (1H, d, exchangeable with D₂O, $J_{NH,2'''}$ or $_{2''''}=8$ Hz, NH), 6.41 (1H, d, exchangeable with D₂O, $J_{NH,2''''}$ or $_{2''''}=8$ Hz, NH), 6.41 (1H, d, exchangeable with D₂O, $J_{NH,2''''}$ or $_{2''''}=8$ Hz, NH). 10: white powder, $[\alpha]_D^{2n}$ –26.3° (H₂O), 72% yield. ¹H-NMR (D₂O): 2.50, 2.53 (6H, each s, NAc×2), 5.91 (1H, s, H-1, β -Glc).

The completely proton-decoupled 13 C-NMR of 5 and 10 were measured in D_2 O at room temperature with 13 and 15 as reference compounds. The results are summarized in Table I. The signals for the corresponding carbon atoms in 15 and N-acetyllactosaminyl residue of 5 showed similar chemical shifts, but the resonance of C-6' of 5 (69.9 ppm) was deshielded by 7.6 ppm, as compared with that for C-6' of 13 (62.3 ppm). Similarly, the resonances for C-6' (70.2 ppm) and C-3' (82.8 ppm) of 10 were deshielded by 7.9 and 9.1 ppm, as compared with those for C-6' (62.3 ppm) and C-3' (73.7 ppm) of 13, respectively.

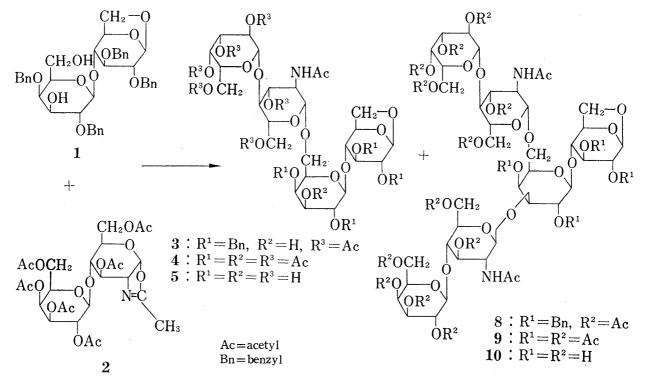


Chart 1

Glucosan = 1,6-anhydro- β -p-glucopyranose

Table I. ¹³C Chemical Shifts, δ (ppm) from TMS

		C -1	C-2	C -3	C -4	C -5	C -6	NCO <u>C</u> H	₃ NCOCH ₃	OMe
13a)	A	102.6	71.2	72.7	78.9	75.3	66.3		***************************************	-
	В	103.3	71.9	73.7	69.9	76.5	62.3			
$15^{b)}$	Α	103.0	56.2	73.7	79.8	75.9	61.3	23.4	175.8	58.3
,	В	104.1	72.2	73.7	69.8	76.5	62.2			*
5 ^{c)}	Α	102.5	70.9	72.5	78.7	75.1	66.2			
	В	103.1	71.7	73.7	69.7	74.8	69.9			
	C	102.3	56.2	73.5	79.6	75.9	61.2	23.4	175.8	
	D	104.0	72.1	73.5	69.7	76.5	62.2			
10 ^d)	A	102.5	70.8	72.5	78.5	75.0	66.1			
	В	103.0	70.8	82.8	69.7	74.7	70.2			
	С	102.5	56.2	$73.3^{e)}$	79.6	75.9	61.2	23.4	175.7	
	D	104.0	72.1	$73.7^{(e)}$	69.7	76.5	62.2			
	E	104.0	56.4	73.7e)	79.5	75.8	61.2	23.5	176.0	
	F	104.0	72.1	$73.7^{e)}$	69.7	76.5	62.2			

a) О- β -D-Galactopyranosyl-(1 \rightarrow 4)-1,6-anhydro- β -D-glucopyranose.

b) Methyl O- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucopyranoside. c) O- β -D-Galactopyranosyl- $(1\rightarrow 4)$ -O-2-acetamido-2-deoxy- β -D-glucopyranosyl- $(1\rightarrow 6)$ -O- β -D-galactopyranosyl- $(1\rightarrow 4)$ -1,6anhydro-β-D-glucopyranose.

 $d) \quad \text{O-$\beta$-D-Galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{acetamido-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 3) - [\text{O-}\beta$-D-galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 3) - [\text{O-}\beta$-D-galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 3) - [\text{O-}\beta$-D-galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 3) - [\text{O-}\beta$-D-galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 3) - [\text{O-}\beta$-D-galactopyranosyl-} (1 \rightarrow 4) - \text{O-}2-\text{deoxy-}\beta - \text{D-glucopyranosyl-} (1 \rightarrow 4) - \text{D-}2-\text{deoxy-}\beta - \text{D-}2-\text{deoxy$ $ace tamido-2-deoxy-\beta-\text{p-glucopyranosyl-}(1\rightarrow 6)]-O-\beta-\text{p-galactopyranosyl-}(1\rightarrow 4)-1,6-\text{anhydro-}\beta-\text{p-glucopyranose}.$

e) Assignments may be reversed.

Chart 2

The 1,6-anhydro- β -rings of 4 and 9 were cleaved with an acetolysis mixture (H₂SO₄-Ac₂O-AcOH, 1: 70: 30, v/v) to give the tetrasaccharide tetradecaacetate (6) and hexasaccharide eicosaacetate (11), respectively, as anomeric mixtures containing α -anomer predominantly. 6: amorphous powder, $[\alpha]_D^{22} + 7.2^{\circ}$ (CHCl₃), 94.3% yield. ¹H-NMR (CDCl₃): 1.97, 1.99, 2.03, 2.08, 2.16, 2.19 (42H, all s, OAc×13, NAc), 5.81 (ca. 0.3H, d, $J_{1,2}$ =8 Hz, H-1, β -Glc), 6.29 (1H, br. s, exchangeable with D₂O, NH), 6.37 (ca. 0.7H, d, $J_{1,2}$ =3.5 Hz, H-1, α -Glc). 11: amorphous powder, $[\alpha]_D^{22} + 12.7^{\circ}$ (CHCl₃), 93.9% yield. ¹H-NMR (CDCl₃): 1.93, 1.98, 2.07, 2.16 (60H, all s, OAc×18, NAc×2), 5.62 (1H, d, exchangeable with D₂O, $J_{NH,2'''}$ or $_{2''''}$ =8 Hz, NH), 6.30 (<1H, d, $J_{1,2}$ =3.5 Hz, H-1, α -Glc), 6.40 (1H, d, exchangeable with D₂O, $J_{NH,2''''}$ or $_{2''''}$ =8 Hz, NH).

De-O-acetylation of 6 and 11 with methanolic MeONa gave 7 (73.5% yield) as a white powder, $[\alpha]_D^{19} + 11.8^{\circ}$ (H₂O) [lit.⁶⁾ mp 185—187°, $[\alpha]_D + 8^{\circ}$ (H₂O)], and 12 (80% yield), crystallizable from aq. EtOH as grains, mp 223—225°, $[\alpha]_D^{21} + 9.1^{\circ}$ (no mutarotation, H₂O), respectively.

The data of elemental analysis of all these compounds were in good agreement with the theoretical values.

References and Notes

- 1) Part XV: T. Takamura, T. Chiba, and S. Tejima, Chem. Pharm. Bull., accepted.
- 2) A. Kobata and V. Ginsburg, Arch. Biochem. Biophys., 150, 273 (1972).
- 3) A. Kobata, K. Yamashita, and Y. Tachibana, "Methods in Enzymology," Vol. 50, ed. by V. Ginsburg, Academic Press, New York, San Francisco, and London, 1978, pp. 216—226.
- 4) Part XIV: T. Takamura, T. Chiba, and S. Tejima, Chem. Pharm. Bull., in press.
- 5) R. Kaifu and T. Osawa, Carbohydr. Res., 52, 179 (1976).
- 6) S.E. Zurabyan, V.A. Markin, V.V. Pimenova, B.V. Rozynov, V.L. Sadovskaya, and A. Ya. Khorlin, *Bioorg. Khim.*, 4, 928 (1978).

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467, Japan Tsukasa Takamura Taku Chiba Setsuzo Tejima*

Received November 29, 1980

(Chem. Pharm. Bull.) 29(2) 590—593 (1981)

590

Identification of a Reactive Metabolite of the Mutagen, 2-Amino-3-methylimidazolo[4,5-f]quinoline

A reactive major metabolite of the mutagen, 2-amino-3-methylimidazolo[4,5-f]-quinoline (IQ), by rat liver microsomes was 2-hydroxyamino-3-methylimidazolo[4,5-f]-quinoline (N-OH-IQ). The synthesis and reaction with DNA of N-OH-IQ were discussed.

Keywords—mutagen; 2-amino-3-methylimidazolo[4,5-f]quinoline; IQ; 2-hydroxyamino-3-methylimidazolo[4,5-f]quinoline; metabolic activation; microsomes; hydroxylamine; hydroxyaminoimidazole; carcinogen; DNA modification

Recent studies showed that pyrolysis products of proteins and amino acids contain strong mutagens, and active compounds were isolated and their structures were determined.¹⁾ Among these compounds, 3-amino-5H-pyrido[4,3-b]indoles (Trp-P)^{1a)} from a pyrolysate of tryptophan and 2-aminodipyrido[1,2-a: 3',2'-d]imidazoles (Glu-P)^{1b)} from a pyrolysate of