(Chem. Pharm. Bull.) 29(2) 597-600 (1981)

Synthesis of 2'(R)-Substituted Neplanocin A's (Nucleosides and Nucleotides. XXXVII¹)

Neplanocin A (I) was treated with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane to give 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)neplanocin A (II), which was converted to the 2'-O-trifluoromethanesulfonyl derivative (III). Nucleophilic substitution of III with a number of nucleophiles (AcO-, AcS-, N₃-, Cl-, Br-, I-) in hexamethylphosphoric triamide afforded the respective 2'(R)-substituted derivatives in high yield. The halogenated derivatives were reduced with tri-n-butyltin hydride to the 2'-deoxy compound. 2'-O-Thiocarbonylimidazoyl-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)neplanocin A was also reduced to the 2'-deoxy derivative. The deprotection of the bifunctional silyl group with tetra-n-butylammonium fluoride afforded 2'(R)-AcO, -AcS, -N₃, -Cl, -Br, -I, and 2'-deoxy neplanocin A's, respectively. Physical data of these compounds including nuclear magnetic resonance, mass spectrum, and circular dichroism were given.

Keywords—neplanocin A; nucleoside antibiotic; nucleophilic substitution; triflate; tetra-n-butylammonium fluoride; NMR; MS; CD; protecting group

Neplanocin A (I) was isolated as a component of neplanocins from Actinoplanacea ampullariella sp., and showed a marked antitumor activity. The structure of neplanocin A, 1-hydroxymethyl-3(R)-(adenin-9-yl)-4(S), 5(R)-dihydroxycyclopent-1-ene, has been confirmed by nuclear magnetic resonance (NMR), mass spectrum (MS), ultraviolet (UV) and X-ray crystallography. There has been considerable interests in the synthesis of 2'-modified nucleosides, stemming primarily from the antitumor or antiviral activities shown by

NII-Electronic Library Service

Table I. Physical Properties of 2'(R)-Substituted Neplanocin A's

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compd.	mp (°C)	Formula		Analy Calcd	Analysis(%) Calcd (Found)		Cherr	Chemical shifts (δ)	(0) (2)	MS (m/e)	$CD[\theta]_{as}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. INO.			$\binom{c}{c}$	Н	z	/×	$(J_{1'2'})$	Z-H	9-H		2021-J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IIX	195—197	$\mathrm{C_{13}H_{15}N_{5}O_{4}}$	51.14 (51.12		22.94 22.74)	<i>o</i>	5.64 (d) (7Hz)	5.18 (dd)	5.80 (bs)	305(M ⁺) 245(M ⁺ —AcOH) 136(B+2)	-11900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ж	165—167	$C_{13}H_{15}N_5O_3S \cdot 1/2H_2O$	47.26 (47.18		$\frac{21.20}{21.58}$	9.70 9.61)	5.61 (d)	4.12 (dd)	5.80 (bs)	$320(\mathrm{M^{+}}\!-\!1) \ 246(\mathrm{M^{+}}\!-\!\mathrm{SAc}) \ 196(\mathrm{B}+3)$	-41800
$ 231-233 (\mathrm{dec.}) C_{11}H_{12}N_8O_2 45.83 4.20 38.87 5.04 4.27 5.77 288 (\mathrm{M}^+) \\ (45.86 4.25 38.66) (64) (64) (65) 246 (\mathrm{M}^+-\mathrm{N}_3) \\ (8Hz) (64) (64) (65) 136 (\mathrm{B}+2) \\ (8Hz) (71) (14) (1$	XIV	239—240.5	$C_{11}H_{13}N_5O_3\cdot 1/3H_2O$	49.13 (49.01	5.00	26.04 25.97)		5.52 (d) (8H2)	4.14 (dd)	5.72 (bs)	$_{263(\mathrm{M}^{+})}^{130(\mathrm{D}+2)}$	-9700
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΛX	231—233(dec.)	$\mathrm{C_{11}H_{12}N_{8}O_{2}}$	45.83 (45.86	4.20	38.87 38.66)		5.64 (d)	4.27 (dd)	5.77 (bs)	$288(\mathrm{M}^{+}) \ 246(\mathrm{M}^{+} - \mathrm{N}_{3}) \ 126(\mathrm{R}^{+} - \mathrm{N}_{3})$	-19900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XVI	1				1	;	(d) (8Hz)	3.47 (dd)	5.71 (bs)	$130(\mathrm{B}+2)$ $262(\mathrm{M}+)$ $136(\mathrm{B}+2)$	-10000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IIAX	233—235(dec.)	$\mathrm{C_{11}H_{12}CIN_5O_2}$			24.86 24.79	X = CI 12.59 12.51) $X = CI$	5.74 (d) (8Hz)	4.54 (dd)	5.86 (bs)	$283,281(\mathrm{M}^{+}) \\ 246(\mathrm{M}^{+}-\mathrm{Cl}) \\ 136(\mathrm{B}+2)$	-11000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ШЛХ	224—226(dec.)	$\mathrm{C}_{11}\mathrm{H}_{12}\mathrm{BrN}_5\mathrm{O}_2$			21.47 21.26	$X = D_1$ 24.50 24.24)	5.70 (d) (8Hz)	4.60 (dd)	5.86 (bs)	$327,325(\mathrm{M}^+) \\ 246(\mathrm{M}^+ - \mathrm{Br}) \\ 136(\mathrm{B} + 2)$	-13000
$231-234 \qquad C_{11}H_{13}N_5O_2 \qquad 53.43 5.30 28.33 \qquad 5.64 2.2-2.4 5.75 247(M^+) \\ (53.43 5.25 28.04) \qquad (m) (m) (bs) 136(B+2)$	XIX	212—215(dec.)	$\mathrm{C_{11}H_{12}IN_5O_2}$	35.40 (35.45	$\frac{3.24}{3.28}$	18.77 19.13	34.01 33.02)	5.59 (d)	4.59 (dd)	5.84 (bs)	$373(\mathrm{M}^+) \ 246(\mathrm{M}^+ - \mathrm{I})$	-19300
	XX	231—234	$\mathrm{C_{11}H_{13}N_{5}O_{2}}$	1		28.33		1	2.2—2.4 (m)	5.75 (bs)	136(B+2) 247(M ⁺) 136(B+2)	0069—

arabinofuranosyl-cytosine (ara C) and -adenine (ara A).⁴⁾ It is well expected that the 2'-deoxy analog or 2'(R)-substituted derivatives of I may exhibit better chemotherapeutic indices than the original compound. For this purpose we have developed a synthetic route of the 2'(R)-substituted neplanocin A's.

Compound I was treated with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane⁵⁾ in dimethylformamide to give a simultaneously protected derivative at the 3'- and 5'-hydroxyls, 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)neplanocin A (II), in 82% yield. In NMR spectrum of II, the 2'-hydroxyl proton appeared as doublet at δ 3.59 (disappears with addition of D_2O) and the 2'-proton appeared as triple doublet at δ 4.32 (collapsed to double doublet on addition of D₂O) which showed the protection had occurred between 5'- and 3'-hydroxyls. analysis also confirmed⁶⁾ the structure of II. Treatment of II with trifluoromethanesulfonyl chloride and one equivalent of 4-dimethylaminopyridine in pyridine gave the 2'-O-triflate (III) in 89% yield. Nucleophilic displacement of III with a number of nucleophiles (NaOAc, KSAc, LiN₃, LiCl, LiBr, and LiI) were successful in hexamethylphosphoric triamide at room temperature for 1-20 hr to give the respective products (IV-IX). Deprotection of the bifunctional silyl group of IV and V with tetra-n-butylammonium fluoride in tetrahydrofuran proceeded at room temperature to afford XII and XIII, respectively. Deacetylation of XII gave ara-neplanocin A (XIV), an analog of ara A. De-silylation of VI followed by bubbling of H₂S into the aqueous solution of XV gave ninhydrin-positive 2'(R)-amino derivative (XVI), isolated as the amorphous acetate.

The reduction of VIII with tri-n-butyltin hydride in the presence of catalytic amount of azo-bis-isobutyronitrile in benzene afforded the 2'-deoxy derivative (X, MS 489 (M+), mp 149—151°) in 90% yield. In NMR spectrum of X, the 2'-protons appeared at δ 2.3—2.6 as octet, respectively. Compound X was prepared by an alternate route. Treatment of II with N,N'-thiocarbonyldiimidazole in refluxing 1,2-dichloroethane afforded a 2'-O-thiocarbonylimidazoyl derivative (XI). Reduction of XI with tri-n-butyltin hydride gave X in 61% isolated yield. Deprotection of X afforded 2'-deoxyneplanocin A (XX). The deprotection of VII—IX with tetra-n-butylammonium fluoride afforded the products (XVII—XIX), respectively, without affecting the trans-halohydrin system in these compounds.

The physical properites of the 2'(R)-substituted neplanocin A's prepared in this study are summarized in Table I. It should be noted that the bulkiness of the 2'-substituents affects strongly the molecular ellipticities, which may be based on the preference of anti-conformation around the "glycosyl" bond by the bulkier 2'(R)-substituents. In NMR spectra, coupling constants of the 1'-protons $(J_{1',2'}=8 \text{ Hz})$ of these derivatives also reflected the (R)-configuration at the 2'-position, as compared with the $J_{1',2'}$ (5 Hz) of I.

Adenosine and other purine nucleosides could also be transformed to the varieties of 2'-modified 2'-deoxyarabinosylpurines by the similar procedure. The method described here has an advantage for the practical preparation of 2'-substituted nucleosides from ribonucleosides in general. The full details of the synthetic studies and results of the biological activities of these derivatives will be reported separately.

References and Notes

- 1) Part XXXVI, A. Matsuda and T. Ueda, Nippon Kagaku Kaishi, in press (1981).
- 2) M. Tsujino, S. Yaginuma, T. Fujii, K. Hayano, T. Matsuda, T. Watanabe, and J. Abe, Abstracts of Papers, 11 th International Congress of Chemotherapy and 19th Interscience Congress on Antimicrobial Agents and Chemotherapy, Boston, 1979, pp. 855—856.
- 3) M. Hayashi, S. Yaginuma, N. Muto, and M. Tsujino, Nucleic Acids Res. Symposium Series, 8, 65 (1980).
- 4) S.S. Cohen, "Progress in Nucleic Acid Research and Molecular Biology," ed. by J.N. Davidson and W.E. Cohn, Vol. 5, Academic Press, New York, 1966, pp. 1—88.
- 5) W.T. Markiewicz, J. Chem. Res (S), 1979, 24.
- 6) M. Yamazaki, Y. Yamagata, T. Fujiwara, K. Tomita, K. Fukukawa, and T. Ueda, Abstracts of papers, 30th Meeting of Kinki Branch, the Pharmaceutical Society of Japan, Osaka, 1980, p. 95.

Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12, Nishi-6, Kita-ku, Sapporo, 060 Japan Research Laboratories, Toyo Jozo Co., Ltd, Mifuku, Oh-hito-cho, Shizuoka, 410-23 Japan Kiyofumi Fukukawa Tohru Ueda*

TAKAO HIRANO

Received December 19, 1980

Chem. Pharm. Bull. 29(2) 600—602 (1981)

Studies on Peptides C,1,2) Chemical Synthesis of Crystalline Ribonuclease A

Improved chemical synthesis of bovine pancreatic ribonuclease (RNase) A was achieved by applying a new deprotecting procedure with trifluoromethanesulfonic acid-thioanisole in combination with a modified air oxidation procedure with glutathione for the disulfide formation. After purifications by affinity chromatography followed by ion-exchange chromatography, a protein with the full enzymatic activity was obtained and subsequently crystallized from 95% ethanol according to Kunitz. A totally synthetic enzyme with full RNase A activity was thus obtained in a crystalline form for the first time.

Keywords—total synthesis of RNase A; trifluoromethanesulfonic acid-thioanisole deprotection; glutathione-mediated air oxidation; affinity chromatographic purification; crystals of synthetic RNase A

Recently, in a preliminary communication,³⁾ followed by a series of six papers,⁴⁾ we reported the chemical synthesis of a protein with the full enzymatic activity of bovine pancreatic ribonuclease (RNase) A (Fig. 1). We wish to report that we succeeded in crystallizing the fully active synthetic enzyme. Improvement in yield at the final step of the synthesis was achieved by applying a new deprotecting procedure with trifluoromethanesulfonic acid (TFMSA)-thioanisole⁵⁾ in combination with a modified oxidation procedure using glutathione for the disulfide formation.⁶⁾

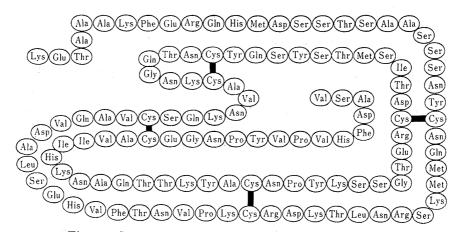


Fig. 1. Structure of Bovine Pancreatic Ribonuclease A

The protected RNase A was treated three times with 1 m TFMSA-thioanisole in TFA (0°, 60 min, each), instead of methanesulfonic acid,⁷⁾ in the presence of m-cresol to remove all of protecting groups employed (total of 33 groups; benzyloxycarbonyl from Lys, benzyl