Notes

Chem. Pharm. Bull. 29(3) 861-862 (1981)

Formation of Isopavine by the Cyclization of N-[α -(3,4-Dimethoxybenzyl)-3,4-dimethoxybenzyl]aminoacetal with Chlorosulfonic Acid¹⁾

KAZUKO KIDO and YASUO WATANABE*

Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815, Japan

(Received May 19, 1980)

Treatment of N-[α -(3,4-dimethoxybenzyl)-3,4-dimethoxybenzyl]aminoacetal (1) or its oxalate with chlorosulfonic acid at low temperature gave isopavine (3) in extremely good yield.

Keywords—isopavine synthesis; N-[α -(3,4-dimethoxybenzyl)-3,4-dimethoxybenzyl]-aminoacetal; chlorosulfonic acid; acid-catalyzed cyclization; spectra (UV, IR, and MS)

In a previous paper^{1b)} we reported that the treatment of N-(benzyl)-aminoacetals ($R^1 = R^2 = H$; $R^1 = OCH_3$, $R^2 = H$; $R^1 = R^2 = OCH_3$, and $R^3 = H$, CH_3 , CH_2CH_3 , or $CH_2CH_2CH_3$)

with chlorosulfonic acid (CISO₃H) directly afforded fully aromatized isoquinolines (R¹= R²=H; R¹=OCH₃, R²=H; R¹=R²=OCH₃, and R³=H, CH₃, CH₂CH₃, or CH₂CH₂CH₃) with yields in the range of 15—75% (Chart 1).

Chart 1

This experimental result prompted us to attempt the cyclodehydrogenation of N- $[\alpha$ -

(3,4-dimethoxybenzyl)3,4-dimethoxybenzyl]aminoacetal (1) with ClSO₃H, to obtain papaverine (2). N-[α -(3,4-Dimethoxybenzyl)-3,4-dimethoxybenzyl]aminoacetal (1), or preferably, its oxalate²⁾ (1 eq) was added in small portions to ClSO₃H (10 eq) at -60—-50° with vigorous stirring, and the mixture was held at the same temperature for 30 min, then allowed to stand at -15° for 3 hr.

By the subsequent procedures described in the experimental section, a basic substance was isolated as colorless crystals, mp 153.5—155°. Its infrared (IR) spectrum ($v_{\rm max}^{\rm CHClb}$ 3325 cm⁻¹) indicates the presence of an >NH group. The ultraviolet (UV) absorption spectrum showed maxima at 207 nm (log ε 5.06) and 284 (4.25), suggestive of the isopavine chromophore.³⁾ The molecular formula of this base was assigned as $C_{20}H_{23}NO_4$ on the basis of elemental analysis and its mass spectrum (MS) (M⁺, m/e 341).

The base obtained by the treatment of 1 with $CISO_3H$ was identical with an authentic sample of isopavine (3) prepared by the intramolecular condensation of 1 with H_2SO_4 .^{2,4)} Thus, although we failed to obtain papaverine (2), the present synthesis of isopavine (3) is

characterized by very high yield (97%) in comparison with the conventional method using $H_2SO_4^{2,4}$ or a mixture of H_2SO_4 and $CH_3CO_2H_2^{2,1}$

Experimental

Melting points were determined on Yanaco melting point apparatus and are uncorrected. UV, IR and MS spectra were taken on Shimadzu UV-200, Jasco IRA-1 and JEOL JMS-D 100 machines, respectively. All solutions were dried over anhyd. MgSO₄.

Treatment of N-[α -(3,4-Dimethoxybenzyl)-3,4-dimethoxybenzyl]aminoacetal (1) Oxalate with CISO₃H—1 oxalate (2.48 g, 4.7 mmol) prepared according to the method in the lit.²⁾ was added little by little to CISO₃H (3.1 ml) and the reaction mixture was held at -60—-50° for 30 min with vigorous stirring, then allowed to stand at -15° for 3 hr in the absence of moisture. The reaction mixture was poured into 100 ml of icewater and extracted with Et₂O to remove non-basic substances. The aq. layer was made alkaline with 10% aq. NaOH, then shaken with hot C₆H₆. The benzene solution was dried, and the solvent was distilled off. A basic substance was deposited which melted at 153.5—155°. This base was shown to be identical with an authentic sample of isopavine (3). Yield 1.57 g (97%). Anal. Calcd for C₂₀H₂₃NO₄: C, 70.36; H, 6.79; N, 4.10. Found: C, 69.94; H, 6.84; N, 4.10. MS: m/e (%), 156 (10.7), 190 (72), 191 (10.5), 269 (17.9), 281 (10.7), 312 (100), 313 (24.7), 314 (35.9), 341, M+ (43.6).

Acknowledgment The authors are grateful to Mr. T. Miyazaki for elemental analyses and mass spectral measurement.

References and Notes

- 1) a) This paper forms Part IV of "Halosulfonic Acid as a Cyclizing Agent for Isoquinoline Synthesis"; b) Part III: K. Kido and Y. Watanabe, *Heterocycles*, 14, 1151 (1980).
- 2) E. Waldmann and C. Chwala, Ann. Chem., 609, 125 (1957).
- 3) M. Shamma, "The Isoquinoline Alkaloids," Academic Press, New York, 1972, pp. 112-113.
- 4) D.A. Guthrie, A.W. Frank, and C.B. Purves, Can. J. Chem., 33, 729 (1955); A.R. Battersby and D.A. Yeowell, J. Chem. Soc., 1958, 1988.

(Chem. Pharm. Bull.) 29(3) 862—866 (1981)

Studies on Ketene and Its Derivatives. CII.¹⁾ Reaction of Diketene with Cyanamide Derivatives

Tetsuzo Kato,* Takuo Chiba, Takeshi Shimizu, and Hitoshi Takahashi

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, 980 Japan

(Received July 24, 1980)

The reaction of diketene with cyanamide gave 2-amino-6-methyl-4H-1,3-oxazin-4-one, which was transformed to 6-methyluracil by refluxing it in acetic acid. Diketene also reacted with monosubstituted cyanamides to give 1,3-oxazin-4-one derivatives, which could be similarly converted into 1-substituted 6-methyluracils. The reaction of diketene with dicyanodiamide afforded 2-guanidino-6-methyl-4H-1,3-oxazin-4-one, which, on treatment with ammonia, afforded 2-guanidino-4-hydroxy-6-methylpyrimidine.

Keywords—diketene; cyanamide; monosubstituted cyanamides; 6-methyluracils; dicyanodiamide; 4H-1,3-oxazin-4-ones; ring transformation

It has been reported that diketene reacts with compounds having a C=N double bond, such as S-alkylthiourea,²⁾ diphenylguanidine,³⁾ N-trimethylsilylketimine,⁴⁾ and some Schiff bases⁵⁾ to give 6-methyl-4*H*-1,3-oxazin-4-one derivatives. Similarly, Gompper *et al.*⁶⁾ reported the reaction of diketene with disubstituted cyanamides, such as dimethyl-, diethyl-, and