(Chem. Pharm. Bull.) 29(4)1063—1068(1981)

A Convenient Synthesis of Monocyclic β-Lactams by Means of Solid-Liquid Phase Transfer Reactions^{1,2)}

HIROKI TAKAHATA, YOSHINORI OHNISHI, HIROYUKI TAKEHARA, KAZUKO TSURITANI, and TAKAO YAMAZAKI*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

(Received October 21, 1980)

The intramolecular N-alkylation of β -bromopropionamides (1) under phase transfer conditions afforded monocyclic N-substituted β -lactams (2) in high yields. In a similar manner, cyclization by N₁-C₄ bond formation gave 4-benzoyl-2-azetidinones (4) from 3-benzoyl-3-bromopropionanilides (3).

Keywords——2-azetidinons; phase transfer catalyst; solid/liquid system; pulverized potassium hydroxide; intramolecular N-alkylation; β-bromopropionamides; high dilution; 4-benzoyl-2-azetidinones; 4-dimethylaminopyridine

The application of phase transfer catalysts in organic synthesis has been well documented.³⁾ In the previous paper¹⁾ we reported a facile N-alkylation of lactams with alkyl halides under phase transfer conditions. In connection with our work on the utilization of phase transfer catalysts, we now describe a convenient method for the synthesis of monocyclic β -lactams by the intramolecular N-alkylation of β -bromopropionamides (1) in a solid/liquid binary phase system. Since the advent of new antibiotics, such as nocardicin A,⁴⁾ clavulanic acid,⁵⁾ thienamycin,⁶⁾ and totally synthetic penems,⁷⁾ which exhibit potent and broad-spectrum antibacterial activities, there has been considerable interest in the synthesis of β -lactams⁸⁾ in view of the antibiotic potential of simple β -lactams.

The annulation of β -halopropionamides to 2-azetidinones has been studied by several groups. $^{9-11}$) These methods involved the use of sodium amides, 9) dimsyl anion, 10) or sodium hydride 11) as a base together with highly polar solvents such as liquid ammonia, 9) dimethyl-sulfoxide (DMSO), 10) or dimethylformamide (DMF). 11) Therefore, these methods require

incovenient apparatus and highly anhydrous solvents. We have investigated a more convenient procedure for the synthesis of a variety of N-substituted monocyclic β -lactams by means of phase transfer reactions using pulverized potassium hydroxide as a base together with tetra-n-butylammonium bromide (TBAB).¹²⁾

First, β -bromopropionamides (1) were readily prepared by Schotten-Baumann coupling of β -bromopropionyl chloride with the corresponding free amines using N,N-dimethylaniline as a base. The yields of amides (1) ranged from 54 to 93% (see "Experimental," Table V).

The cyclization of the amides (1) to the β -lactams (2) was dependent on the concentration, the addition rate of the amides (1) to the base, and the solvent. Both high concentration (over 0.05 m) and rapid addition of the amides (1) resulted in low yields of the β -lactams (2) as well as substantial formation of acrylamides. In practice, high dilution was necessary in order to accomplish these cyclizations with CH_2Cl_2 (A), a mixture of CH_2Cl_2 and CH_3CN (19:1) (B), or THF (C) as a solvent. The general procedure for the formation of N-substituted β -lactams (2) is described in "Experimental." The results are summarized in Table I.

TABLE I. Formation of 1-Substituted 2-Azetidinones (2)

Compd.	R	Yield ^{a)} (%)	React.	mp IR	^d >ν(C=O) cm ⁻¹			Analysis (%) Calcd (Found)		
		(707		(- /			c	H	N	
2a	Ph	94	A	79—81¢)	1730	C_9H_9NO		6.16 6.22	9.52	
2 b	p-MeOPh	92	Α	104—105/)	1725	$\mathrm{C_{10}H_{11}NO_2}$	67.77	6.25	9.71) 7.91	
2c	p-ClPh	94	В	137—139 ^{g)}	1730	C ₉ H ₈ ClNO	(67.71 59.71	6.20 4.45	8.08) 7.74	
2d	$p ext{-}\mathrm{O_2NPh}$	81	В	162—164	1745	$C_9H_8N_2O_3$	(59.86 56.25 (56.03	3.96 4.20 4.35	7.69) 14.58 14.52)	
2e	a-Naphthyl	91	В	52—53	1740	$C_{13}H_{11}NO$	79.16 (79.25		7.10 7.10)	
2f	Benzyl	86	Α	Oil	1740	$C_{10}H_{11}NO$	74.51 (74.14	6.88 7.02	8.69 [°] 8.41)	
2g	$p ext{-MeO-benzyl}$	85	В	Oil	1745	$\mathrm{C_{11}H_{13}NO_2}$	69.09 (70.19	6.85 6.89	7.33 7.02)	
2h	eta-Phenethyl	83	Α	Oil	1740	$C_{11}H_{13}NO$	75.40 (75.71	$7.48 \\ 7.22$	7.99 8.13)	
2i	Cyclohexyl	63 ^{h)} 74	A C	Oil	1730	$C_9H_{15}NO$	70.55 (70.71	9.87 9.99	9.14 8.89)	
2 j	n-Propyl	$67^{i)}$ 94	A C	Oil	1733	$C_7H_{11}NO_3$	63.68 (63.42	9.80 9.97	12.39 12.43)	
2k	CH ₂ COOEt	85	B'	Oil	1733	$C_7H_{11}NO_3$	53.49 (53.34	$7.05 \\ 7.12$	8.91 8.79)	
21	CH(CH ₃)COOCH ₃	84	\mathbf{B}'	Oil	1740	$_{3/4}^{C_{7}H_{11}NO_{3}}$	48.64 (48.88		8.11 7.82)	
2m	CH ₂ CH ₂ COOCH ₃	87	\mathbf{B}'	Oil	1740	C ₇ H ₁₁ NO ₃ · H ₂ O	47.99 (47.70	$7.48 \\ 7.48$	8.00 7.82)	
2n	$CHCOOCH_3$ $CH(CH_3)_2$	73	B'	Oil	1760	$C_9H_{15}NO_3$ · $1/3 H_2O$	56.54 (56.13	8.20 8.00	$7.32 \\ 7.04)$	
20	CH(Ph)COOCH ₃	83	A	Oil	1725	$C_{12}H_{13}NO_3$	65.74 (65.47	5.98 6.09	6.39 [°] 6.51)	
$2\mathbf{p}^{j}$	CH*(CH ₃)COOCH	₃ 68	В′	Oil	1735					

a) 2f-p were purified by column or preparative chromatography on silica.

A, B, and C (0.05 m) and B' (0.025 m).

The desired products (2) were obtained in high yields without any by -product acrylamides. The reaction conditions could be adapted for the preparation of β -lactams having a functional group, such as the esters (2k-o) in addition to the chiral compound (2p). This reaction proceeded at room temperature, the procedure is simple and straightforward, and work-up is In addition, the β -lactams (2) readily prepared could serve as potential synthetic intermediates because of their high reactivities (Fries rearrangement, 14) carbon carbon bond formation at the C₃-position, 15) azidation at the C₃-position, 16) oxidation at the C₄-position 17) and so on^{18}).

Next, it was found that this procedure was applicable to the synthesis of 4-substituted β -lactams (4). Very recently Abnoulla et al., reported the conversion of 3-benzoyl-3-bromopropionanilides (3) into 4-benzoyl-2-azetidinone (4) using Amberlite (IRA-400) as a base. 19) The condensation of 3-benzoyl-3-bromopropionic acid with anilines by using dicyclohexyl-

Recrystallized from ethyl acetate-isopropyl ether (2a-d) and ether-isopropyl ether. c)

d) 2a-e (Nujol) and 2j-p (Neat).

Ref. 10, 77—78°. Ref. 10, 98—99°.

f)

Ref. 10, 131.5—132.5°. g)

The acrylamide was obtained in 14% yield. The acrylamide was obtained in 6% yield.

j) $[a]_D^{25} - 30.7^{\circ} (c=1.21, benzene).$

TABLE II. NMR Data for 1-Substituted 2-Azetidinones (2)

C1	60 MHz	, CDCl ₃ ,	ppm (Coupling constants, Hz)a)			
Compd.	C ₃ –H	C ₄ -H	Others			
2a	2.97 t	3.50 t	7.27 m (5H)			
	(J=4)	(J=4)				
2b	3.10 t	3.60 t	3.83 s (3H), 6.93 d (J=9, 2H),			
	(J=4)	(J=4)	7.40 d (J=9, 2H)			
2c	3.13 t	3.67 t	7.40 s (4H)			
	(J=4)	(J=4)				
2d	3.17 t	3.70 t	7.40 d $(J=9, 2H)$, 8.20 d $(J=9, 2H)$			
	(J = 4.5)	(J = 4.5)				
2e	3.17 t	3.83 t	7.33—8.27 m (7H)			
	(J = 4.5)	(J = 4.5)				
2 f	2.87 t	3.07 t	4.37 s (2H), 7.37 s (5H)			
	(J=4)	(J=4)				
$2\mathbf{g}$	2.93 t	3.10 t	3.83 s (3H), 4.33 s (2H)			
_	(J=4)	(J=4)	6.90 d $(J=9, 2H), 7.23$ d $(J=9, 2H)$			
2h	2.67 - 3.33	3 m (6H)	3.50 t (J=7, 2H), 7.33 m (5H)			
2i	2.83 t	3.25 t	0.67—2.10 m (10H), 3.50 m (1H)			
	(J=4)	(J=4)	, , ,			
2 j	2.95 t	3.23 t	0.93 t (J=7, 3H), 1.63 m (2H)			
-,	(I=4)	(J=4)	2.10-3.33 m (6H)			
2k	3.20 t	3.60 t	1.23 t $(J=8, 3H)$, 4.10 s $(2H)$,			
	(J=4)	(J=4)	4.20 q (J=8, 2H)			
21	3.00 t	3.60 t	1.33 d $(J=7, 3H), 3.67 \text{ s } (3H),$			
	(J=4)	(J = 4)	4.37 q (J=7, 1H)			
2m	2.95 t	3.30 t	2.50 t (J=7, 2H), 3.43 t (J=7, 2H)			
2111	(J=4)	(J=4)	3.63 s (3H)			
2n	2.95 t	3.40 t	0.97 d (J=7, 6H), 1.86-2.50 m (1H)			
211	(J=4)	(J=4)	3.77 s (3H), 4.20 d ($J=9$, 1H)			
20	2.83—3.27 m	,	3.83 s (3H), 5.67 s (1H),			
au.	(3H)	(J=3.5, 1H)	7.45 s (5H)			
$2\mathbf{p}$	2.93 t	3.37 t	1.50 d $(J=7, 3H)$, 3.73 s $(3H)$,			
ωp	(J=4)	(J=4)	4.50 q $(J=7, 1H)$			

a) s=singlet, d=doublet, t=triplet, q=quartet, and m=multiplet.

TABLE III. Formation of 1-Substituted 4-Benzoyl-2-azetidinones (4)

Compd.	R	Yield	$\operatorname*{mp}_{(^{\circ}C)^{a)}}$	IR Nujol cm-1		Formula	Analysis (%) Calcd (Found)		
•		(%)		Lactam	Ketone		ć	H	N
4a	Ph	60	152—155 ^{b)}	1745	1690	$C_{16}H_{13}NO_2$	76.47 (76.34	5.22 5.41	5.57 5.69)
4b	p-MeO-Ph	52	146149	1720	1680	$\mathrm{C_{17}H_{15}NO_3}$	72.58 (72.87	5.37 5.44	4.98 5.24)
4c	$p ext{-}\mathrm{CH}_3 ext{-}\mathrm{Ph}$	56	177—178°)	1738	1682	$\mathrm{C_{17}H_{15}NO_2}$	76.96 (76.73	5.70 5.92	5.28 5.57)
4d	p-Cl-Ph	61	144—146 ^d)	1730	1680	$C_{16}H_{12}CINO_2$	67.26 (67.15	$4.23 \\ 4.25$	4.90 4.61)

a) Recrystallized from ethyl acetate-isopropyl ether.

b) Ref. 21, 145—146°.
c) Ref. 19, 172—174°.
d) Ref. 19, 142—143°.

carbodiimide (DCC) as a coupling reagent in the presence of 4-dimethylaminopyridine²⁰⁾ gave the anilides (3) in yields ranging from 83 to 92% (see "Experimental," Table VI). Cyclization by terminal N_1 – C_4 bond formation was carried out under similar conditions to afford 4 in acceptable yields (Table III).

Table IV. NMR Data for 1,4-Disubstituted 2-Azetidinones (4) 60 MHz, CDCl₃ (Coupling Constants, J=Hz)^{a)}

Compd.	Ha	Hb	Hc	Others
4a	3.10, dd	3.63, dd	5.50, dd	7.40, s (5H), 7.57, m (3H),
	(14, 3)	(14, 6)	(6, 3)	8.10, m (2H)
4 b	3.03, dd	3.60, dd	5.40, dd	3.70, s (3H), 6.83, 7.23, ABq
	(15, 3)	(15, 6)	(6, 3)	(9, 2H each), 7.60, m(3H), 8.00, m(2H)
4c	3.07, dd (15, 4)	3.67, dd (15, 6)	5.50, dd (6, 4)	2.47, s (3H), 7.27, s (4H), 7.83, s (4H), 8.20, m (2H)
4d	3.03, dd	3.60, dd	5.43, dd	7.23, s (4H), 7.57, m (3H)
	(15, 3.5)	(15, 6.5)	(6.5, 3.5)	8.00, m (2H)

a) dd=double doublet.

Experimental

Melting points were determined with a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded with JASCO IRA-1 spectrophotometer. PMR spectra were measured with a JEOL C-60H spectrometer and chemical shifts are expressed in ppm (δ) using tetramethylsilane as an internal standard.

General Procedure for the Preparation of N-Substituted β -Bromopropionamides (1)—A suspension of β -bromopropionyl chloride (50 ml) in CH₂Cl₂ (50 ml) was added dropwise with stirring to a solution of N,N-dimethylaniline (50 mmol) and an amine (25 mmol) in CH₂Cl₂ (300 ml) at 0°. The reaction mixture was stirred at room temperature for 2 hr. The mixture was washed successively with 5% HCl solution, water, saturated NaHCO₃ solution, and brine. The organic phase was dried over anhyd. MgSO₄ and concentrated in vacuo to leave a solid, which was recrystallized to give the desired amide (1).

General Procedure for the Preparation of N-Substituted 2-Azetidinone (2)—A solution containing N-substituted β -bromopropionamide (1) (5 mmol) in 50 ml or 100 ml of solvent [CH₂Cl₂ (A), a mixture of CH₂Cl₂ and CH₃CN (19:1) (B) or THF (C)] was added to a suspension of pulv. KOH (6 mmol) and TBAB (1 mmol) in 50 ml or 100 ml of the same solvent over a period of 6 hr with stirring. After completion of the addition, the reaction mixture was stirred for 30 min. The precipitate was filtered off and then washed with CH₂Cl₂. After removal of the combined solvent, the residue was purified by recrystallization (2a—e) or by chromatography on silica gel using a mixture of CHCl₃ and MeOH (100:1) as an eluant (2f—p) to give desired β -lactams (2) (Table I and II).

General Procedure for the Preparation of 3-Benzoyl-3-bromopropionanilides (3)—DCC (0.01 mol) was added to a solution of an aniline (0.01 mol), 3-benzoyl-3-bromopropionic acid (0.01 mol), and 4-dimethylamino-pyridine (0.002 mol) in $\mathrm{CH_2Cl_2}$ 960 ml) with ice cooling. The reaction mixture was stirred for 3 hr at 0° and then for 1 hr at room temperature. The mixture was concentrated to leave an oil. Ethyl acetate (70 ml) was added to the residue and the resulting precipitate was filtered off. The filtrate was successively washed with 5% HCl solution, water, saturated NaHCO₃, and brine. The organic phase was dried over anhyd. MgSO₄ and concentrated in vacuo to give 3, which was recrystallized from ethyl acetate—isopropyl ether.

General Procedure for the Preparation of 4-Benzoyl-2-azetidinones (4)—A solution containing 3 (5 mmol) in a mixture of CH₂Cl₂ and CH₃CN (19:1) (100 ml) was added to a suspension of pulv. KOH (10 mmol) and TBAB (2 mmol) in the same solvent (100 ml) for 5 hr with stirring at room temperature. After completion of the addition, the reaction mixture was stirred for 30 min. The precipitate was filtered off and then washed with CH₂Cl₂. The combined solvent was concentrated to leave a solid, which was purified by column chromatography on silica gel with benzene-CH₂Cl₂ (1:1) as an eluant to afford 4.

Table V. β -Bromopropionamides (1)

Compd.	R	Yields	mp (°C) (Recryst.	IR Nujol cm-1		Formula	Analysis (%) Calcd (Found)		
compa.	21	(%)	$solv.)^{a)}$	NH	C=O	·	c	H	N
1a	Ph	92	124—126 ^{b)} (A)	3290	1650	C ₉ H ₁₀ BrNO	47.37 (47.58	4.42 4.55	6.14 5.94)
1b	p-MeO-Ph	93	112—114°) (B)	3240	1640	$\mathrm{C_{10}H_{12}BrNO_2}$	46.53 (46.20	4.65 4.92	5.43 5.37)
1c	p-Cl-Ph	75	$127-129^{d}$ (A)	3240	1650	$C_{\theta}H_{\theta}BrClNO$	41.37	3.56 3.45	5.05 5.34)
1d	$p ext{-}\mathrm{O_2}\mathrm{N} ext{-}\mathrm{Ph}$	65	189—191 (B)	3240	1660	$C_9H_9BrN_2O_3$	39.58 (39.86	3.32 3.22	10.26 10.11)
1e	α-Naphthyl	74	117—119 (A)	3260	1640	$\mathrm{C_{13}H_{12}BrNO}$	56.13 (56.39	4.35 4.31	5.04 4.98)
1f	Benzyl	85	102—104 (C)	3280	1635	$C_{10}H_{12}BrNO$	49.60 (49.85	5.00 5.18	5.79 5.52)
1g	$p ext{-MeO-benzyl}$	81	127—128 (D)	3280	1630	$\mathrm{C_{11}H_{14}BrNO_2}$	48.54 (48.51	5.18 5.30	5.15 4.88)
1h	eta-Phenethyl	86	44—47 (E)	3280	1635	$\mathrm{C_{11}H_{14}BrNO}$	51.58 (51.82	5.51 5.49	5.47 5.38)
1i	Cyclohexyl	77	107—109 (B)	3290	1635	$C_9H_{16}BrNO$	46.16 (46.21	6.89 6.97	5.98 5.67)
1j	n-Propyl	69	50—52 (F)	3300	1630	$C_6H_{12}BrNO$	37.13 (37.31	6.23	7.22 7.05)
1k	CH ₂ COOEt	85	83 (A)	3240	1740 16	$C_7H_{12}BrNO_3$	35.31 (35.59	5.04 5.14	5.88 6.12)
11	CH(CH ₃)COOCH ₃	83	47—52 (E)	3320	1745 16	20 C ₇ H ₁₂ BrNO ₃	35.31 (35.53	$5.04 \\ 5.10$	5.88 6.04)
1m	CH ₂ CH ₂ COOCH ₃	77	43—47 (E)	3300	1745 16	$40 C_7H_{12}BrNO_3$	35.31 (35.22	5.04 5.18	5.88 5.98)
1n	CHCOOCH ₃ CH(CH ₃)	₂ 69	44—46 (E)	3320	1730 16	$40 C_9H_{16}BrNO_3$	41.87 (41.59	6.25	5.43 5.18)
10	CH(Ph)COOCH ₃	78	82—83 (A)	3260	1750 16	$C_{12}H_{14}BrNO_3$	48.01 (47.72	4.70 4.90	4.67 4.40)
1p *)	CH*(CH ₃)COOCH ₃	54	54—56 (E)	3320	1740 16	40 C ₇ H ₁₂ BrNO ₃	35.31 (35.46	5.40 5.26	5.88 5.85)

a) A (ethyl acetate-isopropyl ether), B (CH₂Cl₂-isopropyl ether), C (CH₂Cl₂-n-hexane), D (ether), E (CH₂Cl₂-ether), F (isopropyl ether).
b) Lit. 10, 118—118.5°,
c) Lit. 10, 111—112°,
d) Lit. 10, 126—127°,

Table VI. Yields and Spectral and Analytical Data for 3-Benzoyl-3-bromopropionamides (3)

Compd.	Yields mp $(\%)$ $(^{\circ}C)^{a}$		IR v Nujoi	cm ⁻¹	Formula	Analysis (%) Calcd (Found)			
	(707	,				ć	H	N	
3a	86	106—111	3310 1680	1640	$C_{16}H_{14}BrNO_2$	57.84 (57.62	4.25 4.09	4.22 4.34)	
3Ъ	83	136—140	3320 1680	1640	$\mathrm{C_{17}H_{16}BrNO_3}$	56.36 (56.20	4.45 4.59	3.87 3.74)	
3c	94	136138	3300 1680	1640	$\mathrm{C_{17}H_{16}BrNO_2}$	58.97 (59.25	$\substack{4.66\\4.72}$	4.05 4.40)	
3 d	84	134—136	3360 1680	1640	$C_{16}H_{13}BrClNO_2$	52.41 (52.38	3.57 3.82	3.87 4.00)	

a) Recrystallized from ethyl acetate-isopropyl ether.

e) $[a]_D^{25} + 1.2^{\circ} (c = 0.76, \text{ chloroform}).$

Acknowledgement This work was supported in part by a grant from the Foundamation for the Promotion of Research on Medicinal Resources, which is gratefully acknowledged. We thank Mr. Nohara of Ikeda Mohando Co. for carrying out elemental analyses.

References and Notes

- 1) This paper forms Part II of "Utilization of Phase Transfer Catalysts in Organic Synthesis" Part I: H. Takahata, T. Hashizume, and T. Yamazaki, *Heterocycles*, 12, 1449 (1979).
- 2) A part of this work was published as a preliminary report. H. Takahata, Y. Ohnishi, and T. Yamazaki, *Heterocycles*, 14, 467 (1980).
- 3) a) W.P. Weber and G.W. Gokel, "Phase Transfer Catalysis in Organic Chemistry," Springer-Verlag: West. Berlin, 1977; b) C.M. Starks and C. Liotla, "Phase Transfer Catalysis, Principles and Techniques," Academic Press, N.Y., 1978.
- 4) H. Aoki, M. Sakai, T. Kosaka, T. Konomi, J. Hosoda, Y. Kubochi, E. Iguchi, and H. Imanaka, J. Antibiotics., 29, 492 (1976).
- 5) a) T.T. Aowarth, A.G. Brown, and T.J. King, J.C.S. Chem. Commun., 1976, 266; b) A.G. Brown, D. Butterworth, M. Lole, G. Hanscomb, J.D. Hood, C. Reading, and G.N. Robinson, J. Antibiotics, 29, 668 (1976).
- 6) G. Albers-Schonberg, B.H. Arison, O.D. Henses, J. Hirshfield, K. Hoogetson, E.A. Kaczka, R.E. Rhodes, J.S. Kuhan, E.M. Kahan, R.W. Ratcliffe, R. Walton, L.J. Raswinkle, R.B. Morin, and B.G. Christensen, J. Am. Chem. Soc., 100, 6491 (1978).
- 7) H.R. Pfaendler, J. Gosteli, and R.B. Woodward, J. Am. Chem. Soc., 101, 6306 (1979).
- 8) a) A.K. Mukerjee and A.K. Singh, Tetrahedron, 34, 1731 (1978); b) K. Hirai, J. Syn. Org. Chem., Japan, 38, 97 (1980).
- 9) I.L. Knunyates and N.P. Gambaryan, Izv. Acad. Nauk SSSR, Otdel Khim. Nauk, 1955, 1037.
- 10) M.S. Manhas and S.J. Jeng, J. Org. Chem., 32, 1246 (1967).
- 11) H.H. Wasserman, D.J. Hlaste, A.W. Tremper, and J.S. Wu, Tetrahedron. Lett., 1979, 549.
- 12) The formation of α -methylene- β -lactams by cyclization of 3-bromomethylpropionamides with a phase transfer catalyst in a solid/liquid system has been reported. However, because of the readiness with which compounds such as β -halo amides are converted to acrylamides, this procedure is not suitable for the preparation of unsubstituted 2-azetidinones. S.R. Fletcher and I.T. Kay, J.C.S. Chem. Commun., 1978, 903.
- 13) Acetals have been obtained. Unpublished results.
- 14) a) M. Fischer and A. Matteus, Chem. Ber., 102, 342 (1979); b) S. Kano, T. Ebata, K. Funkai, and S. Shibuya, Heterocycles, 4, 1649 (1976).
- 15) a) T. Durst, M.J. LeBelle, Can. J. Chem., 50, 3196 (1972); b) S. Kano, T. Ebata, K. Funkai, and S. Shibuya, Synthesis, 1978, 746.
- 16) H.H. Wasserman and D.J. Hlasta, J. Am. Chem. Soc., 100, 6780 (1978).
- 17) A private communication from Prof. Y. Ban, Hokkaido University; cf) a) M. Okita, T. Wakamatsu, and Y. Ban, J.C.S. Chem. Commun., 1979, 749; b) M. Okita, T. Wakamatsu, M. Mori, and Y. Ban, Heterocycles, 14, 1089 (1980).
- 18) S. Kano, J. Syn. Org. Chem. (Japan), 36, 581 (1978).
- 19) R.F. Abdulla and J.C. Williams, Jr, Tetrahedron Lett., 21, 997 (1980).
- 20) B. Nieses and W. Stegleich, Angew. Chem., 90, 556 (1978).
- 21) B.G. Chatterjee, V.V. Rao, S.K. Roy, and H.P.S. Chawla, Tetrahedron, 23, 493 (1967).