Chem. Pharm. Bull. 31(1) 144—148 (1983)

Studies on Quantitative Structure–Activity Relationships. V. QSAR Investigations of Rifamycin B Amides and Hydrazides by Utilization of the Substituent Entropy Constant σ_{S}°

HIDEKO KAWAKI, *,a TATSUYA TAKAGIb and YOSHIO SASAKIb

Faculty of Pharmacy, Kinki University,^a Kowakae 3-4-1, Higashi-Osaka 577, Japan and Faculty of Pharmaceutical Sciences, Osaka University,^b
Yamadaoka 1-6, Suita 565, Japan

(Received May 20, 1982)

QSAR analyses of rifamycin B amides and hydrazides were carried out, and the following equations containing the substituent entropy constant, σ_{S}° , were obtained (the subscripts 1, 2 and 3 denote the substituent groups on the nitrogen atom).

log
$$(1/C) = -6.69(\pm 4.89)(\Sigma \sigma_S^{\circ})_{1,2}^2 + 9.33(\pm 3.37)(\Sigma \sigma_S^{\circ})_{1,2} + 5.54$$

where $n = 23$, $r = 0.929$, $F = 62.6$,** SD=0.34.
log $(1/C) = -6.00(\pm 1.70)(\Sigma \sigma_S^{\circ})_{1,2,3}^2 + 6.71(\pm 1.47)(\Sigma \sigma_S^{\circ})_{1,2,3} + 6.93$
where $n = 17$, $r = 0.950$, $F = 64.4$,** SD=0.16.

Keywords—substituent entropy constant σ_S° ; substituent constant; QSAR analysis; regression analysis; rifamycin B amide; rifamycin B hydrazide

The biological activities of 44 rifamycin B amide congeners (I) and 26 hydrazide congeners (II) against five kinds of gram-positive bacteria were reported by Sensi *et al.*, and by Quinn *et al.*. The results of QSAR analyses of (I) for activity against *M. aureus* could be expressed by a linear combination of three kinds of descriptors, namely, a quadratic term of the partition coefficient in the *n*-octanol/ H_2O system, log *P* and a dummy parameter *D* of the substituent groups R_1 and R_2 , and gave a correlation coefficient r=0.920 and standard deviation SD=0.324 for 42 congeners.

For (II), by using the aliphatic substituent constant σ^* , r=0.937 and SD=0.189 were obtained for 24 congeners. However, in these cases, the constant terms were not in agreement with the values for reference compounds.

In addition, for 44 congeners of rifamycin B amides, a component PR_p given by the successful principal component analysis of Lukovits *et al.*⁴⁾ does not appear to have an explicit chemical meaning.

Our QSAR analyses were carried out by using the Hammett type substituent constant σ_i and σ_{π} , or representing an enthalpy term, in addition to the novel substituent entropy constant $\sigma_S^{\circ 6}$ defined by $\sigma_S^{\circ} = \log (S_R^{\circ}/S_H^{\circ})$, where S° denotes the standard entropy of the 3rd law of

thermodynamics, and the subscripts R and H mean the substituted compound and the reference, CH₄. Thermodynamically, the necessary and sufficient conditions are fulfilled when the biological responses are expressed by a linear combination of the enthalpy and entropy parameters (cf. Eq.1),

$$BR = a(\sigma_{S^{\circ}})^{2} + b \sigma_{S^{\circ}} + c \sigma_{i} + d \sigma_{\pi} + e$$
 (1)

where the combination of $(\sigma_{ij}, \sigma_{\pi})$ or $(|\sigma_i|, |\sigma_{\pi}|)$ represents strong or weak drug-site interaction, respectively.

Methods

Reported biological activities of the rifamycin B amides and hydrazides²⁾ are summarized in Tables I and II. —QSAR analyses were carried out by using an ACOS 900 system computer at Numerical Treatment-Osaka University Computer Center and a PC-8001 personal computer utilizing a library program, NEC TSS Library TSS/LIB-6, and our original program written in BASIC. The standard deviation SD is given by $SD = [S_{se}/(n-k-1)]^{1/2}$, where n and k denote the number of observations and variables, and S_{se} denotes the sum of squares of the residuals. ** and * (F test) denote 99 and 95% confidence limits of the statistical hypothesis.

TABLE I. Biological Activities of Rifamycin B Amides

	2		log (1/	C)		- to vid state
R_1	R_2	1	2	3	$\Sigma \sigma_{\text{S}}^{\circ a)}$	$\sum \sigma_{i}^{b}$
Н	Н	5.70	4.91	4.78	0	0
Н	Me	6.68	5.89	5.09	0.091	-0.033
Н	Et	6.99	6.20	5.40	0.161	-0.033
Н	n-Pr	6.50	5.82	5.41	0.222	-0.033
Н	iso-Pr	6.70	5.90	5.41	0.199	-0.039
Н	<i>tert-</i> Bu	6.73	5.83	5.42	0.216	-0.044
Н	Ph	6.92	6.04	5.43	0.236	0.081
Me	Me	7.12	6.02	5.72	0.182	-0.067
Et	Et	7.91	7.01	6.03	0.322	-0.067
n-Pr	n-Pr	8.15	7.15	6.53	0.444	-0.067
n-Bu	n-Bu	8.46	7.46	7.16	0.544	-0.067
iso-Bu	iso-Bu	8.86	7.86	7.28	0.532	-0.067
$n-C_5H_{11}$	$n - C_5H_{11}$	8.65	7.65	7.05	0.638	-0.067
Bzl	Bzl	8.49	7.49	6.89	0.574	-0.067
Me	Et	7.95	7.06	6.03	0.252	-0.067
Me	n-Pr	7.91	7.31	6.65	0.313	-0.067
Me	n-Bu	8.44	7.22	6.35	0.363	-0.067
Et	n-Pr	8.01	7.22	6.35	0.383	-0.067
Et	n-Bu	8.62	7.62	7.27	0.433	-0.067
Me	cyclo-C ₅ H ₉	8.14	7.22	6.36	0.352	-0.073
Me	$cyclo$ - C_6H_{11}	8.15	7.53	6.68	0.357	-0.073
Me	Bzl	8.24	7.09	6.37	0.378	-0.067
Et	Ph	8.46	7.33	6.37	0.397	0.048

^{3.} B. subtilis. 2, S. faecalis.

a) and b) are estimated as the simple sum of those of the substituents R_1 and R_2 . The latter is converted to the aliphatic from the aromatic value by multiplication by a factor of 0.74.

TABLE II. Biological Activities of Rifamycin B Hydrazide	TABLE II.	Biological	Activities	of	Rifamycin	В	Hydrazides
--	-----------	------------	------------	----	-----------	---	------------

<u>_</u>				$\log(1/C)$)		
 R ₁	R_2	R ₃	1	2	3	$\Sigma \sigma_{\mathrm{S}}^{\circ}$	$\Sigma \sigma_{\rm i}$
Н	Н	Н	6.98	6.04	5.40	0	0
Me	Me	Me	8.13	7.21	6.65	0.273	-0.100
Me	Et	Et	8.62	7.62	6.96	0.413	-0.100
Me	n-Pr	n-Pr	8.94	7.76	6.98	0.535	-0.100
Me	n-Bu	n-Bu	8.87	7.95	7.30	0.635	-0.100
Et	Me	Me	8.62	7.44	6.62	0.343	-0.100
Et	Et	Et	8.93	7.63	7.63	0.483	-0.100
Et	n-Pr	n-Pr	8.87	7.77	7.29	0.605	-0.100
Et	n-Bu	n-Bu	8.80	7.96	7.31	0.705	-0.100
n-Pr	Me	Me	8.43	7.60	6.65	0.404	-0.100
<i>n</i> -Pr	Et	Et	8.94	7.63	7.64	0.544	-0.100
n-Pr	n-Pr	n-Pr	8.48	7.65	7.17	0.666	-0.100
n-Pr	n-Bu	n-Bu	8.49	7.66	7.49	0.766	-0.100
n-Bu	Me	Me	8.93	7.68	7.28	0.454	-0.100
n-Bu	Et	Et	8.64	7.94	7.64	0.594	-0.100
n-Bu	n-Pr	n-Pr	8.66	7.66	7.31	0.716	-0.100
 n-C ₅ H ₁₁	Me	Me	8.64	7.94	7.28	0.501	-0.100

1, M. aureus.

2, S. faecalis.

3, B. subtilis.

Results and Discussion

In our previous communication,⁷⁾ the result of the cluster analysis of 18 current QSAR parameters showed that σ_i and $|\sigma_i|$ belong to the same cluster, whereas σ_{π} and $|\sigma_{\pi}|$ are classified into different ones.

As the sign of σ_{s^o} is always positive, we distinguished in the previous report⁸⁾ between the real and absolute combinations, namely (σ_i, σ_{π}) and $(|\sigma_i|, |\sigma_{\pi}|)$, for the evaluation of an enthalpy term, where the former represents a strong drug-site interaction and the latter a weak one.

In this work, for the polysubstituted compounds summarized in Tables I and II, the values of σ_{S} ° and those of σ_{i} are estimated tentatively as the simple sum of those for the groups R_{1} and R_{2} .

As shown in Table I, values of $\log(1/C)$ of rifamycin B amides increase in the order $NH_2 < NHR_1 < NR_1R_2$; for the NR_1R_2 group, the congeners having OH, CN, Cl, NEt_2 , CO_2Et groups on the side chain and rifamycin morpholides are excluded from the regression analyses, because they are active against both gram-positive and -negative bacteria. As the descriptor representing the contribution of the enthalpy term due to the alkyl groups R_1 or R_2 , the substituent constant σ_i is employed. For a set of substituents, $\Sigma \sigma_S \circ$ and $\Sigma \sigma_i$ are used, where the latter is converted to the aliphatic system from the aromatic one by multiplication by a factor of 0.74.9 It was found that $|\Sigma \sigma_i|$ gives a better result than $\Sigma \sigma_i$ (cf. Table III).

This can probably be ascribed to a weak drug-site interaction. For rifamycin B hydrazides, a quadratic equation of σ_{S^0} gives the best result (cf. Table IV), in contrast with the Quinn's result using σ^* .

Two factors must be taken into account.

1) In this work, the value of $\Sigma \sigma_i$ of alkyl groups takes a dummy-like 0 or -0.1 value. Under these conditions, the correlations of both $\sigma^* vs. \sigma_i$ and $\sigma^* vs. D$ (0 when R=H and 1 when R=alkyl) gave the same coefficient of r=0.958, SD=0.15.

TABLE III. Regression Equations for Activity of Rifamycin B Amides (n=23) against to M. aureus

	$a(\Sigma \sigma_{\text{S}}^{\circ})^2$	$b\Sigma\sigma_{ m S}^{\circ}$	$c\Sigma\sigma_{\mathrm{i}}$	e	r	F	SD
1	$-5.04(\pm 6.57)$	+7.81 (±5.24)	+ 5.41 (± 14.11)	+5.51	0.931	41.5**	0.34
	$-6.69 (\pm 4.89)$	$+9.33 (\pm 3.37)$		+5.54	0.929	62.6**	0.34
			$+34.09~(\pm 13.68)$	+5.76	0.749	26.9**	0.59
2	$-6.51 (\pm 4.89)$	$+9.02 (\pm 3.42)$	$-2.04 \ (\pm 4.06)$	+5.52	0.933	42.7**	0.33
	$-6.69 (\pm 4.89)$	$+9.33 (\pm 3.37)$		+5.54	0.929	62.6**	0.34
			$-9.51~(\pm 8.86)$	+7.29	0.438	5.0*	0.80

 $^{1, |\}sigma_i|.$ 2, σ_i .

TABLE IV. Regression Equations for Activity of Rifamycin B Hydrazides (n=17) against M. aureus

$a(\Sigma \sigma_{\text{S}}^{\circ})^2$	$b\Sigma\sigma_{ ext{S}}^{\circ}$	$c \Sigma \sigma_{\mathrm{i}} $	e	r	F	SD
$-8.23 (\pm 4.24)$	+9.16 (±4.52)	$-6.89(\pm 12.01)$	+6.98	0.955	45.1**	0.16
$-6.00 (\pm 1.70)$	$+6.71 (\pm 1.47)$		+6.93	0.950	64.4**	0.16
		$+17.07 \ (\pm 5.07)$	+6.98	0.880	51.6**	0.23
	$+1.76 (\pm 0.96)$		+7.69	0.709	15.2**	0.34
$+1.39(\pm 1.38)$			+8.18	0.485	4.6*	0.43

TABLE V. QSAR Analyses of Biological Activities of Rifamycin B Amides (n=23)

	$a(\Sigma \sigma_{\text{S}}^{\circ})^2$	bΣσs°	$c \Sigma\sigma_{\mathrm{i}} $	e	r	F	SD
1	$-5.04 (\pm 6.57)$	+7.81 (±5.24)	5.41 (±14.11)	+5.51	0.931	41.5**	
	$-6.69 (\pm 4.89)$	$+9.33 (\pm 3.37)$		+5.54	0.929	62.6**	
2	$-5.29 (\pm 6.37)$ $-6.70 (\pm 4.70)$	$+7.61 (\pm 5.09)$ $+8.90 (\pm 3.24)$	$+4.58 (\pm 13.69)$		0.924	37.1** 56.8**	
3	$-0.70 (\pm 4.70)$ $-1.69 (\pm 5.48)$	$+5.13 (\pm 4.37)$	$+3.26 (\pm 11.77)$		0.933	42.8**	
3	$-2.69 (\pm 4.03)$	$+6.05 (\pm 2.78)$	1 3.20 (± 11.77)	+4.54	0.932	66.2**	
		$+4.27~(\pm 0.79)$		+4.77	0.925	124.8**	0.28

^{1,} M. aureus. 2, S. faecalis. 3, B. subtilis.

TABLE VI. QSAR Analyses of Biological Activities of Rifamycin B Hydrazides (n=17)

	$a(\Sigma\sigma_{\text{S}}^{\circ})^2$	bΣσ _S °	$c \Sigma\sigma_{ m i} $	e	<i>r</i> .	F	SD
1	$-8.23(\pm 4.24)$	+9.16 (±4.52)	$-6.89 (\pm 12.01)$	+6.98	0.955		
2	$-6.00 (\pm 1.70)$ -5.43 (±3.21)	$+6.71 (\pm 1.47)$ +6.62 (±3.42)	$-2.35 (\pm 9.08)$	+6.93 +6.04	0.950	64.4** 72.9**	0.16
2	$-4.67 (\pm 1.23)$	$+5.78 (\pm 1.07)$	2.33 (_ 7.00)	+6.02	0.971	114.8**	•••-
3	$-6.26 (\pm 6.66)$ -4.05 (±2.59)	$+8.20 (\pm 7.10)$ +5.76 (±2.24)	$-6.84 (\pm 18.86)$	+5.40 $+5.35$	0.917 0.913	22.9** 35.0**	0.24 0.24

^{1,} M. aureus.

^{2,} S. faecalis.

^{3,} B. subtilis.

2) Among alkyl substituent groups, the correlation of σ_i against $(\sigma_{S^0})^2 + \sigma_{S^0}$ is excellent, namely, r=0.979, SD=0.06.

Thus, from the statistical viewpoint, Quinn's result and ours are comparable.

The values of $\log(1/C)$ of rifamycin B hydrazides can be expressed by a quadratic equation of $\Sigma \sigma_{S^{\circ}}$ (cf. Table IV); this equation gives $\log(1/C)_{\max}$ at $\Sigma \sigma_{S^{\circ}} = 0.56$ for M. aureus, and reproduces the biological responses summarized in Table II. Consequently, the QSAR equation with the quadratic term of $\Sigma \sigma_{S^{\circ}}$ is preferable to that with σ^* . As shown in Table V, regression analyses of the $\log(1/C)$ values of rifamycin B amides for M. aureus, S. faecalis and B. subtilis with three kinds of parameters ---($\Sigma \sigma_{S^{\circ}}$)², $\Sigma \sigma_{S^{\circ}}$, and $\Sigma \sigma_{i}$ --- can be reduced to a linear combination of $(\Sigma \sigma_{S^{\circ}})^2$ and $\Sigma \sigma_{S^{\circ}}$.

The $\log(1/C)_{\text{max}}$ of rifamycin B amides are expected at $\Sigma \sigma_S \circ = 0.70$, 0.66, but for B. subtilis, the observed values are distributed in a narrow range, and a linear equation in $\Sigma \sigma_S \circ$ is obtained.

As summarized in Table VI, the values of $\log(1/C)_{\text{max}}$ of rifamycin B hydrazides for three kinds of bacteria can be expressed by a quadratic equation in $\Sigma \sigma_{\text{S}}$ °, which leads to $\Sigma \sigma_{\text{S}}$ ° = 0.56, 0.62 and 0.71 (cf. Table II).

In their principal component analysis of rifamycin B amides, Lukovits *et al.* could not assign an explicit chemical meaning to PR_p . A comparison of their result and ours suggests that PR_p corresponds to the contribution of the entropy term.

In conclusion, our approach is superior in the following respects to that reported by Quinn et $al.^{2}$ or by Lukovits et $al.^{4}$

- 1. The chemical meaning of the QSAR parameters is explicit.
- 2. A linear combination of the four kinds of QSAR parameters --- $(\sigma_{S^{\circ}})^2$, $\sigma_{S^{\circ}}$, σ_i and σ_{π} ---satisfies the necessary and sufficient conditions thermodynamically.

References

- 1) P. Sensi, N. Naggi, R. Ballotta, S. Furesz, R. Pallanza and V. Arioli, J. Med. Chem., 7, 596 (1964).
- 2) F.R. Quinn, J.S. Driscoll and C. Hansch, J. Med. Chem., 18, 332 (1975).
- 3) R.W. Taft, Jr., "Steric Effects in Organic Chemistry," ed. by M.S. Newmann, John Wiley, New York, 1956, p. 556.
- 4) I. Lukovits and A. Lopata, J. Med. Chem., 23, 449 (1980).
- 5) a) Y. Yukawa and Y. Tsuno, Nippon Kagaku Zasshi, 86, 873 (1965); b) M. Sawada, M. Ichihara, Y. Yukawa, T. Nakachi and Y. Tsuno, Bull. Chem. Soc. Jpn., 29, 2055 (1980).
- 6) Y. Sasaki, T. Takagi, Y. Yamazato, A. Iwata and H. Kawaki, Chem. Pharm. Bull., 29, 3073 (1981).
- 7) T. Takagi, A. Iwata, Y. Sasaki and H. Kawaki, Chem. Pharm. Bull., 30, 1091 (1982).
- 8) Y. Sasaki, T. Takagi, A. Iwata and H. Kawaki, Chem. Pharm. Bull., 30, 3069 (1982).
- 9) Y. Tsuno, M. Fujio, M. Sawada and Y. Yukawa, Tetrahedron Lett., 23, 213 (1982).