Communications to the Editor

Chem. Pharm. Bull. 31(10)3778—3780(1983)

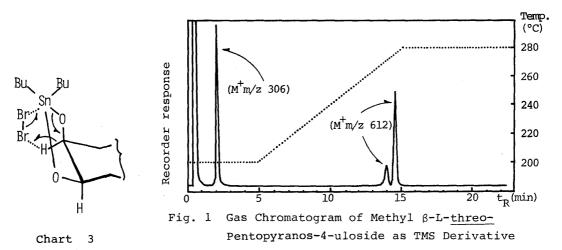
REGIOSELECTIVE OXIDATION OF A β -L-ARABINOPYRANOSIDE <u>VIA</u> CYCLIC TIN INTERMEDIATE. FACILE SYNTHESIS OF 4-AMINO-4-DEOXY-L-ARABINOSE, AN AMINO-SUGAR FOUND IN LIPOPOLYSACCHARIDES OF SOME SALMONELLA R MUTANT STRAINS 1)

Yoshisuke Tsuda,* Makiko Hanajima, and Kimihiro Yoshimoto Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan

Stannylation of methyl β -L-arabinopyranoside with Bu₂SnO followed by brominolysis afforded methyl β -L-threo-pentopyranos-4-uloside regioselectively, which was characterized as the oxime. Hydrogenation of this gave methyl 4-amino-4-deoxy- β -L-arabinopyranoside which was identified by converting to the known N-acetyl-di-O-mesyl derivative.

KEYWORDS — oxidation; brominolysis; dibutyltin oxide; 4-amino-4-deoxy-L-arabinose; amino-sugar; methyl β -L-threo-pento-pyranos-4-uloside

Brominolysis of a stannylene derivative of a 1,2-glycol is known to give an α -ketol at the speed of a titration. On the other hand, we have recently shown that such stannylene derivatives can be formed regionselectively even in polyhydroxy compounds such as carbohydrates, thus achieving selective mono-acylation of carbohydrates without use of blocking-deblocking technique. These reports promted us to investigate the oxidation of carbohydrates <u>via</u> cyclic tin intermediate without blocking the other hydroxyl groups. This communication treats this problem for a β -L-arabinopyranoside.


Stannylation of methyl β -L-arabinopyranoside (1) with an excess of Bu₂SnO (3 eq) in boiling methanol for 6 h followed by bromination in CHCl₃ with eq mol of Br₂ afforded a syrupy product in 60-70% yield. For the following reasons we conclude that the product is methyl β -L-threo-pentopyranos-4-uloside (3).

Although the product in the reaction mixture showed only one spot on TLC, after chromatography on silica gel it changed into two spots whose $^1\text{H-NMR}$ spectrum exhibited three OMe peaks (δ 3.30, 3.34, and 3.41) revealing that it is a mixture of at least three compounds. However, NaBH $_4$ reduction of this mixture gave methyl $\beta\text{-L-arabinopyranoside}$ (1) and methyl $\alpha\text{-D-xylopyranoside}$ (identified by GC of the TMS derivative and TLC on HBO $_3$ impregnated plate) in a ratio of ca. 1 : 1, no other

product being found in the reaction mixture. These facts indicate that the ketonic function is at C-4. Corresponding to the $^1\text{H-NMR}$ evidence, GC of the TMS derivative showed three peaks. The GC-MS revealed that one is a monomeric ($^\text{M}$ m/z 306) and the other two are dimeric forms ($^\text{M}$ m/z 612)(Fig. 1). Therefore we conclude that the monomer rapidly dimerizes to $^\text{M}$ and/or $^\text{M}$, all of which behave as a monomer ($^\text{M}$) on hydride reduction.

Treatment of the above mixture with hydroxylamine (3 h, in MeOH) gave an oxime ($\underline{6}$), ⁴⁾ mp 138-139°C, as a single product, which was also obtained in 57% yield from methyl β -L-arabinopyranoside ($\underline{1}$) by the above described three successive treatments without isolation of the intermediates.

Catalytic hydrogenation of the oxime $(\underline{6})$ over PtO $_2$ in AcOH converted it stereoselectively to methyl 4-amino-4-deoxy- β -L-arabinopyranoside $(\underline{7})$, whose corresponding amino-sugar, 4-amino-4-deoxy-L-arabinose, is found in the lipopoly-saccharides of some Salmonella R mutant strains. Since the compound $(\underline{7})$ was a syrup, it was characterized by converting to the crystalline N-acetyl-di-O-mesyl derivative $(\underline{9})$, mp 162-163°C, by N-acetylation followed by O-mesylation of the resulting N-acetate $(\underline{8})$. The product $(\underline{9})$ was completely identical with the sample (lit. mp 158-159°C 7) prepared from methyl α -D-xylopyranoside by the known procedure.

Column: 1.5% OV-1 on Shimalite W (lm x 3mm i.d.)

It must be noted that brominolysis of the stannylene intermediate (2) caused oxidation only at C-4, whereas acylation of the same intermediate exclusively gave 3-O-acylate. We are tentatively considering the cyclic mechanism shown in Chart 3 for this oxidation, which explains why only the axial hydroxyl group was oxidized.

ACKNOWLEDGEMENT This work was supported by a Grant-in-Aid (No. 58870102) for Scientific Research from the Ministry of Education, Science and Culture, Japan.

REFERENCES AND NOTES

- 1) Utilization of Sugars in Organic Synthesis. Part XIII. Part XII: K. Yoshimoto and Y. Tsuda, Chem. Pharm. Bull., 31, in press.
- a) S. David, C. R. Acad. Sci., <u>278</u>(C), 1051(1974);
 b) S. David and A. Thieffry,
 J. Chem. Soc., Perkin Trans. I, 1979, 1568.
- 3) Y. Tsuda, Md. E. Haque, and K. Yoshimoto, Chem. Pharm. Bull., 31, 1612(1983).
- 4) 6: Colorless needles from AcOEt. IR($v_{\rm max}^{\rm KBr}$ cm⁻¹): 3300, 1640. 1 H-NMR(pyr-d₅): 6 5.31(1H, d, J=14.5 Hz, C₅-H), 5.22(1H, d, J=2.8 Hz, C₁-H), 5.14(1H, d, J=8.2 Hz, C₃-H), 4.66(1H, d, J=14.5 Hz, C₅-H), 4.36(1H, dd, J=2.8 and 8.2 Hz, C₂-H), 3.49(3H, s, OCH₃). Anal. Calcd for C₆H₁₁NO₅: C, 40.68; H, 6.26; N, 7.91. Found: C, 40.52; H, 6.22; N, 7.78.
- 5) W. A. Volk, C. Galanos, and O. Lüderitz, FEBS Lett., 8, 161(1970); Eur. J. Biochem., 17, 223(1970).
- 6) 9: $IR(v_{max}^{KBr_{cm}-1})$: 3440, 1655, 1548. $^{1}H-NMR(CDCl_{3})$: δ 6.36(1H, d, J=8.8 Hz, -NH-), 5.12(1H, dd, J=4.1 and 10 Hz, $C_{3}-H$), 5.00(1H, d, J=3.5 Hz, $C_{1}-H$), 4.67(1H, dd, J=3.5 and 10 Hz, $C_{2}-H$), 4.60-4.48(1H, m, $C_{4}-H$), 4.02(1H, dd, J=2 and 12.5 Hz, $C_{5}-H$), 3.56(1H, dd, J=2 and 12.5 Hz, $C_{5}-H$), 3.47(3H, s, OCH₃), 3.16(6H, s, -SO₂CH₃ x 2), 2.09(3H, s, -OAc).
- 7) A. J. Dick and J. K. N. Jones, Can. J. Chem., 46, 425(1968).

(Received September 1, 1983)