Communications to the Editor

[Chem. Pharm. Bull.] 31(11)4193—4194(1983)]

PHOTOCHEMICAL REARRANGEMENT OF PSEUDOANISATIN AS AN α-HYDROXY KETONE

Isao Kouno and Nobusuke Kawano*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-cho, Nagasaki 852

Photo-induced Norrish type I cleavage of pseudoanisatin $(\underline{1})$ as an α -hydroxy ketone, followed by γ -lactone formation is reported. The structure $(\underline{2})$ of the rearrangement product was deduced on the basis of its spectral and chemical evidences.

KEYWORDS—photochemical rearrangement; pseudoanisatin; α -hydroxy ketone; γ -lactone; 1H -NMR spectra; ^{13}C -NMR spectra

Recently, we reported $^{1)}$ the revised structure (1) of pseudoanisatin, $\rm C_{15}^{\rm H}_{22}^{\rm O}_{\rm 6}$, a sesquiterpene lactone from Japanese star anise (Illicium anisatum L.). A novel base catalyzed rearrangement of 1 was also reported $^{2)}$ to give a translactonization product including steric inversion at C-3 and C-4 and hemiacetal formation. This paper deals with photochemical rearrangement of 1 which has an α -hydroxy ketone group.

As far as we know the only report of photochemical rearrangement of α -hydroxy ketones is that of R. C. Cookson and his co-workers. ³⁾ 3β -Acetoxy- 5α -hydroxy-cholestan-6-one (3) and its 5β -epimer (4) on UV irradiation in an ethanol solution underwent carbon bond α -cleavage between C-5 and C-6 to form ϵ -lactones (5 and 6). Ketenes can be considered a possible intermediate in the course of these rearrangements.

Aco
$$\frac{3}{4}(5\beta-\text{epimer})$$

Pseudoanisatin (1) gave a photochemical rearrangement product (2) in good yield on UV irradiation through a Pyrex filter in its acetonitrile solution. 2, mp 194-195°C showed an ion peak at m/z 299 (M+1) and the following $^1\text{H-NMR}$ signals (δ -values in a CDCl $_3$ solution):0.83(3H, s, Me-13), 1.14(3H, d, J=6.8 Hz, Me-15), 1.52 (3H, d, J=6.4 Hz, Me-12), and 5.52(1H, q, J=6.4 Hz, H-6), 4) indicating carbon bond cleavage between C-6 and C-7. The presence of the partial structure, Me-CH-O- was

Assigned carbon	<u>1</u> (C ₅ D ₅ N)	<u>2</u> (CDCl ₃)	7 (C ₅ D ₅ N)
Me-12	18.37	17.39	27.60
-13	13.76(a)	14.47(a)	18.56(a)
-1 5	13.92(a)	15.82(a)	18.80(a)
CH ₂ -2 -8	43.83 (b)	42.91	44.53
² -8	35.22	35.00	36.03
-10	43.07(b)	39.12	40.34
-14	69.57	66.43	70.25
CH-1	40.20	46.16	48.04
- 3	78.18	75.46	79.78
C-9	47.73	49.47	49.68
-4	84.68	98.28	96.95
- 5	48.82	50.44	57.27
- 6	79.26 s	79.05 d	208.22 s
-7	206.54	175.87	175.88
-11	174.25	172.89	172.00

Table 1. 13 C-NMR Spectral Data of Compounds, 1, 2, and 7

s:singlet, d:doublet, (a) and (b) mean that the assignments may be reversed. $\ensuremath{\text{JEOL}}$ FX-90Q was used.

confirmed by double irradiation techniques between the two signals of δ 1.52 and 5.52. The $^{13}\text{C-NMR}$ spectral data (Table 1) are also compatible with the structure showing a doublet signal at δ 79.05.

However, the lactone formed seems not to be ε -lactone, but γ -lactone because the IR spectrum of $\underline{2}$ showed a new absorption band at 1780 cm $^{-1}$ (γ -lactone) in addition to the original one at 1725 cm $^{-1}$. Therefore, it was deduced that lactone formation between the hydroxy group at C-4 and the ketene group gave the product ($\underline{2}$). Previously, one of us reported 5) an oxidation product of $\underline{1}$ with sodium periodate. The structure of the oxidation product is now deduced to be the formula ($\underline{7}$). 6) The 13 C-NMR spectral data of $\underline{7}$ are also given in Table 1. The C-4 signals of $\underline{2}$ and $\underline{7}$ showed considerable low field shifts in comparison with that of $\underline{1}$, suggesting a lactone formed with the hydroxy group at C-4. Reduction of $\underline{7}$ with sodium borohydride gave two compounds, one of them was identified with $\underline{2}$ (mixed mp, 1 H-NMR, TLC, and IR).

As regards the configuration of the secondary hydroxy group formed by cleavage, Cookson et al. reported³⁾ the retention of the original configuration. Accordingly, also in our case the configuration of C-6 was deduced as shown in the formula (2), keeping the original configuration.

REFERENCES AND NOTES

- 1) I. Kouno, H. Irie, N. Kawano, and Y. Katsube, Tetrahedron Lett., $\underline{24}$, 771(1983).
- 2) I. Kouno, H. Irie, N. Kawano, T. Taga, and K. Osaki, Chem. Lett., 1983, 1323.
- 3) R. C. Cookson, R. P. Gandhi, and R. M. Southam, J. Chem. Soc.(C), 1968, 2494.
- 4) The data other than given in the text are as follows: 2.42 and 2.79(1H, d, each J=18.4 Hz), 2.65 and 3.28(1H, d, each J=13.9 Hz), 3.51 and 4.03(1H, d, each J=11.3 Hz), 2.05 2.40(2H, m), 4.10(1H, m), 4.60(1H,br d, J=5.0 Hz), and 5.24 (1H, br s).
- 5) M. Okigawa and N. Kawano, Tetrahedron Lett., 1971, 75.
- 6) Discussions on the structure will be given in a full paper.

(Received September 12, 1983)