Chem. Pharm. Bull. 31(2) 557—559 (1983)

The Structures of 15-Dehydro-prostaglandin B₁ Dimers

Nobuyuki Hamanaka,**,^a Masaaki Toda,^a Shigeru Takaoka,^a Masaki Hayashi^a and Takashi Iwashita^b

Research Institute, Ono Pharmaceutical Co., Ltd.,^a Shimamoto, Mishima, Osaka 618, Japan and Suntory Institute for Bioorganic Research,^b Shimamoto,
Mishima, Osaka 618, Japan

(Received August 16, 1982)

Prostaglandin Bx(PGBx), a complex mixture of closely related oligomers of Prostaglandin B₁ (PGB₁) or 15-dehydro-PGB₁ which has unique biological activities, is formed under basic conditions. For mechanistic studies of the oligomerization, two dimers of 15-dehydro-PGB₁ were prepared under mild conditions and their structures were determined by means of nuclear magnetic resonance (NMR) spectroscopic studies.

Keywords—prostaglandin B_x ; prostaglandin B_1 ; 15-dehydro-prostaglandin B_1 ; 15-dehydro-prostaglandin B_1 dimer; prostaglandin B_1 dimer

Prostaglandin Bx (PGBx), an oligomeric derivative of prostaglandin B₁ (PGB₁) or 15-dehydro-PGB₁ which was first synthesized by Polis,¹⁾ has unique properties; it affords protection against oxidative phosphorylation in isolated degraded rat river mitochondria *in vitro*²⁾ and has ionophoretic activity in the release of Ca²⁺ from heart mitochondria.³⁾ PGBx is a complex mixture of closely related oligomers, and the molecular weights of the most active fractions of PGBx fall between 2000 and 2600.²⁾

In the previous paper we reported the structures of PGB₁ dimers.⁴⁾ During the course of mechanistic studies on base-promoted oligomerization of 15-dehydro-PGB₁, we succeeded in isolating 15-dehydro-PGB₁ dimers. In this paper we report the structures of these 15-dehyro-PGB₁ dimers.⁵⁾

Fig. 1. 15-Dehydro-prostaglandin B₁ Methyl Ester

15-Dehyro-PGB₁ methyl ester was treated with K₂CO₃ in dry methanol at 0°C for 1.5 h to afford dimer I and II, both in 5% yield (see "Experimental").

Dimer I showed λ (MeOH) 238 and 299 nm and conjugated double bond absorptions at 1635 and 1590 cm⁻¹ (CHCl₃). ¹H-nuclear magnetic resonance (NMR) decoupling experiments in C_6D_6 (Table I) showed that the proton at

3.67 ppm (1H, ddd, J=5.5, 6.5, 10 Hz) and the proton at 3.24 ppm (1H, dd, J=6.5, 17.5 Hz), ⁶⁾ which were coupled to each other, were adjacent to isolated methylene groups (-CH₂-CH-CH-CH₂-). These data indicate that the 13',14'-double bond in 15-dehydro-PGB₁ was lost in dimer I and a new single bond was formed between C-13' or C-14' and C-10 or C-11 by Michael addition. Comparison⁷⁾ of the ¹³C-NMR spectra of dimer I (Table II), 15-dehydro-PGB₁ and 13,14-dihydro-15-dehydro-PGB₁^{5a)} revealed that the signals of the carbons at C-13' and C-10 were shifted downfield (ca. 10 ppm) to 37.4 ppm (doublet) and to 45.5 ppm (doublet), and the carbons at C-14' and C-11 were also shifted slightly downfield (ca. 4 ppm) to 43.5 ppm (triplet) and 29.6 ppm (triplet), respectively. These data indicate that Michael addition had occurred between C-13' and C-10, and thus the structure of dimer I is as shown in Fig. 2.

Dimer II showed λ (MeOH) 238 nm, and its infrared (IR) spectrum showed a conjugated double bond absorption at 1640 cm⁻¹ (two 13, 14-double bonds were lost in dimer II). ¹H-NMR decoupling experiments of dimer II (Table I) established the partial structure -C(13)H₂-C(14)H-C(14')H-C(13')H-C(16)H-CH₂-, and on the basis of *J*-values, the protons (H-13', H-14', H-14 and H-16) were assigned as ring protons with *trans* relationships. An INDOR experment

TABLE I. H-NMR Data for Dimer I and Dimer II							
	Dimer I (δ in C ₆ D ₆)	Dimer II (δ in C_6D_6)					
H-10	3.24 (dd, J=6.5, 17.5 Hz)						
H-11	ca. 2.1						
H-13	6.30 (d, J = 16 Hz)	2.42 (dd, $J=5$, 14 Hz), 2.78 (dd, $J=10$, 14 Hz)					
H-14	7.69 (d, J=16 Hz)	3.10 (ddd, J=5, 10, 11 Hz)					
H-16	, ,	2.08 (dt, J=12, 5 Hz)					
H-13'	3.67 (ddd, J=5.5, 6.5, 10 Hz)	3.16 (dd, J=11, 12 Hz)					
H-14'	2.06, 2.14	2.62 (t, J=11 Hz)					

TABLE I. 1H-NMR Data for Dimer I and Dimer II

TABLE II. 13C-NMR Data for Dimer I and Dimer II

Dimer I (δ in CDCl ₃)			Dimer II (δ in C ₆ D ₆)				
C- 9' C-15' C- 9 C-15 C-12'	209.7° 208.8° 207.8° 200.2° 172.0°	C-13 C-14 C-10 C-14' C-16'	133.4 ^d 130.8 ^d 45.5 ^d 43.5 ^t 43.1 ^t	C-15 C- 9 C- 9' C-15' C-12	213.9° 208.6° 207.3° 206.6° 168.0°	C-14' C-16 C-14 C-13' C-16'	56.3 ^d 52.5 ^d 50.9 ^d 47.0 ^d 45.2 ^t
C-12 C- 8 C- 8'	158.0° 147.5° 142.1°	C-16 C-13' C-11	42.1 ^t 37.4 ^d 29.6 ^t	C-12' C- 8 C- 8'	166.1° 144.7° 142.1°	C-13	31.1 ^t

Fig. 2. The Structures of 15-Dehydro-prostaglandin B₁ Dimers

confirmed that the signal of H-16 appeared at 2.08 ppm as a doublet of triplets, $J_{13',16}$ = 12Hz and $J_{16,17}$ = 5Hz. The 5Hz J-value indicates that C-16 is connected to a freely rotating methylene group. The 13 C-NMR spectrum of dimer II (Table II) showed the presence of four methine carbons (C-13', C-14', C-14 and C-16) along with a carbonyl carbon at 213.9 ppm indicating the formation of two C-C bonds leading to a cyclopentanone ring. The signal at 45.2 ppm (triplet), assigned to C-16 in 15-dehydro-PGB₁, was moved downfield to 52.5 ppm (doublet). These data indicate that the initial Michael addition had occured between C-16 and C-13' or C-14' and then another C-C bond was formed. The signals at 47.0, 50.9 and 56.3 ppm⁸⁾ were assigned to the carbons at C-13', C-14 and C-14', respectively, on the basis of selective proton irradiation experiments. These spectroscopic studies indicate the strcture of dimer II to be as shown in Fig. 2.

15-Dehydro-PGB₁ dimer I was smoothly converted to PGBx on treatment with 1NNaOH in 50% EtOH at room temperature, but oligomerization of dimer II under the same conditions was very slow.

Experimental

NMR spectra were recorded on Varian XL-200 and Nicolet NT-360 spectrometers, and signals are given in δ units downfield from tetramethylsilane (TMS) as an internal standard. IR, ultraviolet (UV) and mass spectra

(MS) were measured on Hitachi 260-30, Hitachi 124 and JMS-OISG spectrometers, respectively.

15-Dehydro-PGB₁ Dimer I and Dimer II—A mixture of 15-dehydro-PGB₁ methyl ester (1.0g) and K₂CO₃ (100 mg) in dry MeOH (20 ml) was stirred at 0°C for 1.5 h then diluted with a large amount of AcOEt. The resulting mixture was washed with water, dried over Na₂SO₄ and concentrated *in vacuo* to afford a yellow oil. The oil was separated by gel-filtration chromatography on Sephadex LH-20 (Pharmacia Fine Chemicals) with MeOH to afford monomer fractions⁹ (20% yield), dimer fraction¹⁰ (25% yield) and trimer fractions¹⁰ (10% yield).

The dimer fraction was separated by preparative thin-layer chromatographies (TLC) on Kieselgeleo (Merck, 0.2 mm thick) with EtOAc-cyclohexane (1:1) and then with CH₂Cl₂-MeOH (30:1) to give dimer I (5% yield), dimer II (5% yield) and dimer III¹¹ (8% yield). Dimer I: Rf 0.77 (CH₂Cl₂-MeOH/30:1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm(ϵ): 238 (19300) and 299 (19000). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2940, 860, 1725, 1695, 1635 and 1590. MS: Calcd for C₄₂H₆₄O₈, m/z 696.46009. Found m/z 696.45571. Dimer II: Rf 0.67 (CH₂Cl₂-MeOH/30:1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm(ϵ): 238 (26100). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2900, 2870, 1725, 1695 and 1640. MS: Calcd for C₄₂H₆₄O₈, m/z 696.46009. Found m/z 696.45963.

References and Notes

- 1) B.D. Polis, S. Kwang, E. Polis, G.L. Nelson and H.M. Shmukler, *Physiol. Chem. & Physics*, 11, 109 (1979); B.D. Polis, S. Kwang, E. Polis and G.L. Nelson, *ibid.*, 12, 167 (1980).
- 2) B.D. Polis, E. Polis and S. Kwang, Proc. Natl. Acad. Sci. U.S.A., 76, 1598 (1979).
- 3) S.T. Ohnihi and T.M. Devlin, Biochem. Biophys. Res. Commun., 89, 240 (1979).
- 4) M. Toda, S. Takaoka, M. Konno, S. Okuyama, M. Hayashi, N. Hamanaka and T. Iwashita, *Tetrahedron Lett.*, 23, 1477 (1982).
- 5) Attempts by other research groups to resolve the complex mixture of PGBx have been reported. 5a) B. D. Polis, E. Polis and S. Kwang, *Physiol. Chem. & Physics*, 13, 111 (1981); 5b) B.D. Polis, E. Polis and S. Kwang, *Physiol. Chem. & Physics*, 13, 531 (1981); 5c) G.L. Nelson and G.L. Verdine, *Tetrahedron Lett.*, 23, 1967 (1982).
- 6) The coupling constant between the proton at 3.24 ppm and one of the adjacent methylene protons is ca. zero.
- 7) The signals of the carbons at C-13' and C-14' were compared with those of C-13 and C-14 of 15-dehydro-PGB₁ and those of the carbons at C-10 and C-11 were compared with those of C-10 and C-11 of 13,14-dihydro-15-dehydro-PGB₁.
- 8) It seems reasonable to assign the signal at 56.3 ppm to the carbon (C-14) adjacent to the carbonyl group, not to the carbon (C-13') adjacent to the double bond.
- 9) Monomer fraction mainly contained 15-dehydro-PGB₁ methyl ester and 13-methoxy-13,14-dihydro-PGB₁ methyl ester.
- 10) Mass spectra of the dimer fraction (mixture) and trimer fraction (mixture) showed molecular ion peaks at m/e 696 and m/e 1044, respectively.
- 11) Dimer III (Rf=0.65, CH₂Cl₂-MeOH/30:1) is an inseparable mixture of two dimeric compounds, λ (MeOH) 238 and 299 nm.