Communications to the Editor

Chem. Pharm. Bull. 31(2) 787—790 (1983)

A SIMPLIFIED SYNTHESIS OF 8-SUBSTITUTED PURINE NUCLEOSIDES VIA LITHIATION OF 6-CHLORO-9-(2,3-Q-ISOPROPYLIDENE-β-D-RIBO-FURANOSYL) PURINE

Hiromichi Tanaka, Yuko Uchida, Misao Shinozaki, Hiroyuki Hayakawa, Akira Matsuda, and Tadashi Miyasaka* School of Pharmaceutical Sciences, Showa University, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142, Japan

6-Chloro-9-(2,3-0-isopropylidene- β -D-ribofuranosyl)purine (1) was found to be a suitable substrate for the preparation of C-8 substituted purine nucleosides. Thus, upon lithiation of 1 with LDA and successive reaction with various types of electrophiles, the C-8 substituted products were obtained. The C-6 chlorine atoms in these products were readily replaced by an amino group, a mercapto group, or hydrogen, providing a facile preparation of 8-substituted adenosines, 6-thio-inosines, or nebularines.

KEYWORDS—8-substituted purine nucleoside; lithiation; LDA; 6-chloro-9-(2,3- $\underline{0}$ -isopropylidene- β -D-ribofuranosyl)purine; adenosine derivative; 6-thioinosine derivative; nebularine derivative

Most earlier methods for the preparation of purine nucleosides bearing a carbon functionality at the C-8 position involved either nucleophilic displacement^{1,2)} or a homolytic reaction.³⁾ An apparent synthetic limitation of the above reactions lies in their lack of generality. In contrast to these methods, the reaction of a C-8 lithiated purine nucleoside derivative with various types of electrophiles provides a simple and general entry to the C-8 substituted purine nucleosides, as already shown in the synthesis of 6-substituted uridines.⁴⁾

In our studies on the conversion of naturally occurring nucleosides to physiologically active derivatives, a method was needed for synthesizing 8-substituted adenosines, 6-thioinosines, and nebularines. In this communication, we describe a simple and effective method for synthesizing these 8-substituted purine nucleosides on the basis of lithiation. 5)

Recently, Barton et al. reported⁶⁾ that N⁶-methyl-2',3'-O-isopropylidene-adenosine, when treated with butyllithium followed by CH₃I, gave a 35% yield of N⁶,N⁶-dimethyl-8-methyl-2',3'-O-isopropylideneadenosine. Since the low yield of this reaction could be attributed to the insufficient solubility of the corresponding N⁶,8,5'-trilithio derivative, 6-chloro-9-(2,3-O-isopropylidene- β -D-ribofuranos-yl)purine (1), which has only one dissociable proton in its base moiety, was selected as a starting material in our experiment. The choice of 1 is further motivated by the following considerations: 1 is easily accessible from inosine and the

C-6 chlorine atom in $\underline{1}$ is convertible by nucleophilic substitution.

Treatment of $\underline{1}$ with 2.5 eq of LDA in THF below -70°C gave an orange coloured solution of $\underline{2}$. After the solution was quenched with CD₃OD below -70°C, the PMR spectrum of the deuterated $\underline{1}$ (recovery: 93.4%) showed that the lithiation took place exclusively at the C-8 position. The extent of deuterium incorporation was estimated at 80.7%. It should be emphasized that, in the above reaction, no protection of the 5'-hydroxyl group in $\underline{1}$ was necessary to provide good solubility to the lithiated species, and that neither nucleophilic attack of the lithiating agent on the C-6 position nor lithium-halogen exchange was observed to any appreciable extent.

On the other hand, similar treatment of $\underline{1}$ with butyllithium followed by CD₃OD gave a complex mixture of products, from which 8-butyl-6-chloro-9-(2,3- $\underline{0}$ -isopropylidene- β -D-ribofuranosyl)purine ($\underline{3}$) was isolated. The isolation of $\underline{3}$ indicated that, under these conditions, lithium-chlorine exchange had occurred to generate butyl chloride. Thus, while Leonard and Bryant reported⁹⁾ the C-6 chlorine atom in 6-chloro-9-(tetrahydropyran-2-yl)purine to be compatible to the lithiation with butyllithium, it is unlikely that this reagent is suitable in our case.

When 2 was allowed to react with benzaldehyde (2.0 eq) below -70°C for 1 h, the 8-phenylhydroxymethyl derivative (4a, probably an epimeric mixture) was isolated as a foam $(M^{\dagger} m/z)$: 432 and 434) in 71.4% yield after quenching with AcOH followed by chromatographic purification on a silica gel column (benzene:AcOEt= 3:1). The PMR spectrum of 4a in CDCl₃ (δ 8.68, 1H, H-2; δ 7.35, 5H, pheny1; δ 6.28, 1H, CHOHPh; δ 6.10, 1H, H-1'; δ 4.44, 1H, CHOHPh) was in good agreement with its structure. Under similar conditions, propionaldehyde and benzophenone worked equally well to give the corresponding 4b (isolated as diacetate, an epimeric mixture, 61.5%, syrup, M+1 m/z: 469 and 471) and 4c (60.6%, foam, M^{+} m/z: 508 and 510). When the electrophile used was an enolizable ketone, the yield of the product decreased as in the case of diethyl ketone (yield of 4d: 38.6%, foam, M+1 m/z: 413 and 415). The 8-benzoyl derivative (4e, foam, M m/z: 430 and 432) was prepared in 86.5% by oxidation of 4a with activated MnO2 (in CHCl3, room temperature, overnight). The reaction of 2 with CH3I (2.0 eq, below -70°C, 3 h) produced a 21.2% yield of the 8-ethyl derivative (4f, foam, M+1 m/z: 355 and 357) together with a small amount of the 8-isopropyl derivative (4g, syrup, M m/z: 368 and 370) and most of 1 was left unchanged. We were unable to detect the 8-methyl and 5'-Omethylated products even in trace amounts by careful PMR and TLC examination of the reaction mixture.

The common intermediate $\underline{4}$ can be treated in a number of ways to reach other types of purine nucleosides. We demonstrated this using $\underline{4e}$ and $\underline{4f}$. When a THF solution of $\underline{4e}$ containing 28% aq-NH₄OH was heated in a sealed tube (90°C, 1 h), 8-benzoy1-2',3'- $\underline{0}$ -isopropylideneadenosine ($\underline{5}$, mp 176 $^{\circ}$ 178°C, M⁺ m/z: 411) was obtained in 83.8% yield. The corresponding 6-thioinosine derivative ($\underline{6}$, mp 197 $^{\circ}$ 200°C, M⁺ m/z: 428) was prepared from $\underline{4e}$ in 77.8% yield by using NaSH (in DMF, room temperature, 1 h). Hydrogenolysis of $\underline{4f}$ over 5% Pd-C (in Et₃N/aq-EtOH, 3 atm of H₂, room temperature, 1 h) afforded the 8-ethylnebularine derivative ($\underline{7}$, 91.9%, syrup, M+1 m/z: 321).

REFERENCES AND NOTES

- 1) T. Naka and M. Honjo, Chem. Pharm. Bull., 24, 2052 (1976).
- 2) A. Yamane, Y. Nomoto, A. Matsuda, and T. Ueda, Nucleic Acids Symposium Series, 5, 309 (1978); A. Matsuda, Y. Nomoto, and T. Ueda, Chem. Pharm. Bull., 27, 183 (1979).
- 3) H. Steinmaus, I. Rosenthal, and D. Elad, J. Org. Chem., 36, 3594 (1971); M. Maeda, K. Nushi, and Y. Kawazoe, Tetrahedron, 30, 2677 (1974); L. F. Christensen, R. B. Meyer, Jr., J. P. Miller, L. N. Simon, and R. K. Robins, Biochemistry, 14, 1490 (1975); M. Ikehara, W. Limn, and T. Fukui, Chem. Pharm. Bull., 25, 2702 (1977); Y. Maki, K. Kameyama, M. Suzuki, M. Sako, and K. Hirota, Abstracts of Papers, The 102th Annual Meeting of Pharmaceutical Society of Japan, Osaka, April 1982, p. 452.
- 4) H. Tanaka, H. Hayakawa, and T. Miyasaka, Chem. Pharm. Bull., <u>29</u>, 3565 (1981); <u>Idem</u>, Nucleic Acids Symposium Series, <u>10</u>, 1 (1981); <u>Idem</u>, Tetrahedron, <u>38</u>, 2635 (1982).
- 5) Other methods for the preparation of 8-substituted purine nucleosides are given below: N. Công-Danh, J.-P. Beaucourt, and L. Pichat, Tetrahedron Lett., 1979, 2385; C.-D. Nguyen, J.-P. Beaucourt, and L. Pichat, ibid., 1979, 3159.
- 6) D. H. R. Barton, C. J. R. Hedgecock, E. Lederer, and W. B. Motherwell, Tetrahedron Lett., 1979, 279.
- 7) L. B. Townsend, "Synthetic Procedures in Nucleic Acid Chemistry," Vol. 2, ed. by W. W. Zorbach (the late) and R. S. Tipson, John Wiley and Sons, Inc., New York, Chichester, Brisbane, and Toronto, 1973, pp. 267√398.
- 8) Compound $\underline{3}$ was isolated as a foam. Physical data of $\underline{3}$ are as follows: MS m/z: 382 and 384 (M⁺), 210 and 212 (B+1). PMR (CDC1₃) δ : 1.00 (3H, t, CH₂CH₂CH₂-CH₃), 1.26 \circ 2.03 (4H, m, CH₂CH₂CH₂CH₃), 1.39 (3H, s, isop.Me), 1.66 (3H, s, isop.Me), 2.94 \circ 3.11 (2H, m, CH₂CH₂CH₂CH₃), 3.72 \circ 4.06 (2H, m, CH₂-5'), 4.53 (1H, m, H-4'), 5.12 (1H, dd, H-3'), 5.26 (1H, t, H-2'), 5.95 (1H, d, J= 4.9 Hz, H-1'), 8.66 (1H, s, H-2).
- 9) N. J. Leonard and J. D. Bryant, J. Org. Chem., 44, 4612 (1979).

(Received January 20, 1983)