[Chem. Pharm. Bull.] 31(3)1001—1009(1983)]

Proteolytic Modification of a Glucoamylase from a Rhizopus sp.

Tomoko Takahashi,* Yukiko Tsuchida, Masanori Iwama, Ritsuko Ohtsuki, and Masachika Irie

Department of Microbiology, Hoshi College of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142, Japan

(Received September 6, 1982)

Three forms of glucoamylase [EC 3.2.1.3] have been purified from a Rhizopus sp. and named Gluc₁, Gluc₂ and Gluc₃ in order of content (T. Takahashi et al., J. Biochem., 84, 1183 (1978)). Gluc₁ (M.W. 74000; specific activity 66 units/mg; N-terminal Ala; C-terminal -Ser-Ala OH) was converted by papain and chymotrypsin into two active derivatives named pap-Gluc and chymo-Gluc, respectively. pap-Gluc was characterized by a molecular weight of 57000 and a specific activity of 88 units/mg, and chymo-Gluc by a molecular weight of 64000 and a specific activity of 78 units/mg. The C-terminal amino acid sequences of both modified enzymes were identical with that of $Gluc_1$ but their N-terminal amino acids were different from that of Gluc₁. These results, together with the results of amino acid and sugar analyses, indicate that papain and chymotrypsin liberated glycopeptide and peptide moieties, respectively, from the N-terminal side of Gluc₁. The two modified enzymes had almost the same pH optimum, pH stability and heat stability as those of $Gluc_1$. However, they differed from $Gluc_1$ in the values of K_m and V_{max} for high-molecular-weight substrates, although they showed identical kinetic parameters for low-molecularweight substrates. The close similarity between pap-Gluc and Gluc₂ as well as between chymo-Gluc and Gluc, is discussed.

Keywords—glucoamylase; *Rhizopus*; multiple forms of enzyme; proteolytic modification; papain; chymotrypsin; amino acid composition; kinetic parameter; N-terminal amino acid; C-terminal amino acid sequence

In a previous report we isolated three forms of glucoamylase [EC 3.2.1.3; α -p-(1 \rightarrow 4)-glucan glucohydrolase] from a digestive produced from a *Rhizopus* sp. and carried out comparative characterization.¹⁾ The three enzyme forms, designated as Gluc₁, Gluc₂ and Gluc₃ in order of content, differed in both amino acid composition and carbohydrate content and had different molecular weights of 74000, 58600 and 61400, respectively. The three glucoamylases, however, showed common antigenicity in immunodiffusion and close similarity in such enzymatic properties as pH optimum, pH stability, heat stability and divalent cation inhibition. During further studies on the relationship among the three enzymes, Gluc₁, the most abundant one, was found to be convertible into two active derivatives similar to Gluc₂ and Gluc₃ on incubation with certain proteinases. Among the commercially available proteinases tested, papain and chymotrypsin most efficiently converted Gluc₁ into Gluc₂-like and Gluc₃-like enzymes, respectively. This finding may afford a model for studies of the observed multiplicity of the glucoamylase from a *Rhizopus* sp.

The present paper describes the conversion of Gluc₁ by papain and chymotrypsin into two active derivatives, and the enzymatic and chemical properties of the proteinase-modified enzymes in comparison with those of Gluc₂ and Gluc₃ as well as Gluc₁.

Materials and Methods

Chemicals—Soluble starch was purchased from Wako Pure Chemicals and used as a substrate after exhaustive dialysis against distilled water. Glycogen (E. Merck), amylopectin (Tokyo Kasei Kogyo Co., Ltd.), maltose (Wako Pure Chemicals) and maltotriose (Nakarai Chemicals, Ltd.) were obtained from the indicated companies. The p-glucose oxidase reagent ("Glucose-Autotest") was obtained from Wako Pure Chemicals, papain (2 times crystallized) was from Sigma Chemical Co., chymotrypsin, trypsin, and carboxy-

peptidases A and B (pretreated with phenylmethylsulfonyl fluoride) from Worthington Biochemical Corp., alkaline protease from Nagase Sangyo Co., Ltd., pronase E from Kaken Kagaku Co., Ltd., and thermolysin (3 times crystallized) from Seikagaku Kogyo Co., Ltd. Ampholine (carrier ampholytes) was purchased from LKB-Produkter. All other chemicals were of analytical reagent grade.

Preparation of Gluc₁, Gluc₂ and Gluc₃—The three forms of glucoamylase were purified from "Gluczyme" (a commercial digestive from a *Rhizopus* sp., Amano Pharmaceutical Co.) according to the method reported previously.¹⁾

Estimation of Protein—The protein contents of $Gluc_1$, $Gluc_2$ and $Gluc_3$ were estimated using A_{em}^{280nm} (1%) values of 13.2, 13.7 and 13.4, respectively.¹⁾

Determination of Glucoamylase Activity—Glucoamylase activity was determined with soluble starch as a substrate by the p-glucose oxidase method as described previously.²⁾

Determination of Kinetic Parameters—The kinetic parameters, $K_{\rm m}$ and $V_{\rm max}$, of proteinase-modified glucoamylases were measured as described previously²⁾ using soluble starch, glycogen and amylopectin as high-molecular-weight substrates, and maltose and maltotriose as low-molecular-weight substrates; the values of $K_{\rm m}$ and $V_{\rm max}$ were estimated from Hofstee plots for the high-molecular-weight substrates and Lineweaver-Burk plots for the low-molecular-weight substrates.

Amino Acid Analysis ——Samples of about 0.3 mg protein were hydrolyzed with 6 n HCl in evacuated tubes at 110°C. Analyses of 24, 48 and 72 h hydrolysates were performed by the method of Spackman et al.³) with a Nihon Denshi JLC-6AH amino acid analyzer. Estimation of tryptophan was performed by the p-dimethylaminobenzaldehyde—H₂SO₄ method.⁴) Half-cystine was estimated as cysteic acid after hydrolysis in 6 n HCl of the performic acid-oxidized protein, which was prepared according to the method of Schram et al.⁵)

Determination of N-Terminal Amino Acid——N-Terminal amino acid was determined by manual Edman degradation as described by Blombäck *et al.*⁶⁾ Phenylthiohydantoin (PTH)-amino acid released was identified by high performance liquid chromatography (HPLC) and thin layer chromatography (TLC) as described previously.⁷⁾

Determination of C-Terminal Amino Acid Sequence——C-Terminal amino acid sequence was determined by carboxypeptidase digestion. Each of the proteinase-modified glucoamylases (about 0.1 µmol) which was denatured by heating in distilled water at a concentration of 1 mg/ml at 100°C for 5 min, then incubated with carboxypeptidases A (0.7 units) and B (0.36 units) in 0.05 m Tris-HCl buffer (pH 8.0) at 37°C. Samples of the digestion mixture were taken at intervals to analyze the released amino acids in an amino acid analyzer.

Carbohydrate Analysis—The content of neutral sugar was determined by the phenol- H_2SO_4 method⁸⁾ with mannose as a standard. Neutral sugar analysis was performed by the method of Reinhold⁹⁾ with a Nihon Denshi JGC-20K gas chromatograph. Amino sugar analysis was performed in an amino acid analyzer after hydrolysis with 4 N HCl in an evacuated tube at $100 \, ^{\circ}\text{C}$ for 8 h.

Polyacrylamide Gel Electrophoresis——Disc electrophoresis in 7.5% polyacrylamide gel, pH 4.3, was performed as described by Reisfeld *et al.*¹⁰⁾ SDS-polyacrylamide gel electrophoresis in 7% gel containing 1% SDS was carried out as described by Shapiro *et al.*;¹¹⁾ samples were denatured by heating at 100°C for 5 min.

Proteins in the gels were detected by staining with a 0.05% Coomassie brilliant blue G-250 solution in 9% acetic acid containing 45% methyl alcohol.

Isoelectric Focusing—Isoelectric focusing with carrier ampholytes (pH 7—10) was performed in a gradient of glyc_rol (0—50%, v/v), according to the method of Vesterberg and Svensson. Electrophoresis was conducted in a 110-ml column (LKB-Produkter) at 4°C for 24 h with a final potential drop of 700 V. After termination of electrophoresis, 1.5-ml fractions were collected and the pH values were measured at room temperature. A control run was made without sample and the $A_{280\text{nm}}$ of each fraction in the control run was subtracted from that of the sample run.

Results

Digestion of Gluc₁ with Various Proteinases

The susceptibility of Gluc₁ to various proteinases was preliminarily explored; 1 mg of Gluc₁ was incubated at 37°C with 20 µg of each proteinase in 1 ml of the following buffers: 0.1 m Tris-HCl buffer (pH 7.5) for chymotrypsin, trypsin, pronase E, thermolysin and alkaline protease digestions, 0.1 m phosphate buffer (pH 7.2) containing 0.2 mm 2-mercaptoethanol for papain digestion and 0.1 m acetate buffer (pH 5.0) for pepsin digestion. Portions of the digestion mixtures were taken at various times from 0.5—24 h for glucoamylase activity assay and SDS-polyacrylamide gel electrophoresis. The glucoamylase activity of all the proteinase-digestion mixtures changed little during incubation for up to at least 24 h. In contrast, the SDS-polyacrylamide gel electrophoresis patterns of the digestion mixtures changed to different

extents with different proteinases, except in the case of trypsin. The chymotrypsin digestion mixture gave an additional new band of Gluc3-like protein which increased very slowly to about one-fourth of the amount of the unsplit Gluc₁ at 24 h. The pepsin digest yielded several new bands with smaller molecular weights in varying proportions with time. For the digests by other proteinases such as papain, pronase E, thermolysin and alkaline protease, no clear bands could be seen throughout the incubation time from 0-24 h. This phenomenon seemed to be ascribable to further action of the proteinases during the SDS denaturation of the digests prior to an electrophoretic run, resulting in the production of small fragments not detectable by this technique. Therefore, the 24-h digests (0.75 ml) obtained with these proteinases were each passed, after concentration, through a column (1 \times 41 cm) of Bio-Gel P-150 to obtain the first-eluted, active peak and the second-eluted, inactive peak; the latter peak contained proteinase as well as the digested fragments. Upon electrophoresis of the individual active peaks thus obtained, the papain digest yielded only one band similar to that of Gluc₂ but the pronase E, alkaline proteinase and thermolysin digests gave at least two to four bands including Gluc₂-like and (or) Gluc₃-like bands.

On the basis of SDS-polyacrylamide gel electrophoresis, $Gluc_1$ appeared to be degraded to smaller proteins with retention of its original activity on incubation with all the proteinases except for trypsin. Among the proteinases used, papain and chymotrypsin seemed to be most suited for the preparation of $Gluc_2$ -like and $Gluc_3$ -like derivatives, respectively, because the two proteinases did not form any other enzyme forms in the preliminary experiment.

Preparation of Gluc₂-like Enzyme

To find the best conditions for the preparation of Gluc₂-like enzyme, the time-course of the papain digestion of Gluc₁ was followed by SDS-polyacrylamide gel electrophoresis; the digestion was carried out as described above except that a Gluc₁/papain ratio of 20:1 was used. Samples withdrawn at intervals were supplemented with CuCl₂¹³⁾ at a final concentration of 5 mm to stop papain action during the SDS denaturation of the samples. Within 5 h, most of Gluc₁ was converted into Gluc₂-like enzyme; at 8 h only one band of Gluc₂-like enzyme could be seen and no further change was observed thereafter up to 48 h (Fig. 1a). The glucoamylase activity of the digestion mixture changed little throughout the incubation. Since

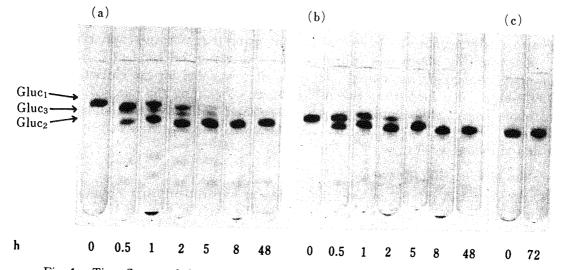


Fig. 1. Time Course of the Papain Digestions of Gluc₁(a), Gluc₃(b) and Gluc₂(c)

One mg of each glucoamylase was incubated with 50 μg of papain in 1 ml of 0.1 m phosphate buffer (pH 7.2) containing 0.2 mm mercaptoethanol at 37°C. One-tenth ml portions of the digestion mixtures were taken at various times, mixed with 0.1 ml of boiling 2% SDS solution containing 50% glycerol and 10 mm CuCl₂ and heated in boiling water for 5 min to denature proteins. SDS-polyacrylamide gel electrophoresis was carried out as described in the text; about 15 μg protein was applied to each gel.

1004 Vol. 31 (1983)

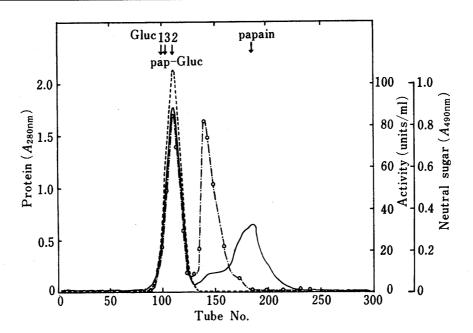


Fig. 2. Gel Filtration on Bio-Gel P-150 of the Papain Digestion Products of Gluc₁

The digestion mixture contained 60 mg of Gluc₁ and 3 mg of papain in 60 ml of 0.1 m phosphate buffer (pH 7.2) containing 0.2 mm mercaptoethanol. After incubation at 37°C for 24 h, CuCl₂ was added to the digestion mixture to a final concentration of 5 mm and the whole was concentrated to about 20 ml. The resulting solution was applied to a column (2.5 × 95 cm) of Bio-Gel P-150 equilibrated with 0.05 m Tris-HCl buffer (pH 7.0) and the column was eluted with the buffer. Two-ml fractions were collected. Arrows indicate the positions expected for the elution of Gluc₁, Gluc₂, Gluc₃ and also papain. —, A_{280nm} ;, glucoamylase activity; $\bigcirc - \cdot - \bigcirc$, A_{490nm} .

Gluc₁ was converted by papain into Gluc₂-like enzyme not directly but *via* a Gluc₃-like intermediate as shown in Fig. 1a, the papain digestion of Gluc₃ was also undertaken under the same conditions as for the digestion of Gluc₁. Gluc₃ was found to be digestible with papain to form Gluc₂-like enzyme; the digestion reached completion within 8 h (Fig. 1b). Upon incubation of Gluc₂ with papain, no further degradation of Gluc₂ occurred on the basis of SDS-polyacrylamide gel electrophoresis, even with as long an incubation time as 72 h (Fig. 1c).

For a large-scale preparation of $Gluc_2$ -like enzyme, $Gluc_1$ (60 mg) was treated with papain (3 mg) in 0.1 m phosphate buffer (pH 7.2) containing 0.2 mm 2-mercaptoethanol at 37°C for 24 h. The resulting digest was subjected to gel filtration on Bio-Gel P-150 (Fig. 2). The papain-modified enzyme was eluted at the position expected for the elution of $Gluc_2$ but not $Gluc_1$ or $Gluc_3$. The succeeding two minor peaks, containing the released carbohydrate and peptide moieties as well as papain, were not associated with any glucoamylase activity. The active enzyme fraction, designated as pap-Gluc, was dialyzed exhaustively against distilled water and stored at -20°C.

Preparation of Gluc₃-like Enzyme

It was observed in the preliminary digestion experiment that chymotrypsin degraded Gluc₁ much more slowly than other proteinases such as papain, pronase E and alkaline protease. Therefore, a high ratio of chymotrypsin to Gluc₁ of 1:6 was used; Gluc (60 mg) was treated with chymotrypsin (10 mg) in 60 ml of 0.1 m phosphate buffer (pH 7.2) at 37°C. Under these conditions, most of Gluc₁ was converted by chymotrypsin into Gluc₃-like enzyme within 40 h, but more prolonged incubation resulted in the appearance of an additional protein which migrated between Gluc₃ and Gluc₂ in SDS-gel. Thus, the chymotrypsin digestion was terminated at 39 h and the digest was subjected to gel filtration on Bio-Gel P-150 under the same conditions as in Fig. 2. The first-eluted peak possessed glucoamylase activity, the first half

of which contained both $Gluc_3$ -like enzyme and a small amount of the undigested $Gluc_1$, while the second half contained only $Gluc_3$ -like enzyme. Fractions containing only $Gluc_3$ -like enzyme were pooled, dialyzed against distilled water and stored at $-20^{\circ}C$. The preparation was designated as chymo-Gluc.

Properties of pap-Gluc and chymo-Gluc

The preparations of pap-Gluc and chymo-Gluc yielded single protein bands in polyacrylamide gel electrophoresis with and without SDS, with mobilities similar to those of Gluc₂ and Gluc₃, respectively (Fig. 3). SDS-polyacrylamide gel electrophoresis of each modified enzyme yielded a single band of similar mobility in the presence or in the absence of a reducing reagent, demonstrating that the two modified enzymes each consist of a single polypeptide chain as Gluc₁ does.¹⁾ Apparent molecular weight was estimated by SDS-polyacrylamide gel electrophoresis calibrated with β -galactosidase, bovine serum albumin, catalase and ovalbumin; the molecular weights of pap-Gluc and chymo-Gluc were found to be 57000 and 64000, respectively, as compared with 73600 for Gluc₁.¹⁾

Each modified enzyme yielded a single symmetrical boundary in ultracentrifugation (not shown here). The sedimentation coefficients $(s_{20,w})$ of the two derivatives were estimated to be 4.31 S.

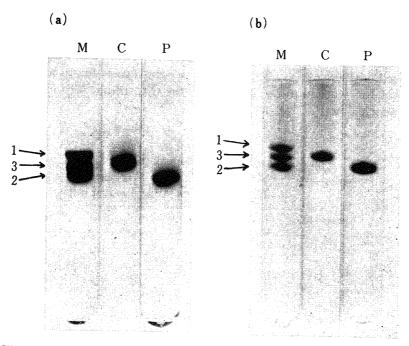


Fig. 3. Polyacrylamide Gel Electrophoresis of pap-Gluc and chymo-Gluc

a) Disc electrophoresis in 7.5% gel at pH 4.3: about 45 μg of enzyme was applied to each gel.
 b) SDS-polyacrylamide gel electrophoresis in 7% gel at pH 7.2: about 12 μg of enzyme was applied to each gel. An equi-molecular mixture of Gluc, Gluc, and Gluc, was run under the same conditions for comparison. Symbols: C, chymo-Gluc; P, pap-Gluc; 1, Gluc, 2, Gluc, 3, Gluc,

Isoelectric focusing of the derivatives was carried out in carrier ampholytes, pH 7—10 (Fig. 4). Each derivative yielded a single peak of protein which coincided exactly with that of enzymatic activity. The isoelectric points of pap-Gluc and chymo-Gluc were found to be 8.71 and 8.83, respectively.

The amino acid and sugar compositions of pap-Gluc and chymo-Gluc are summarized in Table I. The analysis results indicate that papain released from Gluc₁ a glycopeptide moiety

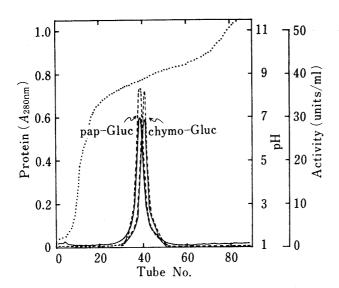


Fig. 4. Isoelectric Focusing of pap-Gluc and chymo-Gluc

The sample applied was about $4-5~\mathrm{mg}$ of enzyme. Isoelectric focusing of each enzyme was conducted separately and the patterns of both modified enzymes are superimposed for comparison. ——, $A_{280\mathrm{nm}}$; ----, glucoamylase activity;, pH.

consisting of about 146 amino acid residues and 19 neutral sugar residues to form pap-Gluc, while chymotrypsin released peptide moiety consisting of about 106 amino acid residues to form chymo-Gluc. Neither papain nor chymotrypsin liberated glucosamine from Gluc₁.

The two proteinase-modified enzymes were subjected to manual Edman degradation.⁶⁾ pap-Gluc released several PTH-amino acids; chymo-Gluc released mainly PTH-Thr and small amounts of a few other PTH-amino acids. This implies that each preparation is a mixture of several enzyme species having different amino acids as their N-terminal residues. However, no alanine, which is the N-terminal amino acid of Gluc₁,¹⁴⁾ was detected as an N-terminal amino acid. On the other hand, pap-Gluc and chymo-Gluc were digested

with carboxypeptidases A and B. The digestions permitted us to determine the C-terminal amino acid sequences of the enzymes up to the 2nd amino acid residue; both pap-Gluc and chymo-Gluc were found to have the same C-terminal sequence of -Ser-Ala OH, the sequence being identical with that of Gluc₁. ¹⁴⁾

TABLE I. Amino Acid and Sugar Compositions of pap-Gluc and chymo-Gluc

	Residues per molecule (nearest integer)						
Amino acid	pap-Gluc	chymo-Gluc	$\overline{\mathrm{Gluc_1}^{a)}}$	$\mathrm{Gluc}_2{}^{a)}$	$\widehat{\mathrm{Gluc}_3}^{a)}$		
Trp	11	11	13	11	11		
Lys	23	25	31	23	26		
His	4	4	4	4	4		
Arg	14	14	14	14	14		
Asp	57	62	78	58	63		
Thr	45	51	62	46	53		
Ser	54	64	79	55	65		
Glu	27	27	34	28	28		
Pro	22	25	28	23	27		
Gly	43	45	54	44	46		
Ala	48	53	65	49	54		
Cys 1/2	3	3	3	3	. 3		
Val	29	30	35	30	30		
Met	11	11	11	12	11		
Ile	21	24	31	21	24		
Leu	38	39	37	39	40		
Tyr	22	23	37	22	25		
Phe	24	25	26	24	25		
Mannose	23	41	42	25	43		
Glucosamine	8	8	8	8	8		

a) Cited from T. Takahashi et al. 1.14)

It is of interest to see whether or not such proteolytic modifications of Gluc₁ cause any change in enzymatic properties. pap-Gluc and chymo-Gluc hydrolyzed both soluble starch and glycogen almost completely into glucose, as Gluc₁ did. The specific activities of pap-Gluc and chymo-Gluc towards soluble starch were determined to be 88 and 78 units/mg, respectively, while that of Gluc₁ was 66 units/mg.¹⁾ The starch-hydrolyzing activities of the enzymes were determined as a function of pH; the buffers (0.01 m, I=0.1) used were glycine-HCl buffer for pH 1.0—3.5, acetate buffer for pH 4.0—6.5, borax-HCl buffer for pH 7.0—9.0 and borax-NaOH buffer for pH 9.5—11.0. The modified enzymes showed similar pH-activity profiles with a broad optimum at pH 4.5—5.0.

To test the pH stability, each derivative (0.2 mg/ml) was incubated for 1 h at 37°C in 0.01 m buffer (I=0.1) of various pH values from 2.0—11.0. The modified enzymes were stable between pH 4.0 and 8.0 but lost their activity abruptly at pH values below 3.0 and above 9.0. On heating in 0.01 m acetate buffer (pH 6.0, I=0.1) for 5 min at various temperatures from 25 to 100°C, the enzymes were stable at temperatures up to 50°C but lost their activity completely above 60°C.

The kinetic parameters, $K_{\rm m}$ and $V_{\rm max}$, for the modified glucoamylases were determined at pH 6.0 and 37°C; the substrates used were soluble starch, glycogen and amylopectin as high-molecular-weight substrates, and maltose and maltotriose as low-molecular-weight substrates. Table II compares the kinetic parameters for the two modified enzymes with those for the original enzyme. Both pap-Gluc and chymo-Gluc had similar values of $K_{\rm m}$ and $V_{\rm max}$ for all the substrates tested. The kinetic parameters for the low-molecular-weight substrates of the modified enzyms were little changed from those of Gluc₁, but the values of $K_{\rm m}$ and $V_{\rm max}$, especially of $K_{\rm m}$, for the high-molecular-weight substrates of the modified enzymes were consistently higher than those of Gluc₁; the $K_{\rm m}$ values of the modified enzymes for glycogen, amylopectin and soluble starch were about 9,5 and 2 times higher, respectively, than the corresponding values of Gluc₁.

Substrate	$K_{ m m}$			$V_{ m max}$ (units $ imes 10^{-2}/\mu{ m mol}$)		
	pap-Gluc	chymo-Gluc	Gluc ₁	pap-Gluc	chymo-Gluc	Gluc
Soluble starch	0.012%	0.015%	0.007%	46.4	45.8	37.7
Glycogen	0.054%	0.054%	0.006%	35.7	36.8	30.5
Amylopectin	0.015%	0.017%	0.003%	41.8	41.5	33.5
Maltose	3.35 тм	3.54 тм	3.17 тм	3.1	3.2	2.8
Maltotriose	1.15 тм	1.17 mм	1.31 тм	11.0	10.8	10.4

TABLE II. Kinetic Parameters for pap-Gluc, chymo-Gluc and Gluc₁

Discussion

In the present work, the most abundant glucoamylase of a *Rhizopus* sp., Gluc₁, was converted by papain and chymotrypsin treatments into two active derivatives named pap-Gluc and chymo-Gluc, respectively. Table III summarizes the properties of pap-Gluc and chymo-Gluc, together with those of Gluc₁, Gluc₂ and Gluc₃.¹⁾ Compared with Gluc₁, pap-Gluc and chymo-Gluc were smaller by about 17000 and 10000 daltons in molecular weight, respectively. Nevertheless, the pH-activity, pH-stability and heat stability properties of the modified enzymes were almost exactly the same as those of Gluc₁ as well as Gluc₂ and Gluc₃ (not shown here). It is apparent that the specific activities in terms of units/mg of the two modified enzymes and the three enzyme forms are in inverse relation to their molecular weights, so that they all give similar values for the specific activity in terms of units/mol enzyme. It should be noted, however, that both modified enzymes showed decreased affinities for the high-

TABLE III.	Comparison of Properties of pap-Gluc and chymo-Gluc wit	h
	Those of Gluc ₁ , Gluc ₂ and Gluc ₃	

pap-Gluc	chymo-Gluc	$\mathrm{Gluc}_{1^{m{a})}}$	$\mathrm{Gluc}_{2^{a}}$	Gluc ₃ a)
8.71	8.83	8.70	8.70	8.80
4.31 S	4.31 S	4.65 S	4.31 S	4.30 S
57000	64000	73600	59000	66000
N.D.	N.D.	74000	58600	61400
496	516	642	506	549
23	42	42	25	43
8	8	8	8	8
b)	b)	Ala	Glu	Lys
$\text{-Ser-Ala}\!\cdot\! \text{OH}$	$-Ser-Ala\!\cdot\!OH$	–Ser–Ala \cdot OH	$-Ser-Ala\cdot OH$	$-Ser-Ala\cdot OH$
88	78	66	86	79
pH 45	pH 4—5	pH 4—5	pH 4—5	pH 4—5
pH 4—8	pH 4—8	pH 48	pH 4—8	pH 4—8
Up to 50°C	Up to 50°C	Up to 50°C	Up to 50°C	Up to 50°C
	8.71 4.31 S 57000 N.D. 496 23 8 —b) -Ser-Ala·OH 88 pH 4—5 pH 4—8	8.71 8.83 4.31 S 4.31 S 57000 64000 N.D. N.D. 496 516 23 42 8 8 b)b) -Ser-Ala·OH -Ser-Ala·OH 88 78 pH 4—5 pH 4—5 pH 4—8 pH 4—8	8.71 8.83 8.70 4.31 S 4.31 S 4.65 S 57000 64000 73600 N.D. N.D. 74000 496 516 642 23 42 42 8 8 8 —b) —b) Ala -Ser-Ala·OH -Ser-Ala·OH -Ser-Ala·OH 88 78 66 pH 4—5 pH 4—5 pH 4—5 pH 4—8 pH 4—8	8.71 8.83 8.70 8.70 4.31 S 4.31 S 4.65 S 4.31 S 57000 64000 73600 59000 N.D. N.D. 74000 58600 496 516 642 506 23 42 42 25 8 8 8 8 8 —b) —b) Ala Glu -Ser-Ala·OH -Ser-Ala·OH -Ser-Ala·OH 88 78 66 86 pH 4—5 pH 4—5 pH 4—5 pH 4—5 pH 4—8 pH 4—8 pH 4—8

a) Cited from T. Takahashi et al. 1,14)

molecular-weight substrates as compared with Gluc₁, while retaining the original affinities of Gluc₁ for the low-molecular-weight substrates (Table II). Such decrease in affinity for the large substrates but not for the small substrates was also observed with Gluc₂ and Gluc₃.¹⁵⁾

pap-Gluc and chymo-Gluc resemble Gluc₂ and Gluc₃, respectively, in size, pI and enzymatic properties (Table III), kinetic parameters (Table II), and also in amino acid and sugar compositions (Table I). Both modified enzymes had the same C-terminal amino acid sequence as that of Gluc₁ but differed in N-terminal amino acid from Gluc₁. This indicates that pap-Gluc and chymo-Gluc resulted from the removal of N-terminal glycopeptide and peptide moieties of Gluc₁, respectively. Similar results have been obtained with Gluc₂ and Gluc₃: they have been considered to be derived from Gluc₁ by the action of certain proteinases produced by a Rhizopus sp. itself. 14,16) In such a conversion of Gluc₁ to Gluc₂, the liberated N-terminal glycopeptides of molecular weights 16700 and 14400 were isolated in the previous study.¹⁴⁾ In the present work, however, neither glycopeptides nor peptides of comparable size were detectable in the papain and chymotrypsin digests of Gluc₁. The only pronounced difference between pap-Gluc and Gluc₂ and between chymo-Gluc and Gluc₃ was in their N-terminal amino acids; Gluc₂ and Gluc₃ had glutamic acid and lysine as N-terminal amino acids, respectively, 14) whereas pap-Gluc and chymo-Gluc were heterogeneous with respect to N-terminal residue. The dissimilarity in N-terminal amino acid and the difference in size of the liberated glycopeptides may be attributable to differences in substrate specificity of the proteinases concerned, or merely to differences in the amount of the protein ases present, or to both reasons. It should be noted that pap-Gluc and chymo-Gluc were significantly smaller, although only slightly, than Gluc, and Gluc, respectively, as determined by SDS-polyacrylamide gel electrophoresis (Table III).

The present finding that Gluc₁ was convertible by several commercial proteinases including papain and chymotrypsin into smaller enzyme species resembling Gluc₂ and Gluc₃ indicates that Gluc₁ has some specific sites susceptible to proteolytic action within the N-terminal region of about 17000 daltons in size, thus confirming the earlier conclusion that the multiplicity of a *Rhizopus* sp. glucoamylase is ascribable to proteolytic modifications of an original enzyme form, Gluc₁. The multiplicity of other fungal glucoamylases, A. awamori var. kawachi¹⁷⁾ and A. saitoi^{2,7)} enzymes, is also ascribed to proteolytic action on an original enzyme: the

b) The N-terminal amino acids of pap-Gluc and chymo-Gluc were not homogeneous. N.D.; not determined.

former glucoamylase was further shown to be convertible to smaller enzyme forms by the action of some proteinases.¹⁸⁾

Acknowledgement The authors are greatly indebted to Amano Pharmaceutical Co., for a generous gift of Gluczyme. We wish to thank Mr. K. Suzuki, National Institute of Health, for carrying out the ultracentrifugal analyses.

References and Notes

- 1) T. Takahashi, Y. Tsuchida and M. Irie, J. Biochem., 84, 1183 (1978).
- 2) T. Takahashi, N. Inokuchi and M. Irie, J. Biochem., 89, 125 (1981).
- 3) D.H. Spackman, W.H. Stein and S. Moore, Anal. Chem., 30, 1190 (1958).
- 4) J.R. Spies and D.C. Chambers, Anal. Chem., 21, 1249 (1949).
- 5) E. Schram, S. Moore and E.J. Bigwood, Biochem. J., 57, 33 (1954).
- 6) B. Blombäck, M. Blombäck, P. Edman and B. Hessel, Biochim. Biophys. Acta, 115, 371 (1966).
- 7) N. Inokuchi, T. Takahashi and M. Irie, J. Biochem., 90, 1055 (1981).
- 8) M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956).
- 9) V.N. Reinhold, Methods Enzymol., 25, 244 (1972).
- 10) R.A. Reisfeld, U.J. Lewis and D.E. Williams, Nature (London), 195, 281 (1962).
- 11) A.L. Shapiro, E. Vineula and J.V. Maizel, Biochem. Biophys. Res. Commun., 28, 815 (1967).
- 12) O. Vesterberg and H. Svensson, Acta Chem. Scand., 20, 820 (1966).
- 13) Instead of 5 mm CuCl₂, 5 mm iodoacetic acid or *p*-chloromercuribenzoic acid could be used to stop papain action, if the SDS denaturation was carried out in the absence of a reducing agent.
- 14) T. Takahashi, Y. Tsuchida and M. Irie, J. Biochem., 92, 1623 (1982).
- 15) T. Takahashi, Y. Tsuchida, M. Iwama and M. Irie, "in preparation."
- 16) Gluc₁ was actually convertible, although very slowly, into two enzyme forms like Gluc₂ and Gluc₃ on incubation with a proteinase preparation which we partially purified from Gluczyme.
- 17) S. Hayashida, Agric. Biol. Chem., 39, 2093 (1975).
- 18) S. Hayashida, T. Nomura, E. Yoshino and M. Hongo, Agric. Biol. Chem., 40, 141 (1976): E. Yoshino and S. Hayashida, J. Ferment. Technol., 56, 289 (1978); S. Hayashida and E. Yoshino, Agric. Biol. Chem., 42, 927 (1981).