(Chem. Pharm. Bull.) 31(4)1382—1384(1983)

Chemical Modification of Maltose. VI.1) Selective p-Toluenesulfonylation of 1,6-Anhydro-4',6'-O-benzylidene-\(\beta\)-maltose using Phase Transfer Catalysis²⁾

MASAMI MORI and SETSUZO TEJIMA*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

(Received October 1, 1982)

Treatment of 1,6-anhydro-4',6'-O-benzylidene- β -maltose (1) in dichloromethane with 1.2 eq of tosyl chloride in the presence of tetrabutylammonium hydrogen sulfate and 4% sodium hydroxide gave the corresponding 2'-O-tosylate (5) as the main product (64.2%). Compound 5 is a versatile intermediate for the chemical modification of maltose.

Keywords—maltose; maltosan; benzylidene maltosan; selective tosylation; phase transfer catalysis; 2'-monotosyl maltosan; ¹H-NMR

Partially sulfonylated disaccharides are versatile intermediates for chemical modification of maltose^{1,3)} and for syntheses of higher oligosaccharides.⁴⁾ In order to carry out the synthesis of 4-O-(2-acetamido-2-deoxy-α-p-glucopyranosyl)-p-glucopyranose from maltose,⁵⁾ the 2'-O-sulfonylated maltose derivative was required as a key intermediate.

Selective p-toluenesulfonylation (tosylation) of 1,6-anhydro-4',6'-O-benzylidene- β -maltose (1) with 4.1 molar equivalents of tosyl chloride (TsCl) in pyridine gave four partially tosylated products together with the fully tosylated products, but the yield of the 2'-O-tosylate (5) was only 1.7%. Tosylation of 1 with smaller amounts of TsCl, however, resulted in recovery of almost all of the starting material together with a small amount of 5. Though it has been reported⁶ that mesitylenesulfonyl chloride, a bulky sulfonylating reagent, reacts more selectively with one hydroxyl group in a vicinal diol than TsCl, we noticed that this reagent reacted with 1 too slowly to be useful for preparative purposes. While satisfactory results have been obtained using N-tosylimidazole for monotosylation of the vicinal diol, of an application of these conditions for selective tosylation of 1 gave unsatisfactory results.

Recently, phase transfer catalysis has been proven to be a useful technique in organic synthesis.⁸⁾ In the carbohydrate field, this procedure has been applied to the alkylation,⁹⁾ benzylation,¹⁰⁾ and methylenation¹¹⁾ of monosaccharides. Therefore, by reference to a reported monotosylation of diol using a phase transfer catalyst,¹²⁾ tosylation of 1 was undertaken to provide 5 selectively.

Compound 1 in dichloromethane was treated with 1.2 equivalents of TsCl in the presence of tetrabutylammonium hydrogen sulfate and 4% sodium hydroxide solution. On stirring at room temperature, the reaction was completed within 1.5 h. From the organic layer, four products were isolated by column chromatography. They were designated 2 to 5 in order of decreasing Rf value; 5 was predominant.

Compounds 3, 4, and 5 were isolated in 11, 2, and 64.2% yields, and their structures were assigned as 1,6:2,3-dianhydro- $4-O-(4,6-O-benzylidene-2-O-tosyl-\alpha-D-glucopyranosyl)-\beta-D-mannopyranose (3),¹³⁾ 1,6-anhydro-<math>4',6'-O-benzylidene-2,2'-di-O-tosyl-\beta-maltose (4),^{3c)} and 1,6-anhydro-<math>4',6'-O-benzylidene-2'-O-tosyl-\beta-maltose (5),¹³⁾ respectively, by comparison with authentic samples.$

Compound 2 was isolated as white needles in 6% yield. The proton nuclear magnetic resonance (${}^{1}\text{H-NMR}$) data (Table I) suggested the structure to be 1,6: 2,3-dianhydro-4-O-(4,6-O-benzylidene-2,3-di-O-tosyl- α -D-glucopyranosyl)- β -D-mannopyranose. Further structural confirmation was carried out by comparison of 2 with an authentic sample synthesized separately

by tosylation of 3 or by mild alkaline treatment of 1,6-anhydro-4',6'-O-benzylidene-2,2',3'-tri-O-tosyl- β -maltose^{3c)} to effect epoxide formation.

In selective benzoylation¹⁴⁾ or tosylation^{3c)} of 1, the hydroxyl group at the C-2' position of maltose showed the highest reactivity among the four secondary hydroxyl groups of 1. Thus, in this selective tosylation, preferential formation of the 2'-tosylate (5) is in accord with expectation. In addition, in partially tosylated 1,6-anhydro- β -maltose derivatives, monoepoxide formation occurs under mild alkaline conditions at the p-glucose moiety bearing the 1,6-anhydro- β -linkage, in which the vicinal diol is located in a trans-diaxial orientation.¹³⁾ Because this selective tosylation proceeds under alkaline conditions, monoepoxide formation may occur simultaneously to yield 2 and 3. It is remarkable that under the conditions mentioned above, tosylation of 1 scarcely proceeds in the absence of phase transfer catalysts.

$$\begin{array}{c} OCH_2 & CH_2 & O\\ Ph & OR & O\\ OH & OH & OH \\ 1 & OCH_2 & CH_2 & O\\ OTS & 3: R=H\\ OCH_2 & CH_2 & O\\ OCH_2 & CH_2 & O\\ OH & OH & OH\\ OTS & OR\\ 4: R=Ts & 5: R=H\\ \end{array}$$

TABLE I. 1H-NMR Spectral Data and Rf Values of the Products

Chart 1

Compd.	¹ H-NMR (in CDCl ₃ , δ ppm)				TLC Rf value ^{a)}		
No.	H-1	H-1′	$SO_2C_6H_4\underline{H}_3$	C ₆ H ₅ C <u>H</u>	solvents	A^{b}	$\mathbf{B}^{c)}$
2	5.73 (d, <i>J</i> =3Hz)	5.57 (d, <i>J</i> =4Hz)	2.27, 2.48 (each 3H, s)	5.31		0.51	0.38
3	5.58 (d, $J=3$ Hz)	5.26 (d, $J=4$ Hz)	2.40	5.43		0.41	0.43
4	5.37 (br s)	5.33 (d, $J=4$ Hz)	2.39, 2.46 (each 3H, s)	5.48		0.31	0.37
4^{d}	5.28 (br s)	5.18 (d, $J=4Hz$)	2.36, 2.43 (each 3H, s)	5.52			
5	5.39 (br s)	5.25 (d, <i>J</i> =4Hz)	2.38	5.45		0.09	0.11
$5^{\scriptscriptstyle d)}$	5.24 (br s)	5.22 (d, $J=4$ Hz)	2.43	5.51			

a) Performed on pre-coated silica gel plates 0.25 mm thick (Kiesel Gel 60 F₂₅₄, Merck).

Experimental¹⁵⁾

Selective Tosylation of 1 with Phase Transfer Catalyst—A 4% (w/v) NaOH aq. solution (1 ml) was added to a suspension of 1^{3b)} (207 mg, 0.5 mmol), tetrabutylammonium hydrogen sulfate (34 mg, 0.1 mmol),

<sup>b) Solvent A: CH₂Cl₂-acetone (9:1 v/v).
c) Solvent B: benzene-ether (1:3 v/v).</sup>

d) Measured in acetone- d_6 .

and TsCl (112 mg, 0.6 mmol) in CH_2Cl_2 (35 ml). The mixture was stirred at room temperature for 1.5 h. The organic layer was separated, washed with H_2O (30 ml \times 2), dried (Na_2SO_4), and concentrated to dryness. The residue (305 mg) was chromatographed on a column of silica gel with CH_2Cl_2 -acetone (60: 1, 30: 1, and 10: 1, v/v). Compounds 2 (21 mg, 6%), 3 (30 mg, 10.9%), 4 (7 mg, 1.9%), and 5 (182 mg, 64.2%) were successively eluted in this order. The ¹H-NMR spectral data and Rf values on thin-layer chromatography (TLC) are presented in Table I.

Authentic 1,6: 2,3-Dianhydro-4-O-(4,6-O-benzylidene-2,3-di-O-tosyl- α -p-glucopyranosyl)- β -p-mannopyranose (2)—1) A 0.5 N methanolic solution of MeONa (1.2 ml, 0.6 mmol) was added to a solution of 1,6-anhydro-4',6'-O-benzylidene-2,2',3'-tri-O-tosyl- β -maltose^{3c)} (280 mg, 0.32 mmol) in MeOH (15 ml). After being stirred overnight at room temperature, the mixture was concentrated to dryness. The residue was dissolved in CH₂Cl₂ (20 ml) and H₂O (15 ml). The organic layer was separated, washed with H₂O (10 ml × 3), and dried (MgSO₄). Removal of the solvent afforded a syrup which was crystallized from CHCl₃-MeOH as white needles (185 mg, 82.6%), mp 249—251°C, α ₀ = +17.3° (α ₀=0.95, CHCl₃). IR α ₀ = 1606 (C=C of tosyl), 1178 (SO₂ of tosyl). Anal. Calcd for C₃₃H₃₄O₁₃S₂: C, 56.40; H, 4.88. Found: C, 56.38; H, 4.77. The product was indistinguishable from 2 prepared by selective tosylation of 1.

2) A mixture of 3^{13} (100 mg, 0.18 mmol) and TsCl (600 mg, 3.15 mmol) in dry pyridine (5 ml) was left to stand at room temperature for 4 d. The mixture was then poured into ice- H_2O (20 ml), and the resultant precipitate was collected by filtration. The air-dried crude tosylate was purified by column chromatography on silica gel with CH_2Cl_2 -acetone (60: 1, v/v). From the earlier fractions, 2 (70 mg, 54.7%) was isolated. From the subsequent fractions, the starting material (3, 25 mg, 25%) was recovered.

Acknowledgement We thank Mrs. T. Kumagai for the ¹H-NMR spectral measurements, and Misses S. Iwauchi and T. Naito for the microanalyses. This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References and Notes

- 1) Part V: M. Mori and S. Tejima, Chem. Pharm. Bull., 29, 1893 (1981).
- 2) Part of this work was presented at the Annual Meeting of the Tokai Branch, Pharmaceutical Society of Japan, Nagoya, Sept. 1980.
- 3) a) M. Mori, M. Haga, and S. Tejima, Chem. Pharm. Bull., 22, 1331 (1974); b) Idem, ibid., 23, 1480 (1975); c) M. Mori and S. Tejima, ibid., 29, 71 (1981) and references cited therein.
- 4) T. Takamura, T. Chiba, and S. Tejima, Chem. Pharm. Bull., 29, 1076, 2273 (1981).
- 5) M. Mori and S. Tejima, Chem. Pharm. Bull., "in press."
- 6) S.E. Creasey and R.D. Guthrie, J. Chem. Soc., Perkin Trans. 1, 1974, 1373.
- 7) D.R. Hicks and B. Fraser-Reid, Synthesis, 1974, 203.
- 8) E.V. Dehmlow and S.S. Dehmlow, "Monographs in Modern Chemistry," Vol. 11, Verlag Chemie, Weinheim, Deerfield Beach (Florida), Basel, 1980, p. 1.
- 9) P.D. Cesare and B. Gross, Carbohydr. Res., 48, 271 (1976).
- 10) P.J. Garegg, T. Iversen, and S. Oscarson, Carbohydr. Res., 50, C12 (1977).
- 11) K.S. Kim and W.A. Szarek, Synthesis, 1978, 48.
- 12) P.J. Garegg, T. Iversen, and S. Oscarson, Carbohydr. Res., 53, C5 (1977).
- 13) M. Mori and S. Tejima, Chem. Pharm. Bull., 29, 421 (1981).
- 14) M. Mori, M. Haga, and S. Tejima, Chem. Pharm. Bull., 24, 1178 (1976).
- 15) Instruments used and conditions for chromatography were the same as in Part V unless otherwise indicated.