Communications to the Editor

(Chem. Pharm. Bull.) 31(5)1788—1791(1983)

LEAD(IV) ACETATE-METAL HALIDE REAGENTS II.

A NEW METHOD FOR THE SYNTHESIS OF

eta-HALO CARBOXYLATES AND eta-IODO ETHERS

Shigeyasu Motohashi,*,a Masakichi Satomi,a Yasuo Fujimoto,*,b and Takashi Tatsunob

Department of Pharmacy, College of Science and Technology, Nihon University, ^a

1-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101, Japan and

The Institute of Physical and Chemical Research, ^b

2-1 Hirosawa, Wako-Shi, Saitama, 351, Japan

A new method for the synthesis of trans- β -halo carboxylates and trans- β -iodo ethers from alkenes using lead(IV)acetate-metal halide is described.

KEYWORDS——lead(IV)acetate; metal halide; alkene; trans- β -halo carboxylate; trans- β -iodo ether

We have reported $^{1)}$ a new method for the regiospecific synthesis of α -haloketones by the application of the halogenation reaction of enol ethers or enol esters using lead(IV)acetate-metal halide. In continuation of our research on the lead(IV)acetate-metal halide reagents, we now report the reaction of various alkenes with lead(IV)acetate-metal halide(such as sodium iodide, zinc bromide or zinc chloride) and its application for the preparation of trans- β -halo carboxylates and β -iodo ethers.

$$R_{1}$$
 $C = C$
 R_{2}
 R_{4}
 R_{1}
 R_{2}
 R_{4}
 R_{4}
 R_{2}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}

The reaction of alkenes with lead(IV)acetate-sodium iodide gave the corresponding β -iodo carboxylates in high yields, while replacement of sodium iodide by zinc bromide or zinc chloride in the reaction afforded the corresponding β -bromo carboxylates or β -chloro carboxylates together with variable amounts of dibromide or dichloride. Treatment of 1-decene with lead(IV)acetate-metal halide reagents gave a mixture of Markovnikov and anti-Markovnikov products(Table I).

Table I

	Metal halide	Reaction conditions ^a ,b)	Addition product ^{c)}	Yield % (isolated)
cyclohexene	Na I	АсОН	trans-2-iodocyclohexyl acetate	86
	ZnBr ₂	Ac0H	trans-2-bromocyclohexyl acetate	73
	-		trans-1,2-dibromocyclohexane	11
	$ZnC1_2$	Ac0H	trans-2-chlorocyclohexyl acetate	49
	_		trans-1,2-dichlorocyclohexane	14
1-decene	Na I	Ac0H	2-acetoxydecyl iodide	54
			2-iododecyl acetate	35
	ZnBr ₂	АсОН	2-acetoxydecyl bromide	40
			2-bromodecyl acetate	16
			1,2-dibromodecane	30
	ZnC1 ₂	АсОН	2-acetoxydecyl chloride 2-chlorodecyl acetate	32 ^{d)}
			1,2-dichlorodecane	27
styrene	NaI	АсОН	2-iodophenethyl acetate	100
	Na I	EtCOOH	2-iodophenethyl propionate	66 e)
			2-iodophenethyl acetate	10
	${\sf ZnBr}_2$	Ac0H	2-bromophenethyl acetate	72
	_		1,2-dibromoethyl benzene	21
	ZnCl ₂	Ac0H	2-chlorophenethyl acetate	47
	-		1,2-dichloroethyl benzene	40
indene	NaI	AcOH	trans-1-acetoxy-2-iodoindane	88
	ZnBr ₂	Ac0H	trans-1-acetoxy-2-bromoindane	59
			trans-1,2-dibromoindane	16
methyl 3-	Na I	Ac0H	methyl trans-3-acetoxy-4-iodo-	40
cyclohexene-			cyclohexane-1-carboxylate	
-1-carboxylate			methyl trans-4-acetoxy-3-iodo-	32
			cyclohexane-1-carboxylate	
cholesteryl	Na I	СН ₂ С1 ₂ +АсОН	3 β , 6β -diacetoxy- 5α -iodocholestane	48
acetate	ZnBr ₂	CH ₂ C1 ₂ +AcOH	5lpha-bromo-3 eta , $6eta$ -diacetoxycholestane	60 ^{f)}
			5β-bromo-3β, 6α -diacetoxycholestane	15 ^{g)}
trans-	ZnBr ₂	Ac0H	2-bromo-1,2-diphenylethyl acetate	86

a) Solvent at room temperature; NaI : LTA : alkene = 2.2 : 1.1 : 1.0, $ZnBr_2$: LTA : alkene = 1.1 : 1.1 : 1.0, $ZnCl_2$: LTA : alkene = 2.2 : 1.1 : 1.0 . b) Reaction time : ten minutes.

- c) All known products have been identified by comparison (IR, ¹H-NMR, MS, GC, mp, bp) with authentic samples. All new compounds described in this paper gave satisfactory spectral (IR, ¹H-NMR and MS) and analytical data. The stereochemistry of the addition product from the action of LTA and metal halide on cyclohexene was confirmed by a detailed examination of its ¹H-NMR spectrum(ref. 6).
- $^{\rm d)}$ Product is a 4 : 1 mixture as determined by $^{\rm 1}$ H-NMR.
- e)Product is a mixture as determined by ¹H-NMR.
- f) Treatment of the β-bromo acetate with methanolic potassium hydroxide gave 3β-hydroxy-5β, 6β -epoxycholestane.
- g) Treatment of the β -bromo acetate with methanolic potassium hydroxide gave 3β -hydroxy- 5α , 6α -epoxycholestane.

When the reaction was carried out in methanol or ethanol, the corresponding β -iodo ether was formed in fair to good yield(Table II). In all cases, formation of β -iodo ether from unsymmetrical alkenes was found to be a regiospecific addition occurring in a Markovnikov sense.

Table II

Substrate	Metal halide	Reaction condition a,b)	Addition product ^{c)}	Yield % (isolated)
cyclohexene	NaI	Me0H	trans-2-iodocyclohexyl methyl ether	63
styrene	NaI	МеОН	2-methoxy-2-phenylethyl iodide	78
	Na I	EtOH	2-ethoxy-2-phenylethyl iodide	75
indene	NaI	Me0H	trans-1-methoxy-2-iodoindane	60
1-decene	NaI	MeOH	2-methoxydecyl iodide	73
	NaI	EtOH	2-ethoxydecyl iodide	58

a)Solvent at room temperature; NaI: LTA: alkene = 2.2: 1.6: 1.0.

The results summarised in Tables I and II indicated that the present reactions are useful as a convenient method for the synthesis of β -halo carboxylates and β -iodo ethers, and that the species of halogen atom and acyl or alkoxy group to be introduced can be selected freely by choice of metal halide and solvent.

It is particularly noteworthy that lead(IV)acetate and metal halide are readily available and easier to handle than the other β -halo carboxylate or β -halo ether-producing reagents such as halogen-silver carboxylate, N-halosuccinimide, 3,4,5) thallium(I)acetate-iodine, alkyl hypohalite, 7,8,9) iodine trichloride-silver acetate. 10)

b) Reaction time : ten minutes.

c) All known products have been identified by comparison (IR, ¹H-NMR, MS, GC, mp, bp.) with authentic samples.

GENERAL PROCEDURES

To a stirred solution of 90% lead(IV)acetate (1.1 mmol) in acetic acid or methanol (4 ml), the alkene (1.0 mmol) and the metal halide in acetic acid or methanol (3 ml) are added successively at room temperature, and stirring is continued for 10 min. The reaction mixture is poured into a solution of ice-cold water (30 ml) and 10% hydrochloric acid (10 ml), and extracted with ether (50 ml x 3). The combined ether extract is washed successively with saturated sodium hydrogen carbonate solution (20 ml), 10% sodium thiosulfate solution (5 ml), and brine (10 ml), and dried with sodium sulfate. Evaporation of the solvent leaves crude β -halo carboxylates or β -iodo ethers which are separated and purified by column chromatography, by high pressure liquid chromatography, by recrystallization, or by distillation under reduced pressure.

REFERENCES

- 1) S. Motohashi, M. Satomi, Y. Fujimoto and T. Tatsuno, Synthesis, 1982, 1021.
- 2) S.G. Levine and M.E. Wall, J. Am. Chem. Chem. Soc., 81, 2826 (1959).
- 3) G.L. Grady and S.K. Chokshi, Synthesis, 1972, 483.
- 4) M. Adinolfi, M. Parrilli, G. Barone, G. Laonigro and L. Mangoni, Tetrahedron Lett., 40, 3661 (1976).
- 5) K.L. Erickson and K. Kim, J. Org. Chem., 36, 2915 (1971).
- 6) R.C. Cambie, R.C. Hayward, J.L. Roberts and P.S. Rutledge, J. Chem. Soc., Perkin Trans. 1, 1974, 1858.
- 7) S.A. Glover and A. Goosen, Tetrahedron Lett., <u>21</u>, 2005 (1980).
- 8) C. Walling and R.T. Clark, J. Org. Chem., 39, 1962 (1974).
- 9) V.L. Heasley, S. Arnold, T.L. Carter, D.B. Yaeger, B.T. Gipe and D.F. Shellhamer, J. Org. Chem., <u>45</u>, 5150 (1980).
- 10) R.C. Cambie, D. Chaber, P.S. Rutlege and P.D. Woodgate, J. Chem. Soc., Perkin Trans. 1, 1977, 2231.

(Received March 2, 1983)