Communications to the Editor

(Chem. Pharm. Bull.) 31(5)1809—1811(1983)

THE MASKING AND ACTIVATING EFFECTS OF TRICARBONYL(TROPONE)IRON IN PERICYCLIC REACTIONS WITH o-QUINODIMETHANE

Kenji Hayakawa, Noriyuki Hori, and Ken Kanematsu*

Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical

Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

The reaction of tricarbonyl(tropone)iron $(\underline{5a})$ and o-quinodimethane $(\underline{2})$ followed by decomplexation with o-chloranil gives the previously unobtainable [4+2] adduct (7a) in good yield.

KEYWORDS—pericyclic reaction; masking effect; site-selectivity control; peri-selectivity control; tricarbonyliron complex; tropone; o-quinodimethane; o-chloranil

The new finding of the unique biological activity of 7-hydroxytropolone as a prototype of "antibiotic potentiator" $^{1)}$ stimulates further studies on highly selective chemical transformations of tropones. Although much effort has been made to establish the control of peri- and site-selectivities in cycloaddition reactions of tropone $(\underline{1})$, this cyclic polyene compound variably behaves as the 2π -, 4π -, 6π -, and 8π -cycloaddends, often giving a mixture of products. $^{2)-5)}$ Indeed, Fujise et al. $^{6)}$ reported that $(\underline{1})$ underwent non-selective reaction with o-quinodimethane $(\underline{2})$, generated by zinc dehalogenation of o-xylene dibromide, to give [6+4]- $(\underline{3})$ and [4+2] adduct $(\underline{4})$, but no [4+2] adduct reacting at the 2,3-position, *i.e.*, $(\underline{7})$, was formed at all. We report now the effective formation of $(\underline{7a})$ by using the masking effect of the tricarbonyliron complex. $^{7)}$

At first, the reaction of tropone and (2) was reinvestigated using the new generation method of (2) developed by Ito et al. 8) from [o-(trimethylsilylmethyl)benzyl]trimethylammonium iodide and cesium fluoride, and similar results were obtained [3] (26%) and 4 (24%)] with no formation of (7a). When tricarbonyl-(tropone)iron (5a) was similarly treated with (2) at room temperature, a smooth reaction occurred to give exclusively the 1:1 adduct (6a) (92%) as yellow crystals, mp 121-122 °C (n-hexane); v_{max} 2090, 2000, and 1645 cm⁻¹; m/e 350 (M⁺), 322 (M⁺-CO), 294 (M^+ -2CO), and 266 (M^+ -3CO); δ (CDCl₃) 2.5-2.9 (m, 6H), 2.96 (d, J = 7.0 Hz, H_f), 3.30 (m, H_a), 5.14 (dd, J = 8.0, 5.5 Hz, H_d), 5.67 (dd, J = 7.0, 5.5 Hz, These assignments were fully confirmed by spin- H_0), and 7.0-7.2 (m, 4H). Although removal of the tricarbonyliron moiety from decoupling experiments. tropone adducts is sometimes troublesome, $^{7),8)}$ treatment of $(\underline{6a})$ with o-chloranil in refluxing methylene chloride gave previously unobtainable $(\underline{7a})$ in 50% yield, mp 52-53 °C (n-hexane); v_{max} 1665 and 1645 cm⁻¹; m/e 210 (M⁺); δ (C₆D₆) 2.4-2.9 (m, 5H), 3.11 (dd, J = 14.0, 9.0 Hz, H_q), 5.3-5.7 (m, 2H), 5.85 (ddd, J = 12.0, 6.0, 2.0 Hz, H_2), 6.07 (br d, J = 12.0 Hz, H_f), and 6.7-7.1 (m, 4H). When $(\underline{6a})$ was treated with trimethylamine oxide, aromatized product $(\underline{8})^{6}$ (15%) was formed along with (7a) and its isomers.

The similar reaction of tricarbonyl(2-chlorotropone)iron $(\underline{5b})^{10}$ and $(\underline{2})$ at room temperature afforded a sole product $(\underline{6b})$ (55%), mp 129-130 °C (dec.) (n-hexane); v_{max} 2120, 2020, and 1670 cm⁻¹; m/e 386 (M⁺+2) and 384 (M⁺); δ (C₆D₆) 2.16 (d, J = 16.5 Hz, H_h), 2.24 (d, J = 8.0 Hz, H_C), 2.84 and 3.17 (AB-q, J_{AB}= 19.0 Hz, 2H_g), 2.84 (d, J = 6.5 Hz, H_f), 3.13 (d, J = 6.0 Hz, H_b), 3.37 (dd, J = 16.5, 6.0 Hz, H_h), 4.13 (dd, J = 8.0, 6.0 Hz, H_d), 4.70 (dd, J = 6.5, 6.0 Hz, H_e), and 6.6-7.1 (m, 4H). The spin-decoupling experiments confirmed these assignments, and the appearance of H_b as a doublet was only compatible with the structure ($(\underline{6b})$). Treatment of ($(\underline{6b})$) with o-chloranil gave ($(\underline{7b})$) (33%), mp 97-98 °C (n-hexane); v_{max} 1665 cm⁻¹; m/e 246 (M⁺+2) and 244 (M⁺); δ (CDCl₃) 2.95 (d, J = 11.0 Hz, H_h), 2.99 (d, J = 6.0 Hz, H_b), 3.18 and 3.91 (AB-q, J_{AB} = 16.0 Hz, 2H_g), 3.42 (dd, J = 11.0, 6.0 Hz, H_h), 6.0-6.4 (m, 3H), 6.57 (dd, J = 12.0, 6.5 Hz, H_e), and 6.9-7.2 (m, 4H). In contrast, 2-chlorotropone poorly reacted with ($(\underline{2})$) to give ($((\underline{10}))^{(6)}$, 10) (13%) as the only isolable product, probably via the hydrogen migration and aromatization of the initially formed [4+2] adduct (9).

In summary, the use of the tricarbonyliron complex provides a promising way of controlling the site- and peri-selectivities of tropone cycloaddition reaction. It should be also noted that the reactivity of tropone toward the electron-rich diene is enhanced by this complexation.

We thank Mr. Hirofumi Samemoto for his technical assistance.

REFERENCES

- 1) Anonymous, Chemical & Engineering News, Aug. 31, 9 (1981).
- 2) D. M. Bradby and G. I. Fray, J. Chem. Soc., Perkin Trans. 1, 1972, 195.
- 3) T. Sasaki, K. Kanematsu, K. Hayakawa, and A. Kondo, J. Org. Chem., 38, 4100 (1973).
- 4) R. C. Cookson, B. V. Drake, J. Hudec, and A. Morrison, J. Chem. Soc., Chem. Commun., <u>1966</u>, 15; S. Ito, Y. Fujise, T. Okuda, and Y. Inoue, Bull. Chem. Soc. Japan, <u>39</u>, 1351 (1966).
- 5) W. E. Truce and C. I. M. Lin, J. Am. Chem. Soc., 95, 4426 (1973).
- 6) Y. Fujise, H. Saito, and S. Ito, Tetrahedron Lett., 1976, 1117.
- 7) T. Ban, K. Nagai, Y. Miyamoto, K. Harano, M. Yasuda, and K. Kanematsu, J. Org. Chem., <u>47</u>, 110 (1982).
- 8) Y. Ito, M. Nakatsuka, and T. Saegusa, J. Am. Chem. Soc., <u>104</u>, 7609 (1982).
- 9) M. Frank-Neumann and D. Martina, Tetrahedron Lett., 1977, 2293.
- 10) C. G. Naville, H. Strauss, and E. Heilbronner, Helv. Chim. Acta, 43, 1221 (1961).

(Received April 4, 1983)