(Chem. Pharm. Bull.) 31(6)1929—1935(1983)

1,3-Oxazines and Related Compounds. VI.¹⁾ Synthesis and Some Reactions of 2,6-Disubstituted 4*H*-1,3-Thiazin-4-ones²⁾

YUTAKA YAMAMOTO,* SHUHEI OHNISHI, and YUTAKA AZUMA

Tohoku College of Pharmacy, 4-4-1 Komatsushima, Sendai 983, Japan

(Received November 17, 1982)

Various of 2,6-disubstituted 4H-1,3-thiazin-4-ones (5) were synthesized by successive treatment of N-acylacetylcarboxamides with acid (such as 70% perchloric acid or fluorosulfonic acid) and hydrogen sulfide. Reactions of 5 were investigated; ammonolysis with ethanolic ammonia gave the corresponding pyrimidin-4-ones; hydrolysis of 2-alkyl-1,3-thiazine derivatives yielded ring-opened N-acyl- β -mercaptocrotonamides; reduction with NaBH₄ or LiAlH₄ afforded 3,4-dihydro-2H-1,3-thiazin-4-one derivatives.

Keywords——1,3-thiazin-4-one; 3,4-dihydro-2H-1,3-thiazin-4-one; pyrimidin-4-one; 1,3-oxazinium salt; 1,3-thiazinium salt; N-acylacetylcarboxamide; N-acyl- β -mercapto-crotonamide

In a preliminary communication,²⁾ the synthesis of 1,3-thiazin-4-one derivatives *via* 1,3-oxazinium salts was reported. We wish to describe herein details of the synthesis of 1,3-thiazin-4-ones bearing various substituents at the 2- and 6-positions and some of their reactions, such as ammonolysis to pyrimidin-4-ones, ring-opening by hydrolysis, and reduction with

Chart 1

metal hydrides to 3,4-dihydro-2*H*-1,3-thiazin-4-one derivatives.

Synthesis of 1,3-Thiazin-4-ones (5) from N-Acylacetylcarboxamides (1)

N-Acylacetylcarboxamides (1)¹⁾ were readily converted into the corresponding 1,3-thiazin-4-one derivatives (5) by successive treatment with acid (2) and hydrogen sulfide (H₂S). For example, N-acetoacetylbenzamide (1f) in chloroform (CHCl₃) was treated with 70% perchloric acid (HClO₄, 2a) in the presence of acetic anhydride, then with H₂S, leading to 6-methyl-2-phenyl-4H-1,3-thiazin-4-one (5f) (method A).

A probable pathway to 5 from 1 involves the sequential steps shown in Chart 1; this pathway is supported by the isolation of 1,3-oxazinium (3f) and 1,3-thiazinium (4f) salts, which are important key intermediates, and their identification on the basis of the spectral data (described in Experimental), although purification of 3f was impeded by high sensitivity to moisture.

Similar treatment of N-acetoacetyl-isobutyramide (1d) and -phenylacetamide (1w) gave rise to 2-isopropylidene- (6d) and 2-benzylidene-1,3-thiazine derivatives (6w), respectively, which were formed by isomerization of the corresponding 2-isopropyl- (5d) and 2-benzyl-1,3-thiazine derivatives (5w). The 1,3-thiazine 5d was isolated by recrystallization of the crude product in a freezer, whereas isolation of 5w was unsuccessful. 5d was isomerized easily to 6d on being allowed to stand overnight at room temperature.

The structures of **5** and **6** were confirmed on the basis of spectroscopic and analytical data (Table II). ¹H-Nuclear magnetic resonance (¹H-NMR) spectra of **5** and **6** showed characteristic signals due to the proton at the 5-position on the 1,3-thiazine ring at δ 6.4—6.6 in **5** and at δ 5.8 in **6**.

Method A was found to be less effective for the synthesis of 2-pyridyl-1,3-thiazine derivatives (5n-v) from 2-, 3-, and 4-pyridinecarboxamides (1n-v). Hence, modification of method A was attempted by using a variety of acids in place of 70% HClO₄ solution. The employment of fluorosulfonic acid (FSO₃H, 2b) gave better results, as shown in Table I. Thus, N-propionylacetylnicotinamide (1r), for instance, was treated with FSO₃H and then worked up by a procedure similar to that described in method A, giving 6-ethyl-2-(3-pyridyl)-4H-1,3-thiazin-4-one (5r) in a satisfactory yield (method B). Table II summarizes the results of the preparation of 5 (and 6) and shows the availability of these methods for products with a variety of substituents at the 2- and 6-positions; attempts to prepare 6-phenyl-1,3-thiazine derivatives from N-benzoylacetylcarboxamides such as N-benzoylacetyl-acetamide, -benzamide, and -nicotinamide, however, resulted in the quantitative recovery of the starting carboxamides. On the other hand, 1,3-thiazine derivatives (5a-c, k-m) having an alkyl group at the 2-position such as methyl, ethyl, and n-propyl were found readily to undergo dimerization on being allowed to stand at room temperature. This dimerization will be the subject of a subsequent paper.³⁾

Ammonolysis of 5 and 6 to Pyrimidin-4-ones (7)

1,3-Thiazin-4-one derivatives (5 and 6) smoothly underwent ammonolysis with ethanolic

TABLE I. Overall Yields of **5r** from **1r**

		Yield (%) of 5r
2a	HClO ₄ -Ac ₂ O	18
2 b	FSO_3H	52
2 c	ClSO ₃ H	20
2d	CF ₃ SO ₃ H	40
2e	HBF ₄ ·Et ₂ O	31
2 f	$BF_3 \cdot Et_2O$	10
2 g	CF₃COOH	Trace

TABLE II. Preparation of 1, 3-Thiazin-4-ones (5a-v, 6d, w)

Compd.	Yield(%) (Method				IR (KBr)	¹H-NMR (CDCL ₃₎ δ:	Formula		Analysis (%) Calcd (Found)			
	(IVIC	tilou)	or bp (C) (1011)	cm ⁻¹	5-H		ć	Н	N		
5a	63	(A)	68-70	(0.04)	$1640^{a)}$	6.50	$C_6H_7NOS^{b)}$	_				
5b	67	(A)	100-102		$1650^{a)}$	6.48	$C_7H_9NOS^{b)}$		_	_		
5c	60	(A)	100-105		$1640^{a)}$	6.47	$C_8H_{11}NOS^{b)}$					
5d	52	(A)	51-52	$(Et_2O)^{c)}$	1640	6.47	$C_8H_{11}NOS$	56.77	6.55	8.28		
		` ,		, - /				(56,48)	6.48	8.58)		
5e	71	(A)	70	(0.04)	$1650^{a)}$	6.40	C ₉ H ₁₃ NOS	58.98	7.15	$7.64^{'}$		
		(/		(*****)		5,15	0322132 (0 0	(59.08	7.04	7.37)		
5f	72	(A)	125—126	(AcOEt)	1640	6.53	C ₁₁ H ₉ NOS	64.95	4.46	6.89		
		()		()	2010	0.00	0112292.00	(65.25	4.37	6.62)		
5g	60	(A)	8384	(Et ₂ O)	1645	6.58	$C_{12}H_{11}NOS$	66.33	5.10	6.45		
~ B	• •	()		(1120)	1010	0.00	Cizini	(66.59	5.12	6.27)		
5h	59	(A)	79—81	$(Et_2O-P.E.)^{d)}$	1640	6.63	$C_{13}H_{13}NOS$	67.50	5.67	6.06		
	00	()	01	(Bt20 1.B.)	1010	0.00	01311131100	(67.28	5.48	6.08)		
5i	64.5	(A)	122-123	(AcOEt)	1640	6.63	C ₁₇ H ₁₃ NOS	73.09	4.69	5.01		
01	01.0	(11)	122 120	(ricobt)	1010	0.00	01/11/31/00	(73.31	4.59	4.91)		
5j	62	(A)	148—149	(acetone)	1635	6.83	C ₁₁ H ₈ BrNOS	46.83	2.86	4.96		
o,	02	(21)	140—143	(acetone)	1000	0.00	CIIII8DI NOS	(46.60	2.99	5.07)		
5k	58	(A)	45-47	(0.15)	1650^{a_0}	6.50	$C_7H_9NOS^{b)}$	(40.00	2.33	3.07)		
		(A)	120	(0.5)	1650^{a}	6.40	$C_8H_{11}NOS^{b)}$		_			
5m		(A)	60-63	(0.3)	1650^{a_0}	6.55	$C_{12}H_{11}NOS^{b)}$. —				
5n	73.5		204—205		1650	6.60	$C_{10}H_8N_2OS$	58.81	3.95	13.72		
JII	10.0	(D)	204200	(acetone)	1000	0.00	C101181\2OS	(58.85	4.01	13.66)		
5 0	42	(B)	143—145	(C-H-)	1640	6.61	$C_{10}H_8N_2OS$	58.81	3.95	13.72		
30	42	(D)	145-145	(C6116)	1040	0.01	C101181 \2 OS	(58.83	3.82	13.64)		
5p	48	(B)	113—114	(C.H.)	1650	6.63	$C_{10}H_8N_2OS$	58.81	3.95	13.72		
Эþ	40	(D)	110114	(C6116)	. 1000	0.03	C10118142OS	(58.80	3.73	13.72		
5q	68.5	(B)	107_108	$(C_6H_6-Et_2O)$	1660	6.60	$C_{11}H_{10}N_2OS$	60.53	4.62	12.83		
Jq	00.0	(D)	107—100	(C6116-1512O)	1000	0.00	C111110112OS	(60.61	4.02	12.72)		
5r	52	(B)	9495	$(C_6H_6-Et_2O)$	1650	6.62	$C_{11}H_{10}N_2OS$	60.53	4.62	12.83		
J 1	32	(D)	343 3	(C6116-1512O)	1000	0.02	C11111011203	(60.78	4.62	12.58)		
5s	41	(B)	62-64	(Et ₂ O)	1650	6.67	$C_{11}H_{10}N_2OS$	60.53	4.62	12.83		
US	TI	(D)	02-04	(LUO)	1000	0.07	C111110112US	(60.41	4.38	13.06)		
5t	46	(B)	117—118	(Ft _o O)	1640	6.63	$C_{16}H_{12}N_2OS$	68.55	4.31	9.99		
Ji	40	(D)	111-110	(11/20)	1040	0.03	C161112112US	(68.51	4.26	9.65)		
5u	44	(B)	114_115	(CH ₂ Cl ₂ -Et ₂ O) 1645	6.63	$C_{16}H_{12}N_2OS$	68.55	4.20	9.99		
Ju	77	(D)	114-113	(0112012-15120	, 1040	0.03	C1611121N2US	(68.82	4.26	9.78)		
5v	58.5	(B)	117112	$(C_6H_6-Et_2O)$	1650	6.66	$C_{16}H_{12}N_2OS$	68.55	4.20	9.99		
3 v	00.0	(\mathbf{D})	117—110	(C6116-E12O)	1000	0.00	C161112112US	(68.26	4.49	10.12)		
6d	63	(A)	153—155	(C.H.)	1650	$5.80^{e)}$	C ₈ H ₁₁ NOS	56.77	6.55	8.28		
ou	UJ	(A)	100100	(06116)	1000	0.00	C8H11NUS	(56.79	6.53	6.26 7.99)		
6w	73	(A)	160—161	(C.H.)	1660	5.80′)	$C_{12}H_{11}NOS$	66.33	5.10	6.45		
OW	13	(A)	100—101	(06116)	1000	0.00	C12H11NUS	(66.62	5.04	6.23)		
								(00.02	J.U4	U.ZJ)		

a) Taken neat.

ammonia leading to the corresponding pyrimidin-4-one derivatives (7) in high yields. The experimental data are summarized in Table III.

Hydrolysis: Ring-opening Reaction

2-Alkyl-1,3-thiazine derivatives (5a-e, k-m, 6d, w) were found to be hydrolyzed under mild conditions into ring-opened compounds, N-acyl- β -mercaptocrotonamides (8). Thus, 5a

b) These compounds readily underwent dimerization on being allowed to stand at room temperature, and their formulae were obtained by mass spectroscopy.
c) 5d was obtained by recrystallization in a freezer.

d) P.E.=petroleum ether.

Other signals; 1.73 (6H,s,(CH_3)₂C=C), 2.07 (3H,s, CH_3), and 8.00(1H,br,NH).

In CDCl₃-DMSO-d₆ (10:1). Other signals; 2.07 (3H,s,CH₃), 6.06 (1H,s,PhCH=C),7.1—7.3(5H,m,C₆H₅), and 9.83(1H,br,NH).

Chart 2

TABLE III. 2,6-Disubstituted Pyrimidin-4-ones (7a—f)

C	\mathbb{R}^1	\mathbb{R}^2	Yield	mp (°C)	Lit. mp (°C)	IR (KBr)	¹H-NMR (CDCl ₃) δ		
Compd.	K	K	(%)	(Solvent)	or formula	cm ⁻¹	5-H	$NH^{a)}$	
7a	Me	Me	77.5	197—198 (Acetone)	195—195.5 ⁴⁾	1660	6.13	13.56	
7b	iso-Pr	Me	79	173—175 (Acetone)	172—1734)	1680	6.13	12.33	
7c	Ph	Me	76	216—218 (Acetone)	214—215 ⁴⁾	1660	6.13	13.70	
7d	Ph	Et	80	168-169 (Et ₂ O)	$C_{12}H_{12}N_2O$	1655	6.28	13.10	
7 e	Ph	PhCH ₂	74	178-180.5 (C ₆ H ₆)	$C_{17}H_{14}N_2O$	1650	6.13	12.93	
7 f	2-Py	Me	72	101-102 (C ₆ H ₆)	96—97 ⁵⁾	1685 1660	6.33	11.70	

a) Exchageable with deuterium oxide.

in acetone-water (1:1) solution was allowed to stand at room temperature for 30 min to give N-acetyl- β -mercaptocrotonamide (8a). The other 2-alkyl-1,3-thiazines (5b—e, k, m, 6w) were similarly hydrolyzed. The results obtained are shown in Table IV. Prolongation of the reaction time caused further hydrolysis to yield N-acylacetylcarboxamide (1) accompanied with loss of H_2S . In contrast, the 1,3-thiazines (5f—j, n—v) possessing an aryl group such as phenyl or pyridyl at the 2-position were not affected under such conditions, even under reflux.

Recyclization of 8 took place very easily on successive treatment with 70% HClO₄ and sodium carbonate solution to give the corresponding 1,3-thiazines 5 in high yields.

or
$$R^3$$
 R^2 R^2 R^3 R^4 R^4 R^4 R^4 R^2 R^4 R^4 R^2 R^4 R^4 R^2 R^4 R

Reduction of 5 with NaBH₄ or LiAlH₄ to 3,4-Dihydro-1,3-thiazin-4-ones (9)

Reductions of 1,3-thiazin-4-ones 5 with sodium borohydride (NaBH₄) and lithium aluminum hydride (LiAlH₄) were carried out. In both cases, only the C=N double bond on the 1,3-thiazine ring was reduced to afford 3,4-dihydro-2*H*-1,3-thiazin-4-one derivatives 9 in good yields. Compound 9 was also obtained as a sole product, even when 5 was treated with excess LiAlH₄ in tetrahydrofuran (THF) under reflux. Table V summarizes the results of the reduction of 5 and 6 with NaBH₄.

1 ABLE 1V. N-Acyl-β-mercaptocrotonamide Derivatives (8a—h)									
Compd.	\mathbb{R}^1	R ²	Yield (%)	mp (°C)	IR (KBr)	¹ H-NMR (CDCl ₃) δ			
	N.			(Solvent)	cm ⁻¹	SH ^{a)}	CH=C	NH ^{a)}	
8a	Me	Me	63	99	1710 (sh)	5.80	6.43	9.50	
8b	Et	Me	60	(Hexane) 98—99 (Hexane)	1660 1710 (sh) 1660	5.77	6.57	9.16	
8c	n-Pr	Me	66	92—92.5 (Hexane)	1700 (sh) 1660	5.80	6.60	9.20	
8d	iso-Pr	Me	72	83—84 (Hexane)	1720 1650	5.73	6.87	9.33	
8e	tert-Bu	Me	67	122—123 (Hexane)	1720 1650	5.93	7.20	7.87	
8f	PhCH ₂	Me	78	114—115 (Et ₂ O)	1730 1660	5.80	7.23	8.33	
8g	Me	Et	62	76—77 (Hexane)	1710 1660	6.13	6.47	9.30	
8h	Me	PhCH ₂	75	118—120 (Et ₂ O)	1730 1660	5.67	6.47	9.37	

TABLE IV. N-Acyl- β -mercaptocrotonamide Derivatives (8a-h)

Structural determination of 9 was accomplished on the basis of the spectral and analytical evidence. In the 1 H-NMR spectra of 9, characteristic signals due to the proton at the 5-position on the 1,3-thiazine ring were observed at δ 5.9—6.0.

TABLE V. 3,4-Dihydro-2*H*-1,3-thiazin-4-ones (**9a-h**)

Comnd	\mathbb{R}^1	\mathbb{R}^2	Yield (%)	mp (°C)	IR (KBr)	¹ H-NMR (CDCl ₃) δ		
Compd.	K.	K		(Solvent)	cm ⁻¹	2-H	5-H	NH ^{a)}
9a	Me	Me	72	132—134 (Et ₂ O)	1680 1660	4.93	5.90	7.43
9b	Me	Et	69	83—84 (Et ₂ O)	1660 1650	4.95	5.95	7.80
9c	PhCH ₂	Me	75	179—180 (Acetone)	1660	5.03	5.93	6.70
9d	Ph	Me	80	166—168 (C ₆ H ₆ ·Et ₂ O)	1660	5.93	6.00	6.35
9e	Ph	PhCH ₂	83	175-176 (C ₆ H ₆)	1655	4.95	5.95	7.80
9f	2-Py	Me	79	135-136 (C ₆ H ₆)	1645	6.10	6.03	7.30
9g	3-Py	Et	78	133-134.5 (C ₆ H ₆)	1650	5.95	6.00	7.76
9h	4-Py	Et	81	159—160 (C ₆ H ₆)	1650	5.80	5.95	8.10

a) Exchangeable with deuterium oxide.

a) Exchangeable with deuterium oxide.

Experimental

Melting points were obtained in a Mel-Temp melting point apparatus with an open capillary tube, and are uncorrected. Infrared (IR) spectra were taken on a Shimadzu IR-400 or IR-430 spectrometer. $^1\text{H-NMR}$ spectra were measured on a JEOL JNM-PMX 60 instrument. Chemical shifts are reported in δ values downfield relative to internal tetramethylsilane or sodium 2,2-dimethyl-2-silapentane-5-sulfonate. The following abbreviations are used: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, and br=broad.

1,3-Oxazinium Salt (3f)——A 70% HClO₄ solution (1.5 ml, 17.5 mmol) was added dropwise to an ice-cooled solution of N-acetoacetylbenzamide (1f, 3 g, 15 mmol) and acetic anhydride (14 g, 137 mmol) in CHCl₃ (30 ml) with stirring. After a few minutes, 4-hydroxy-6-methyl-2-phenyl-1,3-oxazinium perchlorate (3f, 3.5 g) separated out as a colorless powder. An attempt to purify 3f was unsuccessful, since 3f was highly sensitive to moisture and underwent hydrolysis to give the starting 1f. 3f was also obtained by similar treatment of 6-methyl-2-phenyl-4H-1,3-oxazin-4-one⁶) with 70% HClO₄. The ¹H-NMR spectrum (DMSO- d_6) of the crude 3f showed a three-proton singlet at δ 2.35 (CH₃), a one-proton singlet at δ 6.21 (C₍₅₎-H), and a five-proton multiplet at δ 7.3—8.5 (C₆H₅) together with the signals of contaminating 1f in a ratio of 3f: 1f=5·9

1,3-Thiazinium Salt (4f)——A 70% HClO₄ solution (1 ml, 11.7 mmol) was added dropwise to an ice-cooled solution of 1f (2 g, 10 mmol) and acetic anhydride (5 g, 49 mmol) in CHCl₃ (20 ml) with stirring. H₂S was passed into the reaction mixture for 30 min at room temperature. The yellow precipitate was collected and recrystallized from acetonitrile to give 4f (2.3 g, 76%), mp 135—140°C (dec.). The salt 4f was also prepared by a similar treatment of 3f with H₂S. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 3000, 1590. ¹H-NMR (DMSO- d_6) δ : 2.43 (3H, s, CH₃), 6.63 (1H, s, C₍₅₎—H), 7.4—8.1 (5H, m, C₆H₅). Anal. Calcd for C₁₁H₉NOS·HClO₄ (4f): C, 43.50; H, 3.30; N, 4.61. Found: C, 43.91; H, 3.59; N, 4.43. As the analytical result was not satisfactory, 4-hydroxy-6-methyl-2-phenyl-1,3-thiazinium chlorosulfonate (4"f), mp 138—142°C (dec.) (CH₃CN), was likewise prepared from 1f and H₂S by using chlorosulfonic acid instead of 70% HClO₄ and acetic anhydride. Anal. Calcd for C₁₁H₉NOS·ClSO₃H (4"f): C, 41.32; H, 2.82; N, 4.38. Found: C, 41.39; H, 2.62; N, 4.44. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 3000, 1590. ¹H-NMR (DMSO- d_6) δ : 2.40 (3H, s, CH₃), 6.68 (1H, s, C₍₅₎—H), 7.5—8.1 (5H, m, C₆H₅).

General Procedure for Synthesis of 5—Method A: A 70% $\rm HClO_4$ solution (1 ml, 11.7 mmol) was added dropwise to an ice-cooled solution of N-acylacetylcarboxamide (1, 10 mmol) and acetic anhydride (5 g, 49 mmol) in $\rm CHCl_3$ (70 ml) with stirring. After completion of the addition, the cooling bath was removed and stirring was continued for 30 min at room temperature. Subsequently, $\rm H_2S$ was passed into the reaction mixture for 30 min at room temperature. The resulting mixture was treated with saturated sodium carbonate ($\rm Na_2CO_3$) solution and extracted with $\rm CHCl_3$. The $\rm CHCl_3$ layer was washed with water, dried over anhydrous potassium carbonate ($\rm K_2CO_3$), and concentrated under reduced pressure. The resultant product was purified either by distillation or by recrystallization from the solvent indicated in Table II.

Method B: A typical procedure for 5n-v in Table II was as follows. A solution of FSO_3H (1.1 g, 11 mmol) in $CHCl_3$ (70 ml) was added dropwise to an ice-salt cooled solution of N-propionylacetylnicotinamide (1r, 1.1 g, 5 mmol) with stirring. After completion of the addition, stirring was continued for 30 min at room temperature. H_2S was passed into the reaction mixture. The resulting solution was worked up by the procedure described above for method A. The crude product 5 was purified by recrystallization from the solvent indicated in Table II.

Ammonolysis into 2,6-Disubstituted Pyrimidin-4-ones (7)—A solution of 5 (5 mmol) or 6 (5 mmol) in ethanolic ammonia (10 ml of 95% ethanol and 10 ml of 28% ammonia aqueous solution) was heated for 20 min under reflux. A further 10 ml of 28% ammonia solution was added and heating was continued for another 20 min under reflux. The reaction mixture was concentrated under an aspirator-generated vacuum, followed by extraction with CHCl₃. The CHCl₃ layer was dried over K_2CO_3 , filtered, and concentrated under reduced pressure. Recrystallization of the remaining crude product 7 was carried out from the solvent shown in Table III.

Hydrolysis of 5 and 6: Ring-opening Reaction——A solution of 5 (2 mmol) or 6 (2 mmol) in 10 ml of acetone-water (1:1) was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure. The residue was extracted with CHCl₃. The CHCl₃ layer was dried over anhydrous sodium sulfate, filtered, and then concentrated, to give crude 8, which was purified by recrystallization from the solvent shown in Table IV.

Treatment of a solution of 8 and acetic anhydride in CHCl₃ with 70% HClO₄, followed by saturated Na₂CO₃ solution afforded the corresponding 5 or 6 in high yields.

Reduction of 5 and 6 to 3,4-Dihydro-2H-1,3-thiazin-4-one (9)—a) A solution of 5 (1 mmol) or 6 (1 mmol) in methanol (5 ml) was added dropwise to an ice-cooled solution of NaBH₄ (0.02 g, 0.53 mmol) in methanol (10 ml) with stirring. The reaction mixture was stirred for 1 h at room temperature, concentrated under reduced pressure, and then extracted with CHCl₃. The CHCl₃ layer was dried over K_2CO_3 , filtered, and concentrated. The residue 9 was purified by recrystallization from the solvent indicated in Table V.

Experimental data are summarized in Table V.

b) A solution of LiAlH₄ (0.015 g, 0.4 mmol) and 5 (1 mmol) in THF (20 ml) was stirred for 30 min at room temperature. Water (30 ml) was added. The reaction mixture was concentrated under an aspirator-generated vacuum, followed by extraction with CHCl₃. The CHCl₃ layer was dried over K₂CO₃, filtered, and concentrated under reduced pressure to give crude 9, which was purified by recrystallization from the solvent indicated in Table V. The yields were excellent.

TABLE VI. Elemental Analysis Data for New Compounds (7d,e, 8a-h, 9a-h)

		Analysis (%)						
Compo	l. Formula	Calcd			Found			
		С	H	N	С	H	N	
7d	$C_{12}H_{12}N_2O$	71.98	6.04	13.99	72.20	6.31	14.11	
7e	$C_{17}H_{14}N_2O$	77.84	5.38	10.68	78.01	5.52	10.81	
8a	$C_6H_9NO_2S$	45.26	5.70	8.80	45.20	5.65	8.77	
8b	$C_7H_{11}NO_2S$	48.53	6.40	8.09	48.55	6.37	8.07	
8c	$C_8H_{13}NO_2S$	51.31	7.00	7.48	51.37	7.11	7.22	
8d .	$C_8H_{13}NO_2S$	51.31	7.00	7.48	51.50	7.10	7.77	
8e	$C_9H_{15}NO_2S$	53.70	7.51	6.96	53.41	7.20	7.00	
8f	$C_{12}H_{13}NO_2S$	61.26	5.57	5.95	61.22	5.68	6.14	
8g	$C_7H_{11}NO_2S$	48.53	6.40	8.09	48.62	6.69	7.90	
8h	$C_{12}H_{13}NO_2S$	61.26	5.57	5.95	61.56	5.75	5.93	
9a	C ₆ H ₉ NOS	50.33	6.34	9.78	50.60	6.61	10.01	
9b	$C_7H_{11}NOS$	53.47	7.05	8.91	53.16	7.23	9.03	
9c	$C_{12}H_{13}NOS$	65.72	5.98	6.39	65.67	5.95	6.30	
9d	$C_{11}H_{11}NOS$	64.36	5.40	6.82	64.64	5.35	6.69	
9e	$C_{17}H_{15}NOS$	72.59	5.37	4.98	72.90	5.39	4.74	
9f	$C_{10}H_{10}N_2OS$	58.23	4.89	13.58	58.50	4.85	13.59	
9g	$C_{11}H_{12}N_2OS$	59.98	5.45	12.72	59.67	5.41	12.48	
9h	$C_{11}H_{12}N_2OS$	59.98	5.45	12.72	60.06	5.44	12.45	

Acknowledgement The authors wish to express their gratitude to Prof. T. Kato, Pharmaceutical Institute, Tohoku University, for his kind advice and encouragement. They are also grateful to Drs. M. Kikuchi and S. Suzuki of this College for mass spectral measurements.

References

- 1) Y. Yamamoto, S. Ohnishi, and Y. Azuma, Chem. Pharm. Bull., 30, 3505 (1982).
- 2) Y. Yamamoto, Y. Azuma, and S. Ohnishi, Heterocycles, 15, 851 (1981).
- 3) Y. Yamamoto, S. Ohnishi, R. Moroi, and A. Yoshida, Chem. Pharm. Bull., 31, 1936 (1983).
- 4) T. Kato, H. Yamanaka, and T. Shibata, Yakugaku Zasshi, 87, 955 (1967).
- 5) T. Kato and M. Kondo, Chem. Pharm. Bull., 24, 356 (1976).
- 6) Y. Yamamoto, Y. Azuma, and K. Miyakawa, Chem. Pharm. Bull., 26, 1825 (1978).