Chem. Pharm. Bull. 31(8)2540—2551(1983)

Synthesis of Imidazo[1,5-a]pyrimidines¹⁾

Nobuya Katagiri, Shugo Atsuumi, and Tetsuzo Kato*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

(Received December 16, 1982)

The synthesis of imidazo[1,5-a]pyrimidines from 2-substituted pyrimidin-4(3H)-ones is described. 2-[(Acylamino)methyl]-6-methylpyrimidin-4-(3H)-ones, prepared by the reaction of β -aminocrotonamide with N-acylated amino acid esters, were treated with POCl₃ to give 2- and 4-chloroimidazo[1,5-a]pyrimidines, which reacted with various nucleophiles to afford 2- and 4-substituted imidazo[1,5-a]pyrimidines.

Keywords—pyrimidin-4(3*H*)-one; phosphorus oxychloride; cyclization; imidazo[1,5-*a*]-pyrimidine; purine analogue; rearrangement; nucleophilic substitution; ¹H-NMR

In the preceding paper, we reported the reaction of β -aminocrotonamide (1) with N-acylated amino acid esters (2) to give 2-acylaminomethyl-6-methylpyrimidin-4(3H)-ones (3) which, on treatment with polyphosphoric acid (PPA), cyclize to imidazo[1,5-a]pyrimidines (4) and imidazo[4,5-b]pyridines (5).²⁾ In the present paper, we describe the cyclization of 3 with POCl₃ to give 2- and 4-chloroimidazo[1,5-a]pyrimidines, and their reactions with various nucleophiles.

$$\begin{array}{c}
NH_2 O \\
Me
\end{array}$$

$$\begin{array}{c}
NH_2 O \\
NH_2
\end{array}$$

$$\begin{array}{c}
NH_2 O \\
NH_2
\end{array}$$

$$\begin{array}{c}
NH O \\
NHCOR^2
\end{array}$$

$$\begin{array}{c}
Aa-i
\end{array}$$

$$\begin{array}{c}
Aa-i
\end{array}$$

$$3\mathbf{a} - \mathbf{c} \xrightarrow{PPA} Me \xrightarrow{N} N \qquad + Me \xrightarrow{N} N R^{2}$$

$$4\mathbf{a}, \mathbf{b} \qquad 5\mathbf{a} - \mathbf{c}$$

Chart 1

When 2-acetamidomethyl-6-methylpyrimidin-4(3*H*)-one (3a) was heated with POCl₃ at 90 °C for 1.5 h, 2-chloro-4,6-dimethylimidazo[1,5-a]pyrimidine (8a) was obtained in 73% yield. On the other hand, the 4-pyrimidinone 3b was heated with POCl₃ at 90 °C for 2 min to give the pyrimidine 6b, 4-chloro-6-isopropyl-2-methylimidazo[1,5-a]pyrimidine (7b), and 2-chloro-6-isopropyl-4-methylimidazo[1,5-a]pyrimidine (8b) in 31, 4, and 37% yields, respectively. Prolonged heating of 3b at the same temperature gave exclusively 8b in 71% yield. Similarly, treatment of 4-pyrimidinones (3c—i) with POCl₃ gave pyrimidines (6c, e, g, i), and 4-chloro (7c—i), and 2-chloro (8c—i) derivatives. The results are summarized in Table I.

As shown in Chart 2, compounds 7 and 8 are presumably formed *via* the pyrimidine 6. In fact, when compound 6b was heated with POCl₃ at 90 °C for 1.5 h, 7b and 8b were obtained in 11 and 88% yields, respectively. Heating of 7b with POCl₃ gave 8b in 65% yield, indicating

the occurrence of ring transformation of 7b to 8b.

On the other hand, $4a^2$) was heated in POCl₃ at 90 °C for 10 h to give the 4-chloro compound 7a and the 2-chloro compound 8a in 59 and 10% yields, respectively. Compound 4b was also treated with POCl₃ at 90 °C for 40 min to give 7b as a sole product in 51% yield. Prolonged heating of 4b at the same temperature gave 7b and 8b in 22 and 47% yields, respectively. Heating of 4b for 18 h gave 8b in 67% yield (Table II). These chemical reactions also support the rearrangement of 7 to 8.

TABLE I. Ring Closure of 4-Pyrimidinones (3a—i) with POCl₃a)

	n 1	D 2	Reaction		Yield (%)	
3	R¹	R ²	time (h)	6	7	8
а	Н	Me	1.5	0	0	73
b	Н	CHMe ₂	2 (min) 3.5	31 0	4 0	37 71
c	Н	Ph	0.5 9	36 0	3 2	34 73
d	Me	Me	2 (min) 20	0 0	12 18	64 74
e	Me	Ph	5 (min) 7	75 0	4 9	18 80
f	CH ₂ Ph	Me	20 (min) 15	0 0	12 16	40 50
g	CH_2Ph	Ph	5 (min) 6	67 0	1 8	10 72
h	CH ₂ CHMe ₂	Me	5 (min) 2.5	0 0	16 16	73 75
i	CH ₂ CHMe ₂	Ph	5 (min) 7	73 0	4 14	11 81

a) Each reaction was carried out at 90 °C.

TABLE II. Chlorination of 6-Substituted
2-Methylimidazo[1,5-a]pyrimidin-4(1H)-
ones (4a,b) with POCl ₃

	D.	Reaction	Yield	i (%)
4	R	time (h)	7	8
a	Me	10	59	10
b	CHMe ₂	40 (min) 5 18	51 22 —	47 67

The mechanism of the transformation of 7 to 8 may be as illustrated in Chart 3; *i.e.*, the electron-rich nitrogen $(N_7)^{3}$ reacts with POCl₃ to give an intermediate B via A. Bond cleavage between the nitrogen (N_5) and carbon (C_6) of B would give rise to C. The next stage might well involve recyclization to an intermediate D. Elimination of POCl₃ from D gives 8.

The physical properties of 2-substituted 4-chloro-6-methylpyrimidines (**6b**, **c**, **e**, **g**, **i**), and 4-chloro-2-methyl-(**7b**—**i**), and 2-chloro-4-methylimidazo[1,5-a]pyrimidines (**8a**—**i**) are shown in Tables III, IV, and V. In the ¹H-NMR spectrum of **7** the signal due to the methyl protons at the 2-position was observed at 2.37—2.50 ppm, whereas the ¹H-NMR spectra of **8a**, **b**, **d**, **f**, **h** showed the signal due to the methyl protons of 4-position at lower field (2.66—2.82 ppm) because of the effect of the imidazole ring. In contrast, owing to the shielding effect of the benzene ring at the 6-position, the methyl protons at the 4-position of **8c**, **e**, **g**, **i** were observed at higher field (2.07—2.14 ppm).

Next, reactions of 7 and 8 with various nucleophiles were carried out. When the 4-chloro compounds 7b and 7d were allowed to react with sodium methoxide in abs. methanol at room temperature for 5 min, the 4-methoxy compounds 9b and 9d were obtained in 34 and 76% yields, respectively. On the other hand, the 2-chloro compounds 8a—d reacted with sodium methoxide at room temperature for 12—24h to give the corresponding 2-methoxy compounds 12a—d. Compounds 12b and 12d were also obtained by treatment of 8b and 8d, respectively, with 10% methanolic sodium hydroxide.

Table III. 2-Substituted 4-Chloro-6-methylpyrimidines (6b, c, e, g, i)

								Approximate the second				
	, a	D 2	(J ₀) uu	mertics tourned (Oo) am	Solvent for	¹ H-NMR (CDCl ₃) δ	(CDCl ₃) δ	Formula		Analysis (%) Calcd (Found)	is (%) Found)	
•	4	4	() dim	New yor solvent	column chromatography	9М-9	S-H		C	Н	CI	Z
٩	Н	CHMe ₂	CHMe ₂ 108—109	Hexane	Chloroform	2.52	7.11	$C_{10}H_{14}CIN_3O$	52.75 (52.88	6.20	15.57 15.81	18.45
ပ	н	Ph	128—129	Ether	Hexane-ethyl acetate (10:1)	2.52	7.10	$C_{13}H_{12}CIN_3O$	59.66 (59.80	4.62	13.55	16.06
Ð	Me	Ph	140142	Hexane	Hexane-ethyl acetate (20:1)	2.54	7.12	$C_{14}H_{14}CIN_3O$	60.98 (61.01	5.12 5.11	12.86	15.24 15.13)
50	$\mathrm{CH_2Ph}$	Ph	138—140	138140 Benzene-hexane	Hexane-ethyl acetate (15:1)	2.45	(a)	$C_{20}H_{18}CIN_3O$	68.28 (68.40	5.16	10.08	11.94
4 panel	CH2CHMe2	Ph	156—158	Benzene	Hexane-ethyl acetate (10:1)	2.51	7.06	$C_{17}H_{20}CIN_3O$	64.25 (64.35	6.34	11.16	13.22

a) The signal could not be distinguished because of overlapping with signals due to benzene ring protons.

TABLE IV. 4-Chloro-2-methylimidazo[1,5-a]pyrimidines (7a—i)

					The second secon							
, ,	R1	${f R}^2$	mp (°C)	Recryst. solvent	Solvent for	¹ H-NMR	¹ H-NMR (CDCl ₃) δ	Formula		Analysis (%) Calcd (Found)	is (%) Found)	
	e de la constante de la consta				column cmomatograpny	2-Me	3-Н		С	Н	Cl	z
æ	Ħ	Me	191—192	Ethyl acetate	Hexane-ethyl acetate (4:1)	2.37	6.23	C ₈ H ₈ ClN ₃	52.90 (53.01	4.44	19.52 19.35	23.14 23.38)
٩	ш	$CHMe_2$	73—74	Hexane	Chloroform	2.43	6.47	$C_{10}H_{12}CIN_3$	<i>57.28</i> (<i>57.54</i>	5.77	16.91 16.97	20.04 19.78)
ပ	н	Ph	125—126	Hexane	Hexane-ethyl acetate ^{a)} (20:1)	2.50	6.50	C ₁₃ H ₁₀ ClN ₃	64.07 (64.21	4.14	14.55 14.51	17.24 17.29)
7	Me	Me	116—117	Hexane	Hexane-ethyl acetate (3:1)	2.40	6.30	C ₉ H ₁₀ ClN ₃	55.25 (55.31	5.15	18.12 18.03	21.48 21.50)
Ð	Me	Pħ	105—108	Petroleum ether	Hexane-ethyl acetate (10:1)	2.50	6.46	C ₁₄ H ₁₂ ClN ₃	65.25 (65.38	4.69	13.76 13.86	16.30
Speci	CH ₂ Ph	Me	130—132	Hexane	Hexane-ethyl acetate (4:1)	2.44	6.34	$C_{15}H_{14}CIN_3$	66.30	5.19	13.05	15.46 15.42)
50	$\mathrm{CH_2Ph}$	Ph	140—141	Petroleum ether	Hexane-ether ^{a)} $(15:1)$	2.47	6.41	$C_{20}H_{16}CIN_3$	71.96 (71.69	4.83 5.14	10.62	12.59
£	CH ₂ CHMe ₂	Me	69—99	Petroleum ether	Hexane-ethyl acetate (4:1)	2.40	6.32	$C_{12}H_{16}CIN_3$	60.63	6.78	14.91 14.80	17.68
• 1000	CH ₂ CHMe ₂	Ph	105—108	Hexane	Hexane-ether ^{a)} (10:1)	2.48	6.40	$C_{17}H_{18}CIN_3$	68.11 (67.91	6.05	11.83	14.02 14.49)

a) Alumina column chromatography.

TABLE V. 2-Chloro-4-methylimidazo[1,5-a]pyrimidines (8a—i)

	Ē	D 2	S S	D comment	Solvent for	¹ H-NMR (CDCl ₃) δ	(CDCl ₃) δ	Formula		Analysis (%) Calcd (Found)	is (%) Found)	
x	½	¥	() dur	Reciyst. solveint	column chromatography	4-Me	3-Н		C	H	CI	z
ল	H	Me	186—188	Benzene		2.77	6.20	C ₈ H ₈ ClN ₃	52.90 (52.84	4.44	19.52 19.55	23.14 23.04)
q	Н	CHMe2	68—88	Hexane	Chloroform	2.82	6.22	$C_{10}H_{12}ClN_3$	57.28 (57.16	5.77	16.91	20.04 20.07)
၁	Н	Ph	189—190	Benzene	Hexane-ethyl acetate (10:1)	2.14	6.27	$C_{13}H_{10}ClN_3$	64.07 (64.12	4.14	14.55	17.24 17.06)
ਰ	Me	Me	151—152	Ether	Hexane-ethyl acetate (3:1)	2.72	6.10	$C_9H_{10}CIN_3$	55.25 (55.48	5.15	18.12	21.48 21.61)
e	Me	Ph	118—120	Hexane-ether	Hexane–ethyl acetate (10:1)	2.12	6.23	$C_{14}H_{12}CIN_3$	65.25 (65.53	4.69	13.76	16.30
-	CH_2Ph	Me	115—116	Hexane	Hexane-ethyl acetate (4:1)	2.66	6.07	$C_{15}H_{14}CIN_3$	66.30 (66.34	5.19	13.05	15.46 15.53)
50	CH_2Ph	Ph	99—102	Petroleum ether	Hexane-ether ^{a)} $(15:1)$	2.07	6.20	$C_{20}H_{16}CIN_3$	71.96 (71.89	4.83 5.08	10.62	12.59
	CH ₂ CHMe ₂	Me	83—84	Petroleum ether	Hexane-ethyl acetate (4:1)	2.73	6.13	$C_{12}H_{16}CIN_3$	60.63	6.78	14.91 14.80	17.68
•==	$\mathrm{CH_2CHMe_2}$	Ph	57—58	Acetone-water	Hexane-ether ^{a)} $(10:1)$	2.12	6.23	$C_{17}H_{18}CIN_3$	68.11 (67.93	6.05	11.83	14.02

a) Alumina column chromatography.

Therefore, the 4-chloro compound 7 seems to be more reactive than the 2-chloro compound 8, and such reactivity was also observed in the reactions with other nucleophiles. Namely, the 4-chloro compound 7d reacted with piperidine and morpholine at room temperature for 20 h to give the 4-piperidino (10d) and 4-morpholino (11d) derivatives in 89 and 87% yields, respectively. However, the 2-chloro compounds 8a, c, d did not react with piperidine or morpholine at room temperature, but reacted at 90 °C for 0.5—3 h to give the corresponding 2-piperidino (13a, c, d) or 2-morpholino (14a, c, d) derivatives. The results are summarized in Table VII.

Chart 4

Treatment of 8a—d with 10% hydrochloric acid in p-dioxane gave 4-methylimidazo-[1,5-a]pyrimidin-2-ones (15a—d). Compounds 15c, d were also obtained by refluxing 8c, d in 10% hydrochloric acid. The results are summarized in Table VIII. Dechlorination of 16c and 16d with hydrazine hydrate in the presence of Pd-C gave imidazo[1,5-a]pyrimidines 16c and 16d in 76 and 65% yields, respectively. Lastly, 8a reacted with sodium azide in hexamethylphosphoramide (HMPA) to give the tricyclic compound 17a.

Although a number of purine analogues have been synthesized, few references are available concerning the synthesis of imidazo[1,5-a]pyrimidines.³⁻⁵⁾ All these compounds have been synthesized from imidazole derivatives. The advantage of our method is that appropriate substituents can be introduced at the 6- and 8-positions of imidazo[1,5-a]-

TABLE VI. 4 (or 2)-Methoxy-2 (or 4)-methylimidazo[1,5-a]pyrimidines (9, 12)

						V-H ₁	¹ H-NMR (CDCl ₃) δ	δ		An	Analysis (%)	्र र
Compd	R1	\mathbb{R}^2	Yield (%) mp (°C)	mp (°C)	Appearance		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Formula	Can	100 I) D	(n)
: dimo	4	:			(Recryst. solvent)	2-Me (or 4-Me)	4-OMe (or 2-OMe)	3-Н		C	н	z
96	H	CHMe ₂ 34	34	80—81	Coloriess leaves (Hexane)	2.42	4.04	5.60	C ₁₁ H ₁₅ N ₃ O	64.37 (64.36	7.37	20.47 20.32)
25	Me	Me	92	133—134	Colorless needles (Hexane)	2.40	3.97	5.43	$C_{10}H_{13}N_3O$	62.80 (62.96	6.85	21.98 21.93)
12a	Н	Me	72	159—160	Colorless needles (Benzene)	2.68	3.90	5.83	$C_9H_{11}N_3O$	61.00 (60.83	6.26	23.71 23.52)
12b	Н	$CHMe_2$	82 (54) ^{a)}	95—96	Colorless needles (Hexane)	2.72	3.90	5.88	$C_{11}H_{15}N_3O$	64.37	7.37	20.47 20.58)
12c	Н	Ph	74	154—156	Pale yellow prisms (Ether)	2.08	3.95	5.90	$C_{14}H_{13}N_3O$	70.28 (70.46	5.48	17.56 17.60)
12d	Me	Me	89 (78) ^{a)}	87—88	Pale yellow needles (Hexane)	2.63	3.92	5.73	$C_{10}H_{13}N_3O$	62.80	6.85	21.98 21.74)

a) 10% NaOH-MeOH.

TABLE VII. 2 (or 4)-Methyl-4 (or 2)-piperidino (or morpholino)imidazo[1,5-a]pyrimidines (10d, 11d, 13a, c, d, 14a, c, d)

	e de la company				V	¹ H-NMR (CDCl ₃) δ	SDCI ₃) δ		An	Analysis (%)	C
Compd.	\mathbb{R}^1	\mathbb{R}^2	Yield (%)	mp (°C)	Appearance (Recryst, solvent)	2-Me	;	Formula		Ino.J) n	(p)
						(or 4-Me)	3-H		C	Н	z
10d	Me	Me	68	109—112	Yellow prisms (Hexane)	2.40	5.72	$\mathrm{C_{14}H_{20}N_4}$	68.82 (68.92	8.25	22.93 23.04)
11d	Me	Me	87	149—151	Yellow needles (Hexane)	2.42	5.78	$C_{13}H_{18}N_4O$	63.39 (63.45	7.37	22.75 22.64)
13a	Н	Me	29	133—135	Yellow needles (Benzene-hexane)	2.65	5.97	$\mathrm{C_{13}H_{18}N_4}$	67.79 (67.81	7.88	24.33 24.07)
13c	Н	Ph	75	182—184	Yellow needles (Ethyl acetate)	2.07	6.03	$\mathrm{C_{18}H_{20}N_4}$	73.94 (73.79	6.90	19.16 19.13)
13d	Me	Me	76	127—129	Yellow leaves (Hexane)	2.61	5.87	$\mathrm{C_{14}H_{20}N_4}$	68.82 (68.79	8.25	22.93 22.84)
14a	Н	Me	54	193—195	Orange needles (Methanol-ethyl acetate)	2.68	5.92	$C_{12}H_{16}N_{4}O$	62.05 (61.91	6.94	24.12 23.82)
14c	Н	Ph	82	202—205	Yellow needles (Benzene)	2.10	6.01	$C_{17}H_{18}N_4O$	69.37 (69.25	6.16	19.05 18.62)
14d	Me	Me	28	140—142	Yellow needles (Ether)	2.64	5.87	$\mathrm{C}_{13}\mathrm{H}_{18}\mathrm{N}_4\mathrm{O}$	63.39 (63.31	7.37	22.75

Table VIII. 6-Substituted 4-Methylimidazo[1,5-a]pyrimidin-2-ones (15a-d)

15 R ¹ R ² Yii		•	Appearance	- 1	¹ H-NMR (DMSO-d ₆) δ	(DMS	O-d ₆) δ		An	Analysis (%) Calcd (Found)	(pr
	Yield (%)	Yield (%) mp (°C)	nt)	IK (KBr) cm	4-Me 3-H 8-H	3-H	H-8	r Oi III ui a	C	С Н	z
	48	265—268 (dec.)	Orange needles (Methanol-ethyl acetate)	1680	2.64	5.70 6.28	6.28	C ₈ H ₉ N ₃ O	58.88	5.56	25.75 25.69)
b H CHMe ₂ 28	28	227—229 (dec.)	Orange needles (Ethyl acetate)	$1680^{b)}$	2.67	5.77	6.63 ^{d)}	$C_{10}H_{13}N_3O$	62.81	6.85	21.97 21.99)
c H Ph	33 (50) ^{a)}	258—259 (dec.)	Colorless needles (Ethyl acetate)	1685°	1.93	5.75 6.57	6.57	$C_{13}H_{11}N_3O$	69.32 (69.11	4.92	18.65
d Me Me	55 (66) ^{a)}	288—290 (dec.)	Pale yellow needles (Mec.) (Methanol-ethyl acetate)	1665	2.55	5.63		$C_9H_{11}N_3O$	61.00 (60.94	6.26	23.72 23.67)

d) CDCl₃.

c) Nujol.

b) CHCl₃.

a) 10% HCl only.

pyrimidines by using various N-acylated amino acid esters.

Experimental

Melting points are uncorrected. Infrared (IR) spectra were taken with a JASCO A-102 spectrophotometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a JEOL JNM PMX-60 spectrometer using tetramethylsilane as an internal standard.

General Procedure for the Ring Closure of 4-Pyrimidinones (3a—i) with $POCl_3$ —A suspension of 3 in $POCl_3$ (ten-fold excess) was heated at 90 °C for 2 min—20 h. After evaporation of excess $POCl_3$ under reduced pressure, the residue was poured into ice-water. The mixture was neutralized with K_2CO_3 , and extracted with $CHCl_3$. The $CHCl_3$ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel or alumina column chromatography to give the pyrimidine 6, and imidazo[1,5-a]pyrimidines 7 and 8.

Ring Closure of 4-Chloro-2-[(isobutyrylamino)methyl]-6-methylpyrimidine (6b) with POCl₃—A suspension of 6b (140 mg, 0.62 mmol) in POCl₃ (1.4 g) was heated at 90 °C for 2 h. After evaporation of excess POCl₃ under reduced pressure, the residue was poured into ice-water. The mixture was neutralized with K_2CO_3 , and extracted with CHCl₃. The CHCl₃ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a residue, which was subjected to silica gel column chromatography. Elution with CHCl₃ gave 7b (14 mg, 11%) and 8b (114 mg, 88%).

Conversion of 4-Chloroimidazo[1,5-a]pyrimidine (7b) to 2-Chloroimidazo[1,5-a]pyrimidine (8b)——A suspension of 7b (0.1 g) in POCl₃ (1 g) was heated at 90 °C for 50 h. After evaporation of excess POCl₃ under reduced pressure, the residue was poured into ice-water. The mixture was neutralized with K_2CO_3 , and extracted with CHCl₃. The CHCl₃ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a crystalline substance. Recrystallization from hexane gave 8b. Yield, 0.065 g (65%).

General Procedure for the Chlorination of 6-Substituted 2-Methylimidazo[1,5-a]pyrimidin-4(1H)-ones (4a, b) with $POCl_3$ —A suspension of 4 (0.5 g) in $POCl_3$ (5 g) was heated at 90 °C for 40 min—18 h. After evaporation of excess $POCl_3$ under reduced pressure, the residue was poured into ice-water. The mixture was neutralized with K_2CO_3 , and extracted with $CHCl_3$. The $CHCl_3$ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a residue. Purification by silica gel column chromatography gave the products 7 and 8. The results are summarized in Tables II, IV, and V.

General Procedure for the Synthesis of 4 (or 2)-Methoxy-2 (or 4)-methylimidazo[1,5-a]pyrimidines (9b, d, 12a—d)—1) Compound 7 (or 8) (0.01 mol) was dissolved in a solution of NaOMe-MeOH, prepared from Na (0.01 g atom) and abs. MeOH (40 ml). The solution was stirred at room temperature for 5 min (or 12—24 h). The reaction mixture was concentrated under reduced pressure to give a residue, which was dissolved in a small amount of water. The resulting solution was neutralized with 10% hydrochloric acid. The crystals precipitated were collected by suction, and recrystallized from an appropriate solvent to give the products 9 and 12.

2) A solution of 8 (0.01 mol) in MeOH (20 ml) and 10% aqueous NaOH was refluxed for 1—5 h. The reaction mixture was neutralized with 10% hydrochloric acid, and evaporated to dryness under reduced pressure. The residue was extracted with hot CHCl₃. The CHCl₃ extract was concentrated under reduced pressure to give a crystalline substance, which was recrystallized from an appropriate solvent to give the product 12.

2,6,8-Trimethyl-4-piperidino (and morpholino)imidazo[1,5-a]pyrimidines (10d, 11d)——A solution of 7d (0.1 g, 0.5 mmol) in piperidine (or morpholine) (3 ml) was allowed to stand at room temperature for 20 h. Excess piperidine (or morpholine) was evaporated off under reduced pressure to give a residue, to which was added a small amount of water. The mixture was extracted with CHCl₃. The CHCl₃ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a crystalline substance, which was recrystallized from hexane to give the products 10d and 11d.

General Procedure for the Synthesis of 6-Substituted 4-Methyl-2-piperidino (or Morpholino)imidazo[1,5-a]-pyrimidines (13a, c, d, 14a, c, d)—A solution of 8 (1 mmol) in piperidine (or morpholine) (3 ml) was heated at 90 °C for 0.5—3 h. Excess piperidine (or morpholine) was evaporated off under reduced pressure to give a residue, to which was added a small amount of water. The crystals precipitated were collected by suction, and recrystallized from an appropriate solvent to give the products 13 and 14. When crystals did not separate out, the mixture was extracted with CHCl₃. The CHCl₃ extract was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a crystalline substance. The results are summarized in Table VII.

General Procedure for the Synthesis of 6-Substituted 4-Methylimidazo[1,5-a]pyrimidin-2(1H)-ones (15a—d)—1) Hydrochloric acid (10%; 25 ml) was added to a solution of 8 (0.005 mol) in p-dioxane (20 ml). The mixture was refluxed for 2—6 h. The reaction mixture was neutralized with 10% aqueous NaOH solution, and evaporated under reduced pressure to give a residue, to which was added a small amount of water. The crystals precipitated were collected by suction, and recrystallized from an appropriate solvent to give the product 15. When crystals did not separate out, the mixture was extracted with CHCl₃. The results are summarized in Table VIII.

- 2) A suspension of **8c**, **d** (0.2 g) in 10% hydrochloric acid (5 ml) was refluxed for 0.5—3 h. The mixture was neutralized with 10% aqueous NaOH solution. The crystals precipitated were collected, and recrystallized from an appropriate solvent to give the product **15**.
- **4-Methyl-6-phenylimidazo[1,5-a]pyrimidine (16c)**—Pd-C (10%; 0.11 g) and 80% hydrazine hydrate (1.1 ml) were added to a solution of **8c** (0.2 g, 0.82 mmol) in ethanol (15 ml). The mixture was refluxed for 10 min with stirring. Pd-C was filtered off, and the filtrate was concentrated under reduced pressure to give a residue, to which was added water. The crystals precipitated were collected by suction. Recrystallization from CHCl₃-hexane gave the product **16c**, yellow needles, mp 150—151 °C. Yield, 0.13 g, (76%). IR (CHCl₃): 1608 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.17 (3H, s, ring-Me), 6.27 (1H, d, J = 4 Hz, ring-H), 7.45 (5H, s, phenyl-H), 7.68 (1H, s, ring-H), 8.00 (1H, d, J = 4 Hz, ring-H). *Anal*. Calcd for C₁₃N₁₁N₃: C, 74.62; H, 5.30; N, 20.08. Found: C, 74.57; H, 5.16; N, 20.07.
- **4,6,8-Trimethylimidazo[1,5-a]pyrimidine (16d)**—Following the procedure given for **16c**, **8d** (0.3 g, 1.5 mmol) was treated with a mixture of 10% Pd-C (0.2 g) and 80% hydrazine hydrate (2 ml) in ethanol (10 ml) to give the product **16d**, yellow needles (ether), mp 150—152 °C. Yield, 0.16 g (65%). ¹H-NMR (CDCl₃) δ : 2.55 (3H, s, ring-Me), 2.75 (3H, s, ring-Me), 2.92 (3H, s, ring-Me), 6.07 (1H, d, J = 4 Hz, ring-H), 7.76 (1H, d, J = 4 Hz, ring-H). *Anal*. Calcd for $C_9H_{11}N_3$: C, 67.05; H, 6.88; N, 26.07. Found: C, 66.85; H, 6.88; N, 25.84.
- 5,7-Dimethylimidazo[1,5-a]tetrazo[1,5-c]pyrimidine (17a) A mixture of 8a (0.6 g, 3.3 mmol) and NaN₃ (1.2 g, 18 mmol) in HMPA (40 ml) was warmed at 50 °C for 8 h. The reaction mixture was concentrated under reduced pressure to give a residue, to which was added water. The crystals precipitated were collected by suction. Recrystallization from CHCl₃ gave the product 17a, yellow needles, mp 214 °C (dec.). Yield, 0.18 g (30%). IR (KBr): $1650 \, \text{cm}^{-1}$. H-NMR (DMSO- d_6) δ : 2.89 (6H, s, ring-Me × 2), 7.16 (1H, s, ring-H), 7.61 (1H, s, ring-H). Anal. Calcd for $C_8H_8N_6 \cdot 1/5H_2O$: C, 50.10; H, 4.41; N, 43.82. Found: C, 50.46; H, 4.17; N, 43.40.

Acknowledgement A part of the expense of this work was defrayed by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, which is gratefully acknowledged. Thanks are also due to the staff of the Central Analyses Room of this institute for spectral measurements and elemental analyses.

References and Notes

- 1) A part of this work was reported as a communication: N. Katagiri, A. Koshihara, S. Atsuumi, and T. Kato, J. Org. Chem., 47, 167 (1982).
- 2) N. Katagiri, A. Koshihara, S. Atsuumi, and T. Kato, Chem. Pharm. Bull., 31, 2288 (1983).
- 3) P. Guerret, J.-L. Imbach, R. Jacquier, P. Martin, and G. Maury, Bull. Soc. Chim. Fr., 1971, 1031.
- 4) T. Novinson, D. E. O'Brien, and R. K. Robins, J. Heterocycl. Chem., 11, 873 (1974).
- 5) P. Guerret, R. Jacquier, and G. Maury, Bull. Soc. Chim. Fr., 1972, 2481.