Chem. Pharm. Bull. 32(1) 130—151 (1984)

Synthesis and β -Adrenergic Blocking Activity of 2-(N-Substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ol Derivatives

Katsumi Itoh,* Akio Miyake, Norio Tada, Minoru Hirata and Yoshikazu Oka

Central Research Division, Takeda Chemical Industries, Ltd., 2–17–85, Jusohonmachi, Yodogawa-ku, Osaka 532, Japan

(Received March 9, 1983)

In a search for a new structural type of β -adrenergic antagonist, a series of *trans*-2-(N-substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ol derivatives (3—36) was synthesized in several steps from 3,4-dihydro-1(2H)-naphthalenone (37) having a variety of substituents at the 5-, 6-, 7- and 8-positions. Compounds 3—36 were tested *in vitro* for β -adrenergic activity. Among them, 2-benzhydrylamino-6-chloro-1,2,3,4-tetrahydronaphthalen-1-ol (28c) was found to show a fairly potent β -adrenergic blocking activity.

Keywords— β -adrenergic blocker; β -adrenergic activity; phenylethanolamine derivative; conformationally restricted analog; 2-amino-1,2,3,4-tetrahydronaphthalen-1-ol; Neber rearrangement

In the preceding paper, we reported the synthesis of *trans*-1,6-dihydroxy-2-(1-methyl-3-phenylpropyl)amino-1,2,3,4-tetrahydronaphthalene-5-carboxamide (2),¹⁾ which is a conformationally restricted analog of labetalol (1).²⁾ Compound 2 was found to show a potent β -adrenergic blocking activity, but unlike 1, it also possessed intrinsic β -stimulating activity, effecting an increase of beating rate in the rat. Assuming that this β -agonistic property of 2 might be inherent to the 6-hydroxytetrahydronaphthalene skeleton, we undertook to synthesize a wide variety of 2-aminotetrahydronaphthalen-1-ol derivatives without the 6-hydroxyl group, expecting to obtain a new type of β -adrenergic blocking agent.

In this paper, we report the synthesis and the biological activity of 2-amino-1,2,3,4,-tetrahydronaphthalen-1-ol derivatives (3—36, Table I) substituted with a variety of functional groups including alkoxy, aryloxy, alkoxycarbonyl, substituted amino, aryl, alkyl, halo, nitro, alkylthio and cyano groups at the 5-, 6-, 7-, and 8-positions of the naphthalene ring.

Chemistry

The synthesis of the *trans*-2-(N-substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ol derivatives (3—36) listed in Table I was performed according to the scheme shown in Charts 1—3. In the general procedure, excluding the 5,8-dimethoxy and 6-morpholino derivatives (37i, 37s), a substituted 3,4-dihydro-1(2H)-naphthalenone derivative (37) was led to the

$$\begin{array}{c} \text{CONH}_2\\ \text{HO} \\ \begin{array}{c} \text{CH}_3\\ \text{OH} \end{array} \\ \begin{array}{c} \text{OH} \end{array} \\ \\ \begin{array}{c} \text{OH} \end{array} \\ \begin{array}{c} \text{O$$

Fig. 1

tosyloxime (39) via the oxime (38), and 39 was subjected to the Neber rearrangement to give the α -amino ketone hydrochloride (40·HCl). In the case of the 5,8-dimethoxy derivative, the α -nitro ketone (69), prepared from 37i according to Barfknecht's method,³⁾ was led to the α -acetamido ketone (70) by catalytic reduction over Raney nickel in a mixture of acetic acid and acetic anhydride. Hydrolysis of 70 with dilute hydrochloric acid afforded the α -amino ketone hydrochloride (40i·HCl). Since attempted conversion of 6-morpholino-3,4-dihydro-1(2H)-naphthalenone (37s) to the corresponding α -amino ketone (40s) by the above two routes proved to be unsuccessful, probably owing to the basicity of the morpholino group, compound 40s was prepared by the following alternative route. Thus, 37s was allowed to react with ethyl formate—sodium ethoxide and the resulting α -formyl ketone (71) was treated with sodium nitrite to give the α -hydroxyimino ketone (72). Compound 72 was hydrogenated over palladium-charcoal in the presence of hydrogen chloride to afford the 6-morpholino α -amino ketone hydrochloride (40s·HCl).

Chart 1

Reduction of $40 \cdot \text{HCl}$ with sodium borohydride yielded *trans*-2-amino-1,2,3,4-tetra-hydronaphthalen-1-ol derivatives (41, Table VI). The synthesis of *N*-substituted amino alcohol derivatives (3—28) was accomplished by the reductive alkylation of 41 with acetone or benzylacetone in the presence of sodium cyanoborohydride (NaBH₃CN). The *trans*-configuration of the amino alcohols was confirmed by the proton nuclear magnetic resonance (¹H-NMR) spectra which showed C₁-H as a doublet with a coupling constant (*J*) of 5—8 Hz (Tables I and VI).

Biological tests of the above series of 2-isopropylamino and 2-(1-methyl-3-phenyl-propyl)amino alcohols revealed that the 6-chloro (28a, 28b) and 6-butylthio (23a, 23b) deriv-

TABLE I. trans-2-(N-Substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ols (3-36)

	_
	"NHR
7	
~ <u></u>	×,~

										The second secon
Compd. No.	~	\mathbb{R}^1	Yield	Form	mp (°C)	Formula	♥ Ö	Analysis (%) Calcd (Found)	(F)	NMR (DMSO- d_6)
			(0)				C	Н	z	$\sum_{1} - \mathbf{H}$ $\delta (J)^{a}$
æ	$5-0CH_2CH = CH_2$	CH(CH ₃) ₂	59	HCI	195—197	C ₁₆ H ₂₃ NO ₂ · HCl	64.52 (64.51	8.12	4.70	4.9
4	5-0(CH ₂) ₃ CH ₃	CH(CH ₃) ₂	78	HCI	194—196	$C_{17}H_{27}NO_2\cdot\\HC1$	65.05 (64.74	8.99 9.32	4.46 4.74)	4.8 (6.5)
ĸ	5-OCH ₂ Ph	CH(CH ₃) ₂	72	HCI	220—223	$C_{20}H_{25}NO_2$. HCl	69.05 (68.87	7.53	4.03	4.8
9	5-OPh	CH(CH ₃) ₂	87	HCI	205—209	C ₁₉ H ₂₃ NO ₂ · HCl	68.35 (68.11	7.25 7.16	4.20 3.93)	4.8 (7.5)
7	5-C00C ₂ H ₅	CH(CH ₃) ₂	48	HCI	193—195	$C_{16}H_{23}NO_3$. HCl	61.23 (61.07	7.71	4.46	4.6 (7)
œ	5-Ph	CH(CH ₃) ₂	85	HCI	265—267	C ₁₉ H ₂₃ NO· HCl	71.79 (71.54	7.71	4.41	4.9
6	5-NCH ₃ COOC ₂ H ₅	CH(CH ₃) ₂	57	HCI	130—131	$C_{17}H_{26}N_2O_3$. HCl	59.55 (59.61	7.94	8.17	4.9
10a	5-CI	CH(CH ₃) ₂	83	HCI	239—240	C ₁₃ H ₁₈ CINO· HCI	56.53 (56.29	6.90	5.07	4.6 (7)
10b	5-Cl	CH3 CHCH2CH2Ph	99	HCI	179—180	$C_{20}H_{24}CINO$. HCI	65.57 (65.29	6.88	3.82	4.8 (7.5)
=	5-ОСН ₃ 8-ОСН ₃	CH(CH ₃) ₂	73	Fumarate	170—175	$C_{15}H_{23}NO_3 \cdot \\ C_4H_4O_4$	59.83 (59.40	7.14	3.67	5.0 (5)

12a	5-CH ₃ 7-CH ₃	CH(CH ₃) ₂	29	HCI	240—250	C ₁₅ H ₂₃ NO· HCl	66.77 (66.50	8.97	5.19 5.15)	4.8 (7.5)
12b	5-CH ₃ 7-CH ₃	CH, CHCH,CH,Ph	85	HCI	154—158	$C_{22}H_{29}NO \cdot HCl \cdot H_2O$	69.91 (69.48	8.53 8.30	3.71	4.8
13a	5-CH ₃ 6-NO ₂ 7-CH ₃	CH(CH ₃) ₂	06	HCI	>270	$\begin{array}{l} C_{15}H_{22}N_2O_3\cdot\\ HCI \end{array}$	<i>5</i> 7.23 (<i>5</i> 7.03	7.36 7.36	8.96 8.69)	5.0
13b	5-CH ₃ 6-NO ₂ 7-CH ₃	CH ₃ CHCH ₂ CH ₂ Ph	91	HCI	210	$\begin{array}{l} C_{22}H_{28}N_2O_3 \cdot \\ HCI \end{array}$	65.25 (64.84	7.22 7.21	6.92 6.84)	5.0
14a	5-0CH ₃ 6-CH ₂ CH=CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂	72	HCI	172—175	$C_{17}H_{25}NO_2$. HCl	65.47 (65.51	8.40 8.53	4.49 4.40)	4.8
14b	$5-0CH_3$ $6-CH_2CH=CH_2$	CH ₃ CHCH ₂ CH ₂ Ph	62	HCI	160—190	$C_{24}H_{31}NO_2\cdot\\HCI\cdot I/2H_2O$	70.13 (70.05	8.09	3.41	4.8
15	$5-O(CH_2)_3CH_3$ $6-CH = CHCH_3$	CH(CH ₃) ₂	86	HCI	174—177	$C_{20}H_{31}NO_2$. HCl	67.87 (67.58	9.11	3.96 4.06)	4.7
16		CH ₃ CHCH2CH2Ph	94	Fumarate	135—140	C ₃₀ H ₃₅ NO ₂ · 1/2C ₄ H ₄ O ₄ · 1/2H ₅ O	75.56 (75.66	7.53 7.42	2.75	4.5
17	CH ₃ 5,6-0-CHCH ₂ -	CH(CH ₃) ₂	98	HCl	220—240	C ₁₆ H ₂₃ NO ₂ · HCl	64.53 (64.17	8.12	4.70	4.7
81	Ph 5,6-N=C-O-	CH(CH ₃) ₂	82	HCI	273—274	$C_{20}H_{22}N_2O_2$. $HCI \cdot 2H_2O$	60.83 (60.53	6.89	7.10 6.94)	5.0
19	6-N COOC ₂ H ₅	CH(CH ₃) ₂	75	HCI	218—220	$C_{17}H_{26}N_2O_3.$ HCl	59.55 (59.38	7.94 7.96	8.17 8.19)	4.8
20	6-N COPh	CH(CH ₃) ₂	91	HCI	229—230	$C_{21}H_{26}N_2O_2\cdot\\HCI$	67.26 (67.21	7.26 7.38	7.47 7.33)	4.7 (7.5)
21	(N-9)	CH(CH ₃) ₂	27	HCI	195—200	$C_{17}H_{26}N_2O_2$ 2HCl·3/2H ₂ O	52.31 (51.93	8.01 7.58	7.18 7.10)	4.8
22a	6-OPh	CH(CH ₃) ₂	89	HCI	219—220	$C_{19}H_{23}NO_2$ · HCl	68.35 (68.41	7.25 7.03	4.20 4.11)	4.7

TABLE I. continued

Compd.	T.	R. ¹	Yield	Form	mp (°C)	Formula	C_{a}	Analysis (%) Calcd (Found)	- -	NMR (DMSO-d ₆)
			(%)		nec.		C	Н	z	$\sum_{1} - H$ $\delta (J)^{a}$
22b	6-OPh	ÇH ₃ CHCH ₂ CH ₂ Ph	37	HCl	192—194	C ₂₆ H ₂₉ NO ₂ · HCl	73.65 (73.44	7.13	3.30	4.6
23a	6-S(CH ₂) ₃ CH ₃	CH(CH ₃) ₂	70	HCl	185—186	$C_{17}H_{27}NOS$ · HCI	61.90 (61.61	8.56 8.54	4.25 4.21)	4.8 (7)
23b	6-S(CH ₂) ₃ CH ₃	CH ₃ CHCH ₂ CH ₂ Ph	80	HCI	155—157	C ₂₄ H ₃₃ NOS· HCl	68.63	8.16	3.34 3.49)	4.9
23c	6-S(CH ₂) ₃ CH ₃	CH(Ph) ₂	25	HCl	205—207	C ₂₇ H ₃₁ NOS· HCl	71.43 (71.20	7.11	3.09	4.8
7 7	e-CN	CH(CH ₃) ₂	88	HCl	197—198	$C_{14}H_{18}N_2O \cdot HCI$	63.02 (63.05	7.18	10.50	4.8
25	6-C00C ₂ H ₅	CH(CH ₃) ₂	98	HCl	225—228	C ₁₆ H ₂₃ NO ₃ · HCl	61.23 (60.85	7.71	4.46 4.26)	4.9
76	6-Рћ	CH(CH ₃) ₂	70	HCl	263—264	C ₁₉ H ₂₃ NO· HCl	70.92 (71.13	7.61	4.60 4.42)	4.8
27a	6-Br	CH(CH ₃) ₂	87	HCI	250—252	$C_{13}H_{18}BrNO\cdot HCI$	48.69 (48.66	5.97 5.99	4.37 4.65)	4.8
27b	6-Br	CH ₃ CHCH ₂ CH ₂ Ph	68	НСІ	202—204	$C_{20}H_{24}BrNO$. HCl	58.47 (58.48	6.13 5.94	3.41	4.8 (7)
28a	e-Cl	CH(CH ₃) ₂	99	HCI	225—227	$C_{13}H_{18}CINO$. HCI	56.52 (56.53	6.93 7.05	5.07 4.91)	4.9 (8)
28b	e-CI	CH ₃ CHCH ₂ CH ₂ Ph	82	НС	195—196	$C_{20}H_{24}CINO$. HCl	65.57 (65.41	6.90	3.82 3.83)	4.9 (7)
28 c	6-CI	$CH(Ph)_2$	42	HCI	232—234	C ₂₃ H ₂₂ CINO· HCl	69.00	5.79 5.70	3.50	4.7

•	e-Cl	СН ₃ СНСН ₂ Рh	81	HCI	224—226	C ₁₉ H ₂₂ CINO· HCl	64.77 (64.69	6.58	3.98 3.97)	4.6	
6-Cl		$\langle H \rangle$	82	HCI	255—256	C ₁₆ H ₂₁ CINO· HCI	60.76 (60.83	7.33	4.43 4.55)	4.6 (8)	
5-CI	5-CH ₂ OH	CH(CH ₃) ₂	49	Fumarate	242—244	$C_{14}H_{21}NO_2$. $1/2C_4H_4O_4$	65.51 (65.24	7.90	4.78 4.87)	4.8	
S-N	5-N(CH ₃) ₂	CH(CH ₃) ₂	47	Fumarate	190—191	$C_{15}H_{24}N_2O \cdot \\ C_4H_4O_4$	62.62 (62.50	7.74	7.69	4.8	
5-C	5-CH ₃ 6-NH ₂ 7-CH ₃	CH(CH ₃) ₂	71	HCI	191—193	$C_{15}H_{24}N_2O \cdot HC! \cdot 1/2H_2O$	61.32 (61.65	9.20	9.54 9.30)		
5-C	5-CH ₃ 6-NH ₂ 7-CH ₃	CH ₃ CHCH ₂ CH ₂ Ph	90	HCI	145—150	$C_{22}H_{30}N_2O \cdot HCI \cdot H_2O$	67.24 (67.33	8.46 7.83	7.13 7.13)	4.8	
5-C	5-0CH ₃ 6-(CH ₂) ₂ CH ₃	CH ₃ CHCH ₂ CH ₂ Ph	73	HCI	170—182	$C_{24}H_{33}NO_2\cdot\\HCI\cdot H_2O$	68.30 (68.41	8.60	3.32 3.75)	4.8	
5-C	5-O(CH ₂) ₃ CH ₃ 6-(CH ₂) ₂ CH ₃	CH(CH ₃) ₂	81	HCI	185—189	$C_{20}H_{33}NO_2$ · HCl	67.49 (66.99	9.63	3.94 3.85)	4.8	
5-0	5-0H 6-(CH ₂) ₂ CH ₃	CH ₃ CHCH,CH,Ph	63	Fumarate	185	$C_{23}H_{31}NO_2 \cdot C_4H_4O_4$	69.06 (68.94	7.51 7.59	2.98 2.83)	4.7	
Q-9	6-N(CH ₃) ₂	CH(CH ₃) ₂	79	HCI	218—220	$C_{15}H_{24}N_2O \cdot 2HCI$	56.07 (56.05	8.16 8.20	8.72 8.61)	4.6 (7)	
J-9	6-СН ₂ ОН	CH(CH ₃) ₂	63	Fumarate	201—202	$C_{14}H_{21}NO_2$. 61.71 1/2 $C_4H_4O_4$ · H_2O (61.94	61.71	8.09	4.50	4.7	

a) Expressed in Hz.

atives possessed β -adrenergic blocking activity. Therefore, several related N-alkylated derivatives of the 6-chloro and 6-butylthio amino alcohols were further prepared. The 2-benzhydrylamino (28c), 2-(1-methyl-2-phenylethyl)amino (28d) and 2-cyclohexylamino (28e) derivatives of 6-chloro-1,2,3,4-tetrahydronaphthalen-1-ol were obtained by the reaction of 41z (41: R=6-Cl) with the corresponding ketone and NaBH₃CN. Since reductive alkylation of 41u (41: R=6-SC₄H₉) with benzophenone was unsuccessful, direct alkylation using benzhydryl chloride¹⁾ was applied for the synthesis of 23c.

$$\begin{array}{c} C_{4}H_{9}S \\ C_{4}H_{9}S \\ OH \\ \end{array}$$

Chart 3

Compounds 7, 9, 13, 14, 15, 16, 19, and 25 having a functional group convertible to another functional group by reduction, were led to the corresponding derivatives by treatment with lithium aluminum hydride (LiAlH₄) or by catalytic hydrogenation (Chart 3). Thus, the carbamates (9, 19) and esters (7, 25) were respectively converted to 5- or 6-(N,N-dimethylamino)-(30, 35) and 5- or 6-hydroxymethyl-(29, 36) amino-1,2,3,4-tetrahydronaphthalen-1-ol by treatment with LiAlH₄. Compounds containing a nitro or vinyl group (13a, 13b, 14b and 15) were converted to the corresponding amino (31a and 31b) and alkyl (32 and 33) derivatives by catalytic hydrogenation over palladium-charcoal. In the case of 16, catalytic hydrogenolysis of the O-benzyl group and hydrogenation of the vinyl group occurred simultaneously to afford a phenol derivative (34).

The key intermediates for the above synthesis, 3,4-dihydro-1(2H)-naphthalenone (designated as tetralone) derivatives (37), were prepared by a variety of methods as described below.

5-Substituted Tetralones (37a—f)

5-Allyloxy-(37a),⁴⁾ 5-butoxy-(37b), 5-benzyloxy-(37c) and 5-phenoxy-(37d) tetralones were obtained by the reaction of 5-hydroxytetralone (42)⁵⁾ with the corresponding halides. 5-Ethoxycarbonyltetralone (37e) was obtained according to the literature.⁶⁾ 5-Phenyltetralone (37f) was prepared from 2-phenylaniline (43) via the sequence of steps depicted in Chart 4. Thus, 43 was converted to the corresponding bromide (44) by means of the Sandmeyer reaction. The Grignard reaction of 44 with N-methylformanilide followed by hydrolysis of the resulting intermediate gave 2-phenylbenzaldehyde (45), which was led to its homolog 47 by means of the Darzen condensation with subsequent decarboxylation of the resulting glycidic acid derivative 46. The Wittig reaction of 47 with ethoxycarbonylmethylene triphenylphos-

OH OR
$$37a: R = CH_2CH - CH_2$$
 $37b: R - (CH_2)_3CH_3$ $37c: R = CH_2$ $37d: R = CH_2$ $37e$ 3

Chart 4

phorane, affording ethyl 4-(2-biphenylyl)-2-butenoate (48), followed by catalytic hydrogenation and hydrolysis yielded the butanoic acid (49). Treatment of 49 with a mixture of NaCl and AlCl₃⁷⁾ effected cyclization to 37f.

5-Amino- and 5-chlorotetralones (55 and 37h) were synthesized from 6-hydroxy-5-nitrotetralone (51)⁸⁾ by the routes shown in Chart 5. Thus, 51 was led to the thiocarbamate (52) by reaction with dimethylaminothiocarbonyl chloride, which in turn was thermally rearranged to the *N*,*N*-dimethylcarbamoyl derivative (53). Alkaline hydrolysis of 53 gave 6-mercapto-5-nitrotetralone (54). Desulfurization of 54 with Raney nickel yielded 5-aminotetralone (55) by the simultaneous reduction of the nitro group. Compound 55 was led to the *N*-ethoxycarbonyl-*N*-methyl congener (37g) by N-protection with the trifluoroacetyl group, methylation with methyl iodide, and alkaline hydrolysis. On the other hand, the Sandmeyer reaction of 55 afforded 5-chlorotetralone (37h).

Chart 5

Di- and Trisubstituted Tetralones (37i—37p)

5,8-Dimethoxy-,⁹⁾ 5,7-dimethyl,¹⁰⁾ and 5,7-dimethyl-6-nitrotetralone¹¹⁾ (37i, 37j and 37k) were prepared according to the cited methods. 5-Hydroxy-6-allyltetralone (58),⁴⁾ prepared by the Claisen rearrangement of 37a, was alkylated with alkyl halide in the presence of potassium carbonate to give methoxy-, butoxy-, and benzyloxytetralones (37l, 37m and 37n). In the case of 37m and 37n, however, the double bond was found to be isomerized to form a conjugated 1-propenyl group. Furthermore, treatment of 58 with zinc chloride gave naphthofuranone (37o). A naphthoxazole derivative (37p) was prepared from 51 by Obenzylation, reduction of the nitro group to an amino group, N-benzoylation, debenzylation, and cyclization with phosphorus pentoxide by way of compounds 59, 60, 61, and 62.

No. 1

6-Substituted Tetralones (37q—z)

6-Aminotetralone (63)¹²⁾ was employed as the starting material for the synthesis of a variety of 6-substituted tetralones. Thus, the Sandmeyer reaction of 63 gave 6-chloro-(37z), ¹³⁾ 6-bromo-(37y) and 6-cyano-(37v) tetralone, and the Gomberg Bachmann reaction afforded the 6-phenyl derivative (37x). Compound 37v was led to 37w by hydrolysis and subsequent esterification. 6-Morpholinotetralone (37s)¹⁴⁾ was also derived from 63. 6-(N-Acyl-N-methyl)aminotetralones (37q and 37r) were prepared from 63 by the same procedure as that for the 5-substituted isomer 37g. 6-Phenoxy-(37t) and 6-mercaptotetralone (68) were prepared from 6-hydroxytetralone (65)¹⁵⁾ by procedures similar to those used for 37d and 54, respectively. Alkylation of 68 with butyl bromide afforded 6-butylthiotetralone (37u).

Biological Results

The compounds in Table I were tested for β -adrenergic blocking activity. The results are summarized in Table II. The β -blocking activity of these compounds (10^{-6} M) was measured in terms of inhibition (-%) of isoproterenol-induced tachycardia in isolated atrial preparations of guinea pigs.¹⁾ Direct cardiac action of these compounds (10^{-6} M) was also determined, and expressed in terms of the percent increase (+%) in beating rate of atrial preparations.

Moderate β -adrenergic blocking activity comparable to that of practolol was found with the 5-chloro (10a, 10b) and 6-chloro (28c) derivatives. Compound 28c was substantially free

from cardiac stimulation activity. However, intrinsic cardiac stimulation activity to increase the beating rate of the atrial preparation was observed with **10a** and **10b**. Some of the other 5-substituted derivatives (**4**, **5**, **9**, **29**, **30**) produced tachycardia in spontaneously hypertensive rats (SHR: 30 mg/kg) after oral administration (data not shown). The finding that even derivatives without a 6-hydroxyl group showed considerable β -stimulating activity suggests that the β -agonistic property may be inherent to the 2-amino-1,2,3,4-tetrahydronaphthalen-1-ol skeleton, in accord with our previous observations.¹⁾

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus (a hot stage type) and are uncorrected. The infrared (IR) spectra were recorded with a Hitachi 215 spectrophotometer. The ¹H-NMR spectra were recorded with a Varian T-60, HA-100 or EM 390 machine with tetramethylsilane as an internal standard.

5-Butoxy-3,4-dihydro-1(2H)-naphthalenone (37b)—A mixture of 5-hydroxytetralone⁵⁾ (**42**, 20 g), butyl bromide (19 g), K_2CO_3 (19 g), KI (20 g) and acetone (100 ml) was refluxed for 5 h. The insoluble material was removed by filtration, and the filtrate was concentrated *in vacuo*. The residue was taken up in AcOEt (500 ml), washed with 10% NaOH (50 ml), dried (Na_2SO_4), decolorized with activated carbon and concentrated *in vacuo* to give **37b** as a viscous

	I ABLE II. Biological A	
Compd. No.	β -Acti $\%$ change in beating rate	vity (10^{-6} M) % inhibition of isoproterenol $(2.5 \times 10^{-8} \text{ M})$ induced tachycardia
10a	$+23.7 \pm 5.3$	-30.7 ± 5.8
10b	$+28.9 \pm 1.6$	-49.1 ± 3.4
12a	-3.9 ± 0.6	-8.3 ± 2.8
13b	$+2.0 \pm 3.0$	-9.3 ± 4.3
21	-0.4 ± 0.4	-10.9 ± 2.9
23a	-1.4 ± 1.2	-12.4 ± 3.8
23b	-2.2 ± 0.8	-8.7 ± 3.4
27b	$+0.8 \pm 0.8$	-14.1 ± 4.1
28a	$+5.0 \pm 2.4$	-14.4 ± 1.0
28b	+10	-15.2
28c	$+4.9 \pm 4.7$	-22.0 ± 2.7
28d	$+4.5 \pm 3.5$	-17.6 ± 5.4
28e	$+1.3 \pm 1.8$	-11.2 ± 2.8
29	$+9.7 \pm 5.5$	-8.6 ± 4.5
31a	-2.3 ± 0.2	-11.8 ± 2.4
Propranolol	-5.8 ± 1.6	-62 ± 11
Practolol	$+0.9 \pm 0.9$	-26 ± 10
2 ¹⁾	$+52 \pm 4$	-80 ± 5

TABLE II. Biological Activity

oil (10 g, 37%). IR $v_{\text{max}}^{\text{neat}} \text{ cm}^{-1}$: 1680 (C=O).

5-Benzyloxy-3,4-dihydro-1(2H)-naphthalenone (37c)—A mixture of 42 (20 g), benzyl chloride (20 g), K_2CO_3 (20 g), KI (5 g) and acetone (100 ml) was refluxed for 8 h. Work-up in a manner similar to that described for the preparation of 37b gave 37c as an oil (5 g, 16%). IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1680 (C=O).

5-Phenoxy-3,4-dihydro-1(2H)-naphthalenone (37d)—Powdered NaOMe (2.7 g) was added to a stirred mixture of 42 (8.1 g) and benzene (100 ml) under nitrogen. Next, bromobenzene (7.9 g) and CuCl (2 g) were added, and the resulting mixture was heated under reflux for 7 h. After addition of bromobenzene (8 g), reflux was continued for a further 4 h. After cooling, the reaction mixture was poured into a mixture of 10% HCl (100 ml) and AcOEt (500 ml), and filtered with celite. The organic layer of the filtrate was separated, washed (10% KOH and water), dried and concentrated *in vacuo*. The residue was chromatographed on silica gel using benzene as the eluent to give pure 37d (3 g, 25%) as a syrup, which was crystallized from MeOH to give colorless prisms, mp 100—101% C. IR v_{max}^{Nujol} cm⁻¹: 1690 (C=O). Anal. Calcd for $C_{16}H_{14}O_2$: C, 80.64; H, 5.92. Found: C, 80.68; H, 5.71.

5-Phenyl-3,4-dihydro-1(2H)-naphthalenone (37f)—A solution of NaNO₂ (74g) in water (240 ml) was added dropwise to a stirred solution of 2-phenylaniline (43, 169 g) in 47% HBr (320 ml) at 0 °C. The resulting solution was added dropwise to a stirred mixture of CuBr (160 g) in 47% HBr (960 ml) at 0 °C. When the addition was complete, the solution was stirred at room temperature for 2 h. The mixture was extracted with AcOEt (300 ml × 2). The extract was washed with water, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by vacuum distillation to give 2-bromobiphenyl (44, 163 g, 70%) as a colorless liquid, bp 115—117 °C (5 mmHg).

A solution of 44 (23.4 g) in dry ether (50 ml) was added to a mixture of Mg (2.51 g), dry ether (100 ml) and a few chips of iodine at a rate such that refluxing continued without external heating. After the addition had been completed, N-methylformanilide (13.5 g) was added dropwise over a period of 1.5 h, and the resulting mixture was stirred for 1 h at room temperature. After addition of a saturated NH₄Cl solution (200 ml), the mixture was stirred for 1 h and extracted with AcOEt (200 ml). The extract was washed with water, dried over Na₂SO₄ and concentrated in vacuo. The residue was distilled under a vacuum to give pure 2-phenylbenzaldehyde (45, 11.8 g, 65%) as a colorless liquid, bp 125—130 °C (4 mmHg).

A mixture of **45** (29 g) and ClCH₂COOCH₃ (20 g) was added dropwise to an NaOCH₃-MeOH solution [prepared from Na (5.6 g) and MeOH (80 ml)] at $-5--10\,^{\circ}$ C over a period of 2 h. After standing overnight at room temperature, the mixture was poured into ice-water (300 ml) containing AcOH (1.9 ml) and extracted with CHCl₃ (150 ml × 3). The extract was washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was dissolved in benzene (400 ml), and to this solution was added a solution of NaOMe (8.7 g) in MeOH (54 ml) at 5 °C to precipitate sodium 3-(2-biphenylyl)glycidate (**46**, 35 g, 84%) as colorless needles, mp 217 °C (dec.). *Anal.* Calcd for C₁₅H₁₁NaO₃: C, 68.70; H, 4.23. Found: C, 68.40; H, 4.50.

A mixture of **46** (52 g), benzene (300 ml), water (300 ml) and AcOH (32 g) was refluxed for 3 h. After cooling, the benzene layer was washed with water, dried over Na_2SO_4 and concentrated *in vacuo* to give 2-biphenylylacetaldehyde (47, 26 g. 67^{o}_{ci}) as a pale yellow liquid.

A solution of 47 (26 g) in benzene (50 ml) was added to a solution of ethoxycarbonylmethylene triphenylphosphorane (44 g) in benzene (60 ml), and the resulting mixture was refluxed for 2 h. After 50 ml of benzene had been evaporated off, petroleum ether (500 ml) was added to the mixture with stirring, and the resulting precipitate was filtered off. The filtrate was concentrated *in vacuo* to give an oily residue, which was purified by silica gel column chromatography with benzene as the eluent to give ethyl 4-(2-biphenylyl)-2-butenoate (48, 28.8 g, 86%) as a colorless viscous oil. 1 H-NMR (CDCl₃) δ : 1.26 (3H, t, J=9 Hz, CH₃), 3.52 (2H, dd, J=9 Hz, 2 Hz, -CH₂CH=), 4.20 (2H, q, J=9 Hz, OCH₂CH₃), 5.75 (1H, d. J=14 Hz, -CH=), 7.20- 7.60 (10H, m, Ph × 2 and = CH-).

A solution of 48 (28.8 g) in AcOH (200 ml) was subjected to catalytic hydrogenation over 5% Pd-C (7 g) under atmospheric pressure at 50 °C, until the absorption of H₂ ceased. After removal of the catalyst by filtration, the filtrate was concentrated *in vacuo*. The residue was dissolved in CHCl₃ (200 ml), washed with saturated NaHCO₃ solution, dried over Na₂SO₄, and concentrated *in vacuo* to give ethyl 4-(2-biphenylyl)butyrate (29 g, 100%) as a viscous oil.

A solution of NaOH (9 g) in water was added to a solution of the above ester (29 g) in MeOH (150 ml), and the mixture was refluxed for 1 h. After cooling, the mixture was diluted with water (300 ml) and extracted with ether (100 ml). The aqueous layer was acidified with conc. HCl and extracted with CHCl₃. The CHCl₃ extract was washed with water, dried over Na₂SO₄, and concentrated *in vacuo* to give 4-(2-biphenylyl)butyric acid (49, 23.6 g, 91%) as a syrup, which was heated with AlCl₃ (90.4 g) and NaCl (22.6 g) at 140 °C for 10 min and then for 5 min at 150 °C with stirring. Excess AlCl₃ was decomposed by addition of a mixture of conc. HCl and ice water under cooling, and the mixture was extracted with CHCl₃ (100 ml × 2). The extract was evaporated *in vacuo*, and the residue was chromatographed on silica gel with benzene as the eluent to give 37f (3.5 g, 17%) as colorless needles, mp 103—105 C. IR $v_{\rm min}^{\rm Nujol}$ cm⁻¹: 1690 (C=O). Anal. Calcd for C₁₆H₁₄O: C, 86.45; H, 6.35. Found: C, 86.19; H, 6.44.

5-Amino-3,4-dihydro-1(2*H*)-naphthalenone (55) — A mixture of 6-hydroxy-5-nitrotetralone (51, 80 g), 8 K₂CO₃ (52 g) and dimethylformamide (DMF, 800 ml) was heated at 80 °C for 30 min. *N*,*N*-Dimethylthiocarbamoyl chloride (58 g) was added, and the mixture was stirred for 1 h at room temperature, poured into ice-water (2 l) and extracted with AcOEt (300 ml × 3). The extract was washed with 10% NaOH and then water, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was crystallized from ether to give 6-(*N*,*N*-dimethylthiocarbamoyloxy)-5-nitro-3,4-dihydro-1(2*H*)-naphthalenone (52, 80 g, 70%) as colorless prisms, mp 136-138%C. *Anal.* Calcd for $C_{13}H_{14}N_{2}O_{4}S$: C, 53.06: H, 4.80; N, 9.52. Found: C, 52.83; H, 4.70; N, 9.36.

Compound **52** (80 g) was heated in an oil bath at $170\,^{\circ}\text{C}$ for 20 min. After cooling, the residual mass was triturated with AcOEt (300 ml) to give 6-(*N*,*N*-dimethylcarbamoylthio)-5-nitro-3,4-dihydro-1(2*H*)-naphthalenone (**53**, 80 g, 100° ₀) as colorless crystals, mp $130-132\,^{\circ}\text{C}$. Anal. Calcd for $C_{13}H_{14}N_2O_4S$: C, 53.06; H, 4.80; N, 9.52. Found: C, 53.21; H, 4.97; N, 9.41.

A mixture of 53 (31 g), NaOH (8 g) and MeOH (100 ml) was refluxed for 1 h, cooled, acidified with conc. HCl, diluted with water (200 ml) and extracted with CHCl₃ (100 ml × 3). The extract was dried (Na₂SO₄), treated with decolorizing charcoal and concentrated *in vacuo* to give 6-mercapto-5-nitro-3,4-dihydro-1(2*H*)-naphthalenone (54, 23 g, 98%) as pale yellow needles, mp 113—116 °C. Anal. Calcd for $C_{10}H_9NO_3S$: C, 53.81; H, 4.06; N, 6.28. Found: C, 53.65; H, 4.31; N, 6.40.

A mixture of 54 (23 g), Raney nickel (wet, 120 g) and EtOH (400 ml) was refluxed for 2 h, then cooled. The Raney nickel was removed by filtration, and the filtrate was concentrated *in vacuo*. A solution of the residue in AcOEt (200 ml) was extracted with 10% HCl (200 ml × 2). The aqueous layer was basified with 10% NaOH and extracted with AcOEt (100 ml × 2). Evaporation of the AcOEt from the extract gave an oily residue, which was treated with 20% HCl-EtOH (10 ml) and diluted with ether (200 ml). The resulting precipitate was collected by filtration to give 55 ·HCl (6.5 g, 32%) as colorless needles, mp 215 – 216 °C. *Anal.* Calcd for $C_{10}H_{11}NO \cdot HCl$: C, 60.76; H, 6.12; N, 7.09. Found: C, 60.50; H, 6.39: N, 6.85.

Ethyl N-Methyl-N-(1-oxo-1,2,3,4-tetrahydro-5-naphthyl)carbamate (37 g)— $(\text{CF}_3\text{CO})_2\text{O}$ (12 g) was added dropwise to a stirred mixture of 55 (6 g) and CHCl₃ (50 ml) at room temperature. After being stirred for 1 h, the reaction mixture was concentrated, and the residue was crystallized from MeOH to give 5-trifluoroacetylamino-3,4-dihydro-1(2H)-naphthalenone (56, 6.5 g, 83%) as colorless needles, mp 178—180 °C. Anal. Calcd for $C_{12}H_{10}F_3\text{NO}_2$: C, 56.04; H, 3.92; N, 5.45. Found: C, 55.83; H, 3.76; N, 5.28.

A mixture of **56** (6.5 g), powdered KOH (3 g) and acetone (100 ml) was stirred for 30 min. After addition of CH₃I (13 g), the mixture was heated under reflux for 1 h and concentrated. A solution of KOH (5 g) in 50% EtOH (100 ml) was added to the residue, and the mixture was heated at 80 °C for 30 min, cooled and poured into water (100 ml). Extraction with AcOEt (100 ml \times 2) and evaporation of the solvent afforded an oily residue, which was crystallized from ether to give 5-methylamino-3,4-dihydro-1(2H)-naphthalenone (57, 3.5 g, 79%) as colorless plates, mp 101—103 °C. Anal. Calcd for $C_{11}H_{13}NO$: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.63; H, 7.30; N, 8.03.

Ethyl chloroformate (4.4 g) was added dropwise to a stirred mixture of 57 (3.5 g), CHCl₃ (50 ml), K₂CO₃ (3.5 g) and water (30 ml). After standing overnight at ambient temperature, the CHCl₃ layer was washed with water, dried

over Na₂SO₄ and concentrated in vacuo to give 37g (4.5 g, 91%) as a viscous liquid. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1685, 1730 (C=O).

5-Chloro-3,4-dihydro-1(2H)-naphthalenone (37h)—A solution of NaNO₂ (3.6 g) in water (15 ml) was added dropwise to a stirred solution of 55 HCl (8.5 g) in 15% HCl (70 ml) at 0 °C. The resulting solution was added dropwise to a stirred solution of CuCl (15 g) in conc. HCl (120 ml) at 0 °C. When the addition was complete, the mixture was stirred at room temperature for 1 h, poured into water (300 ml) and extracted with AcOEt (100 ml × 2). The extract was washed with water, dried over Na₂SO₄ and concentrated *in vacuo* to give 37h (6.7 g. 86%) as an oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1685 (C=O).

6-Allyl-5-methoxy-3,4-dihydro-1(2H)-naphthalenone (37l)—A mixture of **58** (5.5 g), K_2CO_3 (10 g), CH_3I (10 ml) and DMF (30 ml) was heated at 90—100 °C for 2 h. After cooling, the mixture was diluted with water (500 ml) and extracted with AcOEt (300 ml). Evaporation of the solvent gave an oily residue, which was purified by silica gel column chromatography (benzene) to give **37l** (5 g, 93%) as a colorless liquid. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1680 (C=O). ¹H-NMR (CDCl₃) δ : 1.8—3.6 (8H, m, CH₂ × 4), 3.7 (3H, s, OCH₃), 4.9—5.3 (2H, m, =CH₂-), 5.7—6.3 (1H, m, =CH-), 7.2 (1H, d, J=8 Hz, phenyl proton), 7.8 (1H, d, J=8 Hz, phenyl proton).

6-(1-Propenyl)-5-butoxy-3,4-dihydro-1(2H)-naphthalenone (37m)—A mixture of **58** (10 g), K_2CO_3 (10 g), butyl bromide (7 g) and DMF (50 ml) was heated at 100 °C for 3 h. Purification in a manner similar to that described for the preparation of **371** gave **37m** (12 g, 94%) as a colorless oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1690 (C=O). ¹H-NMR (CDCl₃) δ : 6.7—7.0 (2H, m, -CH=CH-), 7.4 (1H, d, J=8 Hz, phenyl proton).

6-(1-Propenyl)-5-benzyloxy-3,4-dihydro-1(2H)-naphthalenone (37n)—A mixture of **58** (10 g), K_2CO_3 (10 g), benzyl chloride (7 g) and DMF (50 ml) was heated at 100 °C for 3 h. Work-up in a manner similar to that described for the synthesis of **37l** gave **37n** (10 g, 72%) as a viscous oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1680 (C=O). ¹H-NMR (CDCl₃) δ : 6.7—7.0 (2H, m, -CH=CH-), 4.8 (2H, s, CH₂Ph).

2-Methyl-2,3,8,9-tetrahydro-6(7H)-naphtho[1,2-b]furanone (37o)—A mixture of **58** (10 g), AcOH (60 ml), conc. HCl (30 ml) and ZnCl₂ (9 g) was heated at 100—110 °C for 16 h. After cooling, the mixture was diluted with a mixture of AcOEt (500 ml) and water (500 ml). The AcOEt layer was washed with 10% NaOH and water, dried over Na₂SO₄, decolorized with activated carbon, and concentrated *in vacuo*. The residual brown oil was purified by silica gel column chromatography (acetone: benzene = 1:30) to afford **37o** (4.5 g) as a viscous oil, which was crystallized from petroleum ether to give pale yellow prisms. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1690 (C=O). ¹H-NMR (CDCl₃) δ : 1.5 (3H, d, J=6 Hz, O-CH-CH₃). *Anal*. Calcd for C₁₃H₁₄O₂: C, 77.20; H, 6.98. Found: C, 77.13; H, 6.77.

2-Phenyl-8,9-dihydro-6(7H)-naphth[1,2-d]oxazolone (37p)—Benzoyl chloride (6.2 g) was added to a stirred mixture of 6-benzyloxy-5-amino-3,4-dihydro-1(2H)-naphthalenone¹⁶⁾ (**60**, 10 g), CHCl₃ (200 ml), K_2CO_3 (5 g) and water (40 ml) at ambient temperature. Stirring was continued for 2 h, then the CHCl₃ layer was washed with water, dried over Na_2SO_4 , and concentrated *in vacuo*. The residue was crystallized from MeOH and the resulting colorless needles were collected by filtration to give 5-benzoylamino-6-benzyloxy-1(2H)-naphthalenone (**61**, 13.4 g, 96%), mp 210—211 °C. *Anal.* Calcd for $C_{24}H_{21}NO_3$: C, 77.60; H, 5.70; N, 3.77. Found: C, 77.47; H, 5.86; N, 3.64.

A solution of **61** (5 g) in MeOH (250 ml) was subjected to catalytic hydrogenolysis over 5% Pd-C (2.5 g) at room temperature under atmospheric pressure. After hydrogen uptake had ceased, the catalyst was filtered off and the filtrate was concentrated *in vacuo*. The residue was crystallized from AcOEt to give 5-benzoylamino-6-hydroxy-3,4-dihydro-1(2*H*)-naphthalenone (**62**, 3 g, 79%) as colorless needles, mp 118—120°C. *Anal.* Calcd for C₁₇H₁₅NO₃: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.70; H, 5.49; N, 4.71.

A mixture of **62** (0.5 g), xylene (20 ml) and P_2O_5 (0.5 g) was stirred at 150 °C for 2 h, then cooled. AcOEt (100 ml) was added to the mixture, and the resulting solution was washed with water, dried over Na_2SO_4 and concentrated *in vacuo*. Recrystallization of the residue from petroleum ether gave **37p** (0.4 g, 64%) as colorless needles, mp 143—145 °C. *Anal.* Calcd for $C_{17}H_{13}NO_2$: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.61; H, 4.75; N, 5.09.

Ethyl N-Methyl-N-(1-oxo-1,2,3,4-tetrahydro-6-naphthyl)carbamate (37q)—6-Amino-3,4-dihydro-1(2H)-naphthalenone¹²⁾ (63, 16g) was trifluoroacetylated similarly to the case of 56 to yield 6-trifluoroacetylamino-3,4-dihydro-1(2H)-naphthalenone (22 g, 86%) as colorless crystals. *Anal.* Calcd for $C_{12}H_{10}FNO_2$: C, 56.04; H, 3.92; N, 5.45. Found: C, 56.17; H, 3.70; N, 5.30.

This compound (22 g) was methylated similarly to the case of 57 to give 6-methylamino-3,4-dihydro-1(2*H*)-naphthalenone hydrochloride (64·HCl, 11 g, 61%) as colorless plates, mp 155—158 °C. *Anal.* Calcd for $C_{11}H_{13}NO\cdot HCl$: C, 62.41; H, 6.67; N, 6.62. Found: C, 62.15; H, 6.56; N, 6.70.

Ethoxycarbonylation of **64** (3.5 g) in a manner similar to that described for the preparation of **37g** gave **37q** (3.5 g, 86%) as a viscous oil. IR $v_{\text{max}}^{\text{neat}} \text{ cm}^{-1}$: 1680, 1730 (C=O).

N-Methyl-*N*-(1-oxo-1,2,3,4-tetrahydro-6-naphthyl)benzamide (37r)—Benzoylation of **64** (11 g) in a manner similar to that described for **61** gave **37r** (10 g, 67%) as an oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1680 (C=O).

6-Phenoxy-3,4-dihydro-1(2H)-naphthalenone (37t)—The reaction of 6-hydroxy-3,4-dihydro-1(2H)-naphthalenone¹⁵⁾ (65, 48 g) and bromobenzene (80 g) in the presence of NaOMe by a procedure similar to that described for the synthesis of 37d gave 37t (9.7 g, 14%) as an oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1680 (C=O).

6-Butylthio-3,4-dihydro-1(2H)-naphthalenone (37u)—The reaction of **65** (16 g) with N,N-dimethylthio-carbamoyl chloride (15 g) by a procedure similar to that used for the synthesis of **52** and crystallization of the product from ether gave 6-(N,N)-dimethylthiocarbamoyloxy)-3,4-dihydro-1(2H)-naphthalenone (**66**, 12.5 g, 51%) as col-

TABLE III. 3,4-Dihydro-1(2H)-naphthalenone Oximes (38)

No. C	Compd.	R	Yield	mp	Formula		alysis (cd (Fou	
38b 5-OCH ₂ CH=CH ₂ 91 90-92 C ₁₃ H ₁₅ NO ₂ (71.52 6.74 6.38) 38b 5-O(CH ₂) ₂ CH ₃ 56 131-134 C ₁₄ H ₁₉ NO ₂ 72.07 8.21 6.00 38c 5-OCH ₂ Ph 94 124-126 C ₁₇ H ₁₇ NO ₂ 76.38 6.41 5.24 (76.28 6.45 5.17) 38d 5-OPh 94 133-136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.55 7.97 38e 5-COOC ₂ H ₃ 78 90-91 C ₁₃ H ₁₅ NO ₃ 66.93 6.48 6.01 5.79 38f 5-Ph 93 161-163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38g 5-N _{COOC₂H₃ 84 165-167 C₁₄H₁₈N₂O₃ 64.10 6.92 10.68 38g 5-N_{COOC₂H₃ 84 165-167 C₁₄H₁₈N₂O₃ 64.10 6.92 10.68 38j 5-CH₃ 7-CH₃ 90 145-148 C₁₂H₁₅NO (61.39 5.15 7.16 (61.39 5.35 6.84) 38j 5-CH₃ 7-CH₃ 90 145-148 C₁₂H₁₅NO (61.39 5.35 6.12 11.76) 38l 5-OCH₃ 87 198-199 C₁₂H₁₄N₂O₃ 61.52 6.02 111.69 38l 5-OCH₃ 86 108-111 C₁₄H₁₇NO₂ 72.70 7.41 6.06 6.0H₂-CH₂-CH₂CH₃ 95 120-123 C₁₇H₂₃NO₂ (74.72 8.58 5.15) 5-OCH₂Ph 6-CH=CHCH₃ 5.6-OCH₂-CH₂ 78.6 6.9 6.45 6.70 (77.94 6.97 4.62) 38n 5-OCH₃ 81 126-129 C₂₀H₂₁NO₂ (77.94 6.97 4.62) 38n 6-CH=CHCH₃ 93 150-152 C₁₃H₁₅NO₂ 73.45 6.16 6.9 6.45 6.70 (77.94 6.97 4.62) 38n 6-N₂-CH₃ 81 Oil a¹ 38r 6-N₂-CH₃ 71 167-168 C₁₈H₁₈N₂O₂ (75.33 5.97 10.07 5.53 5.97 5.53 5.77 5.60) 38u 6-COO₂-H₅ 81 Oil a¹ 38t 6-OPh 83 204-206 C₁₆H₁₅NO₂ (75.53 5.77 5.60) 38u 6-S(CH₂)₃CH₃ 77 101-103 C₁₄H₁₉NOS (67.30 7.46 5.40 5.40 6.38 6.37 5.97 5.53 5.77 5.60) 38u 6-COO₂-H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.51 6.18) 38u 6-COO₂-H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.55 15.03) 38u 6-COO₂-H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.55 15.03) 38u 6-COO₂-H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.55 5.20 5.20 5.84 6.61 5.72 5.84 6.61 5.72 5.88 6.61 5.}}	No.		(%)	('C)		С	Н	N
38b 5-O(CH ₂) ₃ CH ₃ 56 131-134 C ₁₄ H ₁₉ NO ₂ 72.07 8.21 6.03 5.76) 38c 5-OCH ₂ Ph 94 124-126 C ₁₇ H ₁₇ NO ₂ 76.38 6.41 5.24 (72.21 8.37 5.76) 38d 5-OPh 94 133-136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 (75.36 5.68 5.17) 38e 5-COOC ₂ H ₃ 78 90-91 C ₁₃ H ₁₅ NO ₃ (66.78 6.61 5.75) 38f 5-Ph 93 161-163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 (80.69) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80.60) 6.42 5.86 (80	38a	5-OCH,CH=CH,	91	90—92	C ₁₃ H ₁₅ NO ₃			
38c 5-OCH ₂ Ph 94 124—126 C ₁₇ H ₁₇ NO ₂ (72.21 8.37 5.76) 38c 5-OCH ₂ Ph 94 124—126 C ₁₇ H ₁₇ NO ₂ (76.38 6.41 5.24) 38d 5-OPh 94 133—136 C ₁₆ H ₁₃ NO ₂ (75.87 5.97 5.53) 38c 5-COOC ₂ H ₅ 78 90—91 C ₁₃ H ₁₃ NO ₃ (66.93 6.48 6.01 5.75) 38f 5-Ph 93 161—163 C ₁₆ H ₁₃ NO (80.69 6.42 5.86) 38g 5-N CH ₃ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ (64.10 6.92 10.68) 38g 5-N COOC ₂ H ₅ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ (64.32 6.75 10.44) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ CINO (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₃ NO (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 6.12 11.76) 38j 5-OCH ₃ 86 108—111 C ₁₄ H ₁₇ NO ₂ (72.89 7.50 5.60) 38m 5-CH = CHCH ₃ 5-OCH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ (74.72 8.58 5.15) 38n 6-CH=CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ (77.94 6.97 4.62) 38n 6-CH=CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ (77.94 6.97 4.62) 38n 6-CH=CHCH ₃ 81 0il o'' 38t 6-N CH ₃ 81 0il o'' 38t 6-N CH ₃ 81 0il o'' 38t 6-OPh 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ (73.30 5.90 6.37) 38t 6-OCh ₃ 81 0il o'' 38t 6-OCh ₃ 81 0il o'' 38t 6-OCh ₃ 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ (73.30 5.93 9.45) 38t 6-OCh ₃ 81 0il o'' 38t 6-OCh ₃ 81 0il o'' 38t 6-OCh ₃ 81 0il o'' 38t 6-OCh ₃ 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ (73.30 5.93 9.45) 38t 6-OCh 83 204—206 C ₁₆ H ₁₅ NO ₂ (73.30 5.93 9.45) 38t 6-OCh 83 204—206 C ₁₆ H ₁₅ NO ₂ (73.30 5.93 9.45) 38t 6-OCh 83 204—206 C ₁₆ H ₁₅ NO ₂ (73.44 5.64) 38t 6-OCh 83 204—206 C ₁₆ H ₁₅ NO ₂ (73.45 5.41 5.02) 38t 6-OCh 83 204—206 C ₁₆ H ₁₅ NO ₂ (73.30 5.93 5.41 5.03) 38t 6-OCh 93 189—191 C ₁₁ H ₁₀ NO ₂ (73.45 5.41 5.02) 38t 6-OCh 83 164—165 C ₁₆ H ₁₅ NO ₃ (60.93 6.48 6.01 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95		2 2			-13132			
38c 5-OCH ₂ Ph 94 124—126 C ₁₇ H ₁₇ NO ₂ 76.38 6.41 5.24 (76.28 6.45 5.17) 38d 5-OPh 94 133—136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 38e 5-COOC ₂ H ₅ 78 90—91 C ₁₃ H ₁₅ NO ₃ 66.93 6.48 6.01 (66.78 6.61 5.75) 38f 5-Ph 93 161—163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38g 5-NCH ₃ 84 165—167 C ₁₄ H ₁₈ NO (80.69 6.42 5.86) 38g 5-NCCOOC ₂ H ₅ 84 165—167 C ₁₄ H ₁₈ NO ₃ 66.39 5.15 7.16 (61.03 5.35 6.84) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ CINO (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO (76.16 7.99 7.40 (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 6.74 (1.52 6.02 11.76 6.06) 38m 6-CH ₂ CH=CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 (6.06 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.1	38b	5-O(CH ₂) ₃ CH ₃	56	131—134	$C_{14}H_{19}NO_{2}$			
38d 5-OPh 94 133—136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 38d 5-OPh 94 133—136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 38e 5-COOC ₂ H ₅ 78 90—91 C ₁₃ H ₁₅ NO ₃ 66.93 6.48 6.01 (66.78 6.61 5.75) 38f 5-Ph 93 161—163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38g 5-N CH ₃ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ 64.10 6.92 10.68 (64.32 6.75 10.44) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ CINO 61.39 5.15 7.16 (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO 76.15 7.99 7.40 (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ 61.52 6.02 11.96 (61.59 6.12 11.76) 38l 5-OCH ₃ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 (72.89 7.50 5.60) 38m 5-O(CH ₂) ₃ CH ₃ 95 120—123 C ₁₂ H ₂₃ NO ₂ 74.69 8.48 5.12 (74.72 8.58 5.15) 38o 5-OCH ₂ Ph 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.94 6.97 4.62) 38o 5-OCH ₂ Ph 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.94 6.97 4.62) 38o 5-OCH ₂ CH ₃ 93 150—152 C ₁₃ H ₁₃ NO ₂ 71.86 6.96 6.45 (71.78 6.99 6.37) 38p 5-6-N=C-O 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.30 5.93 9.45) 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 (61.39 6.74 7.68 5.62 (61.30 6.74 7.68 5.62 (61.30 7.74 5.60) 38u 6-S(CH ₂) ₃ CH ₃ 77 101—103 C ₁₄ H ₁₉ NOS (67.44 7.68 5.62 (67.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 5.93 9.45) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 5.93 9.45) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.72) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.72) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (61.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₁₀ O 70.95 5.41 15.05 (61.95 5.11 15.05 7.16 (61.95 5.11 15.05 7.16 (61.95		2.0						
38d 5-OPh 94 133—136 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 38e 5-COOC ₂ H ₃ 78 90—91 C ₁₃ H ₁₅ NO ₃ 66.93 6.48 6.01 38f 5-Ph 93 161—163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38g 5-N [*] CH ₃ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ 64.10 6.92 10.68 38g 5-N [*] COOC ₂ H ₅ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ 64.10 6.92 10.68 38j 5-Cl 96 115—117 C ₁₆ H ₁₆ ClNO 61.39 5.15 7.16 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO 76.15 7.99 7.40 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ 61.52 6.02 11.96 6-CH ₂ CH ₃ 6-CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 38m 6-CH=CHCH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ 72.70 7.41 6.06 38e 5-OCH ₂ Ph 6-CH=CHCH ₃ 91 150—152 C ₁₃ H ₁₅ NO ₂ 77.94 6.99 6.37 38h 5-OCH—CH ₂ 93 150—152 C ₁₃ H ₁₅ NO ₂ 77.94 6.99 6.45 38h 5-OCH—CH ₂ 93 150—152 C ₁₃ H ₁₅ NO ₂ 77.86 6.96 6.45 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.10 6.15 77.94 6.99 6.45 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.15 77.94 6.99 6.37 38h 6-N [*] COOC ₂ H ₅ 81 0il 6.16 70.95 6.16 67.44 7.68 6.60 67.95 67.44 7.68 6.60 67.44 7.68 6.60 67.45 67.55 67.95 67	38c	5-OCH ₂ Ph	94	124—126	$C_{17}H_{17}NO_2$			
38d 5-OPh 38e 5-COOC ₂ H ₃ 78 90-91 C ₁₃ H ₁₅ NO ₂ (66.78 6.61 5.75) 38f 5-Ph 93 161-163 C ₁₆ H ₁₅ NO (80.69 6.42 5.86) 38g 5-N ₂ COOC ₂ H ₅ 84 165-167 C ₁₄ H ₁₈ N ₂ O ₃ (64.32 6.75 10.44) 38h 5-Cl 96 115-117 C ₁₀ H ₁₀ CINO (61.39 5.15 7.16 (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145-148 C ₁₂ H ₁₅ NO (61.39 5.15 7.16 (61.03 5.35 6.84) 38k 5-CH 38k 5-CH 38h 5-Cl 96 115-117 C ₁₀ H ₁₀ CINO (61.39 5.15 7.16 (61.03 5.35 6.84) 38k 5-CH ₃ 6-NO ₂ 7-CH ₃ 87 198-199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.76) 38h 6-CH ₂ CH=CH ₂ 36-CH ₂ CH=CH ₂ 36-CH ₂ CH=CHCH ₃ 37-COOC ₂ H ₅ 38h 6-CH=CHCH ₃ 38h 6-CH=CHCH ₃ 38h 6-CH=CHCH ₃ 38h 6-CH=CHCH ₃ 38h 6-N ₂ CH ₃ 38h 6-CN 38h								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38d	5-OPh	94	133—136	$C_{16}H_{15}NO_2$			
38c 5-COC ₂ H ₅ 88 90-91 C ₁₃ H ₁₈ NO ₃ (66.78 6.61 5.75) 38f 5-Ph 93 161-163 C ₁₆ H ₁₈ NO 80.98 6.37 5.90 38g 5-N _{COOC₂H₅ 84 165-167 C₁₄H₁₈N₂O₃ (64.06 6.92 10.68) 38g 5-N_{COOC₂H₅ 84 165-167 C₁₄H₁₈N₂O₃ (64.32 6.75 10.44) 38h 5-Cl 96 115-117 C₁₀H₁₀ClNO (61.39 5.15 7.16) 38j 5-CH₃ 7-CH₃ 90 145-148 C₁₂H₁₈NO (76.16 7.99 7.40) 38k 5-CH₃ 6-NO₂ 7-CH₃ 87 198-199 C₁₂H₁₄N₂O₃ (61.52 6.02 11.96) 38l 5-CCH₃ 6-NO₂ 87 198-110 C₁₄H₁₇NO₂ (72.89 7.50 5.60) 38l 6-CH₂CH=CH₂ 86 108-111 C₁₄H₁₇NO₂ (72.89 7.50 5.60) 38l 6-CH₂CH=CH₃ 95 120-123 C₁₇H₂₈NO₂ (74.72 8.85 5.15) 38n 6-CH₂CH₂CH₃ 95 120-123 C₁₇H₂₈NO₂ (74.72 8.85 5.15) 38n 5-OCH₂Ph 6-CH=CHCH₃ 93 150-152 C₁₃H₁₈NO₂ (71.78 6.99 6.37) 38p 5-OCH₂CH₃ 93 150-152 C₁₃H₁₈NO₂ (73.30 5.93 9.45) 5-OCH₃ 81 Oil a) 38t 6-N₂CH₃ 71 167-168 C₁₈H₁₈N₂O₂ (73.30 5.93 9.94) 38t 6-N₂CH₃ 71 167-168 C₁₈H₁₈NO₂ (73.30 5.93 9.94) 38t 6-COPh 83 204-206 C₁₆H₁₅NO₂ (75.53 5.77 5.60) 38u 6-SCCH₂J₃CH₃ 77 101-103 C₁₄H₁₉NO₃ (67.44 7.68 5.62) 38v 6-COOC₂H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.15 6.18) 38v 6-COOC₂H₅ 78 127-128 C₁₃H₁₅NO₃ (66.73 6.45 5.72) 38v 6-Br 66 144-146 C₁₀H₁₆BrNO (80.73 6.45 5.72) 38v 6-Br 66 144-146 C₁₀H₁₆BrNO (80.73 6.45 5.72) 38v 6-Br 66 144-146 C₁₀H₁₆BrNO (80.73 6.45 5.72)}}								
38f 5-Ph 93 161—163 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 (80.69 6.42 5.86) 38g 5-NCOO ₂ H ₅ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ 64.10 6.92 10.68 (64.32 5.86) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ ClNO 61.39 5.15 7.16 (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO 76.15 7.99 7.40 (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 6.74) 38l 5-OCH ₃ 6-CH ₅ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 6.24 (6.12 11.76) 38m 6-CH ₂ CH=CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 6.24 (72.89 7.50 5.60) 38m 6-CH ₂ CH=CH ₂ 81 126—123 C ₁₇ H ₂₃ NO ₂ 74.69 8.48 5.12 (74.72 8.58 5.15) 38n 5-OCH ₂ Ph 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.14 6.89 4.56 6.24 (6.24 CH ₂ CH) 38o 5-OCH ₂ Ph 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.18 6.99 6.37) 38p Ph 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 (73.10 4.78 10.20) 38q 6-NCH ₃ 81 Oil and an anomalous Arrival Arri	38e	5-COOC ₂ H ₅	78	9091	$C_{13}H_{15}NO_3$			
381 5-Ph								
38g 5-N CH ₃ 84 165—167 C ₁₄ H ₁₈ N ₂ O ₃ 64.10 6.92 10.68 (64.32 6.75 10.44) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ CINO (61.39 5.15 7.16 (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO 76.15 7.99 7.40 (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.59 6.12 11.76) 38l 6-CH ₂ CH = CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 (72.89 7.50 5.60) 38m 5-OCH ₃ ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ 74.69 8.48 5.12 (74.72 8.58 5.15) 38n 6-CH = CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ 78.14 6.89 4.56 (77.94 6.97 4.62) 38o 5,6-OCH=CHCH ₃ 93 150—152 C ₁₃ H ₁₅ NO ₂ 71.86 6.96 6.45 (71.78 6.99 6.37) 38p 5,6-N = C-O 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 (73.10 4.78 10.20) 38q 6-N COOC ₂ H ₅ 81 Oil a) 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 (75.30 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (70.81 5.25 15.03) 38v 6-Ph 83 164—165 C ₁₆ H ₁₅ NO ₃ 66.93 6.48 6.01 6.18 (80.73 5.72) 38y 6-Br 66 144—146 C ₁₀ H ₁₀ BrNO 60.39 5.15 7.16	38f	5-Ph	93	161—163	$C_{16}H_{15}NO$			
38h 5-Cl 96 115—117 C ₁₀ H ₁₀ ClNO (64.32 6.75 10.44) 38h 5-Cl 96 115—117 C ₁₀ H ₁₀ ClNO (61.39 5.15 7.16 (61.03 5.15 7.16 (61.03 5.15 7.16 (61.03 5.15 7.16 (61.03 5.15 7.16 (61.03 5.15 7.16 (61.03 5.15 7.99 7.40 (76.16 7.96 7.43) (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 (61.79 6.7-43) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (61.59 6.12 11.76) (72.89 7.50 5.60) (72.80 6.45 6.45 6.45 6.45 6.45 6.45 6.45 6.45	20	CH ₃	0.4	145 145		-		
38h 5-Cl 96 115—117 C ₁₀ H ₁₀ ClNO (61.03 5.35 6.84) 38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO (76.15 7.99 7.40) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ 61.52 6.02 11.96 7-CH ₃ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 38m 6-CH ₂ CH=CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 38m 6-CH ₂ CH=CH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ 74.69 8.48 5.12 38n 6-CH ₂ CH ₂ CH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.94 6.97 4.62) 38o 5-6-QH-CHCH ₃ 5.6-OCH-CH ₂ 93 150—152 C ₁₃ H ₁₅ NO ₂ 71.86 6.96 6.45 CH ₃ Ph 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 38q 6-N/CH ₃ 81 Oil " 38r 6-N/COP _h 71 167—168 C ₁₈ H ₁₈ N ₂ O ₂ 73.45 6.16 9.52 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO ₂ 75.53 5.77 5.60) 38u 6-S(CH ₂) ₃ CH ₃ 77 101—103 C ₁₄ H ₁₉ NOS 67.44 7.68 5.62 (67.30 7.46 5.40) 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.03 38v 6-Ph 83 164—165 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38v 6-Br 66 144—146 C ₁₀ H ₁₀ BrNO 60.29 4.50 38v 6-Cl 80 143—145 C H CINO 61.39 5.15 7.16	38g	5-N COOC ₂ H ₅	84	165167	$C_{14}H_{18}N_2O_3$			
38j 5-CH ₃ 7-CH ₃ 90 145—148 C ₁₂ H ₁₅ NO (76.15 7.99 7.40 (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 6-CH ₂ CH ₃ 86 108—111 C ₁₄ H ₁₇ NO ₂ (72.70 7.41 6.06 6-CH ₂ CH ₂ CH ₂ CH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ (74.72 8.58 5.15) 38n 6-CH ₂ CH ₂ CH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ (74.72 8.58 5.15) 38n 5-OCH ₃ Ph 6-CH ₂ CH ₂ CH ₃ 93 150—152 C ₁₃ H ₁₅ NO ₂ (71.78 6.99 6.37) 38p 5,6-N=C-O- 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ (73.36 5.07 10.07 73.07 73.	201	5 Cl	06	115 117	C II CINO		5.15	
38j 5-CH ₃ /-CH ₃ 90 145-148 C ₁₂ H ₁₅ NO (76.16 7.96 7.43) 38k 5-CH ₃ 6-NO ₂ 7-CH ₃ 87 198-199 C ₁₂ H ₁₄ N ₂ O ₃ (61.52 6.02 11.96 6.12 11.76) 38l 5-OCH ₃ 66-CH ₂ CH = CH ₂ 86 108-111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 (72.89 7.50 5.60) 38m 5-O(CH ₂) ₃ CH ₃ 95 120-123 C ₁₇ H ₂₃ NO ₂ (74.72 8.58 5.15) 38n 6-CH = CHCH ₃ 81 126-129 C ₂₀ H ₂₁ NO ₂ (77.94 6.97 4.62) 38o 5-OCH ₂ Ph 81 126-129 C ₂₀ H ₂₁ NO ₂ (71.78 6.99 6.37) 38o 5-OCH ₂ CH-CH ₂ 93 150-152 C ₁₃ H ₁₅ NO ₂ (71.78 6.99 6.37) 38p Ph 82 233-234 C ₁₇ H ₁₄ N ₂ O ₂ (73.10 4.78 10.20) 38q 6-N CH ₃ 81 Oil a) 38r 6-N CH ₃ 71 167-168 C ₁₈ H ₁₈ N ₂ O ₂ 73.45 6.16 9.52 (73.30 5.93 9.45) 38t 6-OPh 83 204-206 C ₁₆ H ₁₅ NO ₂ 75.87 5.97 5.53 (75.53 5.77 5.60) 38u 6-S(CH ₂) ₃ CH ₃ 77 101-103 C ₁₄ H ₁₉ NOS 67.44 7.68 5.62 (67.30 7.46 5.40) 38v 6-CN 93 189-191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 (66.93 6.48 6.01) 38x 6-Ph 83 164-165 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 (80.73 6.45 5.72) 38g 6-Br 66 144-146 C ₁₀ H ₁₀ BrNO 61.39 5.15 7.16	38h	5-CI	96	115117	$C_{10}H_{10}CINO$	(61.03	5.35	6.84)
38k	20:	5 CU 7 CU	00	145 140	C II NO	76.15	7.99	7.40
38k 7-CH ₃ 87 198—199 C ₁₂ H ₁₄ N ₂ O ₃ (61.59 6.12 11.76) 38l 5-OCH ₃ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 38m 5-OCH ₂ CH = CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 38m 5-OCH ₂ CH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ 74.69 8.48 5.12 38n 6-CH = CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ 78.14 6.89 4.56 38o 5,6-OCH-CH ₂ — CH ₃ 93 150—152 C ₁₃ H ₁₅ NO ₂ 71.86 6.96 6.45 38p Ph 5,6-N=C-O- 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 38q 6-N CH ₃ 81 Oil a) 38r 6-N CH ₃ 71 167—168 C ₁₈ H ₁₈ N ₂ O ₂ 73.45 6.16 9.52 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO ₂ 75.87 5.9	38]	5-CH ₃ /-CH ₃	90	145148	$C_{12}H_{15}NO$	(76.16	7.96	7.43)
38l 5-OCH ₃ 6-CH ₂ CH = CH ₂ 86 108—111 C ₁₄ H ₁₇ NO ₂ 72.70 7.41 6.06 72.70 7.41 6.06 6.06 6-CH ₂ CH = CHCH ₃ 95 120—123 C ₁₇ H ₂₃ NO ₂ 74.69 8.48 5.12 74.72 8.58 5.15) 38n 5-OCH ₂ Ph 6-CH = CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ 77.94 6.97 4.62) 38o 5.6-OCH-CH ₂ - 93 150—152 C ₁₃ H ₁₅ NO ₂ 71.86 6.96 6.45 71.86 6.96 6.45 71.86 6.99 6.37) 38p Ph 5.6-N = C-O- 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 73.36 6.97 4.69 10.00 10	201 ₂	5-CH ₃ 6-NO ₂	97	108 100	CHNO	61.52	6.02	11.96
38I 6-CH2CH=CH2 86 108—111 C ₁₄ H ₁₇ NO2 (72.89 7.50 5.60) 38m 5-O(CH2) ₃ CH ₃ 95 120—123 C ₁₇ H ₂₃ NO2 74.69 8.48 5.12 38n 5-OCH ₂ Ph 81 126—129 C ₂₀ H ₂₁ NO2 78.14 6.89 4.56 38o 5-OCH-CH2- CH3 93 150—152 C ₁₃ H ₁₅ NO2 (71.86 6.96 6.45 CH ₃ 93 150—152 C ₁₃ H ₁₅ NO2 (71.86 6.99 6.37) 38p Ph 5,6-N=C-O- 82 233—234 C ₁₇ H ₁₄ N ₂ O2 (73.10 4.78 10.20) 38q 6-N CH ₃ COOC ₂ H ₅ 81 Oil a) 73.45 6.16 9.52 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO2 (73.30 5.93 9.45) 38u 6-S(CH ₂) ₃ CH ₃ 77 101—103 C ₁₄ H ₁₉ NOS 67.44 7.68 5.62 (67.30 7.46 5.40 70.95 5.41 15.05 70.95 5.41 15.05 38v 6-CN 93	JOK		0/	190199	$C_{12}\Pi_{14}\Pi_{2}U_{3}$	(61.59	6.12	11.76)
38m	201	5-OCH ₃	86	108 111	C H NO	72.70	7.41	6.06
38h 6-CH = CHCH ₃ 93 120—123 C ₁₇ H ₂₃ NO ₂ (74.72 8.58 5.15) 38n 5-OCH ₂ Ph 6-CH = CHCH ₃ 81 126—129 C ₂₀ H ₂₁ NO ₂ 78.14 6.89 4.56 38o 5,6-OCH-CH ₂ — CH ₃ 93 150—152 C ₁₃ H ₁₅ NO ₂ 71.86 6.96 6.45 38p Ph 5,6-N = C-O- CH ₃ 82 233—234 C ₁₇ H ₁₄ N ₂ O ₂ 73.36 5.07 10.07 38q 6-N COO ₂ H ₅ 81 Oil a) 73.45 6.16 9.52 38t 6-OPh 83 204—206 C ₁₆ H ₁₅ NO ₂ 73.45 6.16 9.52 38u 6-S(CH ₂) ₃ CH ₃ 77 101—103 C ₁₄ H ₁₉ NOS 67.44 7.68 5.62 38v 6-CN 93 189—191 C ₁₁ H ₁₀ N ₂ O 70.95 5.41 15.05 38v 6-COOC ₂ H ₅ 78 127—128 C ₁₃ H ₁₅ NO ₃ 66.93 6.48 6.01 38v 6-Ph 83 164—165 C ₁₆ H ₁₅ NO 80.98 6.37 5.90 38v 6-P	301	$6-CH_2CH = CH_2$	80	100111	$C_{14}\Pi_{17}\Pi_{02}$	(72.89	7.50	5.60)
38n	38m		05	120. 123	C H NO		8.48	5.12
38n 6-CH=CHCH ₃ 38o 5,6-OCH-CH ₂ - CH ₃ 38p Ph 5,6-N=C-O- 38q 6-N-CH ₃ 38r 6-N-COPh 38t 6-OPh	Jon		75	120 -123	$C_{17}^{11}_{23}^{11}_{102}^{2}$			-
380	38n		81	126129	C.,H.,NO,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2011	_	0.	120 129	2011211102			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38 o		93	150152	C12H15NO2			
38p $5,6-N=C-O-$ 82 $233-234$ $C_{17}H_{14}N_2O_2$ $(73.10$ 4.78 $10.20)$ 38q $6-N$ COOC2H581Oila)38r $6-N$ COPh71 $167-168$ $C_{18}H_{18}N_2O_2$ 73.45 6.16 9.52 38t $6-OPh$ 83 $204-206$ $C_{16}H_{15}NO_2$ 75.87 5.97 5.53 38u $6-S(CH_2)_3CH_3$ 77 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v $6-CN$ 93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w $6-COOC_2H_5$ 78 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x $6-Ph$ 83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y $6-Br$ 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6-CI$ 80 $143-145$ $C_{10}H_{10}BrNO$ 61.39 5.15 7.16					15 15 2			
	38p		82	233234	$C_{17}H_{14}N_2O_2$			
38r $6-N \stackrel{CH_3}{COPh}$ 71 $167-168$ $C_{18}H_{18}N_2O_2$ 73.45 6.16 9.52 38t $6-OPh$ 83 $204-206$ $C_{16}H_{15}NO_2$ 75.87 5.97 5.53 38u $6-S(CH_2)_3CH_3$ 77 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v $6-CN$ 93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w $6-COOC_2H_5$ 78 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x $6-Ph$ 83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y $6-Br$ 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6-CI$ 80 $143-145$ $C_{10}H_{10}BrNO$ 61.39 5.15 7.16	-				1, 14 2 2	(73.10	4.78	10.20)
38r $6-N \stackrel{CH_3}{COPh}$ 71 $167-168$ $C_{18}H_{18}N_2O_2$ 73.45 6.16 9.52 38t $6-OPh$ 83 $204-206$ $C_{16}H_{15}NO_2$ 75.87 5.97 5.53 38u $6-S(CH_2)_3CH_3$ 77 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v $6-CN$ 93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w $6-COOC_2H_5$ 78 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x $6-Ph$ 83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y $6-Br$ 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6-CI$ 80 $143-145$ $C_{11}H_{10}DRNO$ 61.39 5.15 7.16	38q	6-N COOC H	81	Oil	<i>a</i>)			
38t6-OPh83 $204-206$ $C_{16}H_{15}NO_2$ 75.87 5.97 5.53 38u $6-S(CH_2)_3CH_3$ 77 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v $6-CN$ 93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w $6-COOC_2H_5$ 78 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x $6-Ph$ 83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y $6-Br$ 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6-CI$ 80 $143-145$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$						73.45	6.16	0.52
38t6-OPh83 $204-206$ $C_{16}H_{15}NO_2$ 75.87 5.97 5.53 38u $6-S(CH_2)_3CH_3$ 77 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v $6-CN$ 93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w $6-COOC_2H_5$ 78 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x $6-Ph$ 83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y $6-Br$ 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6-CI$ 80 $143-145$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$ $C_{11}H_{10}DR$	38r	6-N COPh	71	167—168	$C_{18}H_{18}N_2O_2$			
38t6-OPh83 $204-206$ $C_{16}H_{15}NO_2$ (75.53) 5.77 $5.60)$ 38u6-S(CH2)3CH377 $101-103$ $C_{14}H_{19}NOS$ 67.44 7.68 5.62 38v6-CN93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w6-COOC2H578 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x6-Ph83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y6-Br 66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z $6.C1$ 80 $143-145$ $C_{10}H_{10}BrNO$ 61.39 5.15 7.16								
38u $6\text{-S(CH}_2)_3\text{CH}_3$ 77 101103 $C_{14}H_{19}\text{NOS}$ 67.44 7.68 5.62 38v 6-CN 93 189191 $C_{11}H_{10}N_2\text{O}$ 70.95 5.41 15.05 38w $6\text{-COOC}_2\text{H}_5$ 78 127128 $C_{13}H_{15}\text{NO}_3$ 66.93 6.48 6.01 38x 6-Ph 83 164165 $C_{16}H_{15}\text{NO}$ 80.98 6.37 5.90 38y 6-Br 66 144146 $C_{10}H_{10}\text{BrNO}$ 50.02 4.20 5.84 38z 6-Cl 80 143145 C H C	38t	6-OPh	83	204—206	$C_{16}H_{15}NO_2$			
38u6-S(CH2)3CH377 $101-103$ $C_{14}H_{19}NOS$ $(67.30$ 7.46 5.40 38v6-CN93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w6-COOC2H578 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x6-Ph83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y6-Br66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z6-Cl80 $143-145$ C. H. CINO 61.39 5.15 7.16								
38v6-CN93 $189-191$ $C_{11}H_{10}N_2O$ 70.95 5.41 15.05 38w6-COOC2H578 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x6-Ph83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y6-Br66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z6-Cl80 $143-145$ C. H. CINO 61.39 5.15 7.16	38u	$6-S(CH_2)_3CH_3$	77	101—103	$C_{14}H_{19}NOS$			
38V6-CN93 $189-191$ $C_{11}H_{10}N_2O$ $(70.81$ 5.25 $15.03)$ 38w6-COOC2H578 $127-128$ $C_{13}H_{15}NO_3$ 66.93 6.48 6.01 38x6-Ph83 $164-165$ $C_{16}H_{15}NO$ 80.98 6.37 5.90 38y6-Br66 $144-146$ $C_{10}H_{10}BrNO$ 50.02 4.20 5.84 38z6-Cl80 $143-145$ C. H. CINO 61.39 5.15 7.16	20	(C) I	0.0		a a			
38w6-COOC2H578 $127-128$ $C_{13}H_{15}NO_3$ 66.936.486.0138x6-Ph83 $164-165$ $C_{16}H_{15}NO$ 80.986.375.9038y6-Br66 $144-146$ $C_{10}H_{10}BrNO$ 50.024.205.8438z6-Cl80 $143-145$ C. H. CINO61.395.157.16	<i>3</i> 8v	6-CN	93	189191	$C_{11}H_{10}N_2O$	(70.81		
38x 6-Ph 83 $164-165$ $C_{16}H_{15}NO$ $\begin{pmatrix} 66.75 & 6.51 & 6.18 \\ 80.98 & 6.37 & 5.90 \\ (80.73 & 6.45 & 5.72) \\ 66 & 144-146 & C_{10}H_{10}BrNO & 50.02 & 4.20 & 5.84 \\ (49.80 & 4.51 & 5.63) \\ 80 & 143-145 & C_{10}H_{10}DrNO & 61.39 & 5.15 & 7.16 \\ \hline \end{tabular}$	20	4 COOC II	70	127 129	C II NO	66.93	6.48	
38y 6-Br $66 144 - 146 C_{10}H_{10}BrNO $	ЭōW	0-COOC ₂ H ₅	18	12/128	$C_{13}\Pi_{15}NO_3$		6.51	6.18)
38y 6-Br 66 144—146 $C_{10}H_{10}BrNO$ $\begin{pmatrix} 80.73 & 6.45 & 5.72 \\ 50.02 & 4.20 & 5.84 \\ (49.80 & 4.51 & 5.63) \\ 6.45 & 5.63 \end{pmatrix}$	20-	6-Ph	Q 2	164 145	C H NO	80.98	6.37	5.90
38y 6-Br 66 144—146 C ₁₀ H ₁₀ BrNO (49.80 4.51 5.63) 38z 6-Cl 80 143—145 C H CINO 61.39 5.15 7.16	JOX	0-1 11	63	104103	$C_{16}\Pi_{15}NU$	(80.73	6.45	5.72)
38z 6-Cl 80 143-145 C H CINO 61.39 5.15 7.16	3 9v	6-Rr	66	144 146	C H ReNO		4.20	
587 6-1 XII 143-145 (H (INII)	Зоу	V DI	00	177140	C ₁₀ 11 ₁₀ D1110			
(61.30 5.36 7.00)	38z	6-C1	80	143—145	C. H. CINO			
	232			1.0 170	210211001110	(61.30	5.36	7.00)

a) Used for the next step without purification.

TABLE IV. 3,4-Dihydro-1(2H)-naphthalenone O-Tosyloximes (39)

Compd.	R	Yield	mp	Formula		alysis ('ed (Fou	-
No.		(%)	(°C)		С	Н	N
39a	$5\text{-OCH}_2\text{CH} = \text{CH}_2$	95	73—74	C ₂₀ H ₂₁ NO ₄ S	64.68 (64.43	5.70 5.71	3.77 3.59)
39b	5-O(CH ₂) ₃ CH ₃	66	73—74	$\mathrm{C_{21}H_{25}NO_4S}$	65.10 (65.16	6.50 6.45	3.62 3.84)
39c	5-OCH ₂ Ph	66	Oil	<i>a</i>)	`		
39d	5-OPh	97	107—109	$\mathrm{C_{23}H_{21}NO_4S}$	67.80 (68.14	5.20 5.24	3.44 3.29)
39e	5-COOC ₂ H ₅	92	129—131	$C_{20}H_{21}NO_5S$	62.01 (61.79	5.46 5.59	3.62 3.40)
39f	5-Ph	79	158—160	$C_{23}H_{21}NO_3S$	70.57 (70.41	5.41 5.67	3.58 3.39)
39g	5-N COOC ₂ H ₅	93	Oil	<i>a</i>)	(70.11	3.07	3.37)
39h	5-Cl	74	105—107	$C_{17}H_{16}CINO_3S$	58.38 (58.51	4.61 4.50	4.01 3.73)
39j	5-CH ₃ 7-CH ₃	97	131—134	$C_{19}H_{21}NO_3S$	66.46 (66.70	6.16 6.17	4.08 4.55)
39k	5-CH ₃ 6-NO ₂ 7-CH ₃	97	148—150	$C_{19}H_{20}N_2O_5S$	58.76 (58.58	5.19 5.11	7.21 7.01)
391	5-OCH ₃ 6-CH ₂ CH = CH ₂	95	Oil	a)	(,
39m	$5-O(CH_2)_3CH_3$ $6-CH=CH-CH_3$	96	Oil	<i>a</i>)			
39n	5-OCH2Ph $6-CH=CH-CH3$	97	Oil	<i>a</i>)			
390	CH ₃ 5,6-OCHCH ₂ –	97	65—70	$C_{20}H_{21}NO_{4}S \cdot 1/2C_{6}H_{6}$	67.31 (68.77	5.89 5.82	3.41 3.40)
39p	Ph 5,6-N=C-O-	61	178—180	$C_{24}H_{20}N_2O_4S$	66.66 (66.38	4.66 4.47	6.48 6.50)
39q	6-NCOOC ₂ H ₅	94	Oil	a)			
39r	6-N COPh	83	201—203	$C_{25}H_{24}N_2O_4S$	66.65 (66.34	5.39 5.51	6.25 6.24)
39t	6-Ph	97	125—127	$C_{23}H_{21}NO_4S$	67.80 (67.65	5.20 4.93	3.44 3.31)
39u	6-S(CH ₂) ₃ CH ₃	88	89—91	$C_{21}H_{25}NO_3S_2$	62.52 (62.09	6.25 6.38	3.47 3.36)
39v	6-CN	93	161—163	$C_{18}H_{16}N_2O_3S$	63.52 (63.41	4.74 4.96	8.23 8.05)
39w	6-COOC ₂ H ₅	79	155—157	$C_{20}H_{21}NO_5S$	62.01 (61.85	5.46 5.61	3.62 3.49)
39x	6-Ph	96	165—167	$C_{23}H_{21}NO_3S$	70.57 (70.66	5.41 5.63	3.58 3.40)
39y	6-Br	69	145—146	C ₁₇ H ₁₆ BrNO ₃ S	51.79 (51.96	4.09 3.73	3.55 3.35)
39z	6-C1	89	143—144	C ₁₇ H ₁₆ ClNO ₃ S	58.38 (58.20	4.61 4.75	4.01 3.76)

a) Used for the next step without purification.

TABLE V. 2-Amino-3,4-dihydro-1(2H)-naphthalenones (40)

Compd. No.	R	Yield (%)	mp (°C)	Formula		nalysis (S	
NO.		(Form)	dec.		С	Н	N
40a	5-OCH ₂ CH = CH ₂	66	170—180	$C_{13}H_{15}NO_2 \cdot HCl$	61.53	6.36	5.52
	• •	(HCl) 39		13 13 2	(61.41	6.42	5.58)
40b	$5-O(CH_2)_3CH_3$	39 (HCl)	170—180	$C_{14}H_{19}NO_2 \cdot HCl$	62.32 (61.89	7.47 7.56	5.19 5.29)
40c	5-OCH ₂ Ph	46 (HCl)	> 170	$C_{17}H_{17}NO_2 \cdot HCl$	67.21 (66.83	5.97 6.12	4.61 4.84)
40d	5-OPh	56 (HCl)	170—180	$C_{16}H_{15}NO_2 \cdot HCl$	62.43	5.90	4.55
		62			(62.52 57.89	5.86	4.53)
40e	5-COOC ₂ H ₅	(HCl)	214	$C_{13}H_{15}NO_3 \cdot HCl$	(57.93	5.98 5.76	5.19 5.38)
40f	5-Ph	59	240242	$C_{16}H_{15}NO \cdot HCl$	62.85	5.28	4.58
101		(HCl)	240-242	C ₁₆ 11 ₁₅ 140 TICI	(62.60	5.41	4.40)
40g	5-NCOOC ₂ H ₅	(HCl)	Oil	<i>a</i>)			
40h	5-Cl	65 (HCl)	236	$C_{10}H_{10}CINO \cdot HCI \cdot H_{2}O$	48.02	5.24	5.60
		(HCl) 73			(47.85 55.93	5.44 6.26	5.73)
40i	5-OCH ₃ 8-OCH ₃	(HCl)	240—250	$C_{12}H_{15}NO_3 \cdot HCl$	(55.91	6.16	5.44 5.36)
40:	5-CH ₃ 7-CH ₃	40	100 200	C II NO HOLII O	59.14	7.45	5.75
40 j	5	(HCl)	190200	$C_{12}H_{15}NO \cdot HCl \cdot H_2O$	(59.23	7.42	5.92)
40k	5-CH ₃ 6-NO ₂	49	170190	$C_{12}H_{14}N_2O_3\cdot HCl\cdot H_2O$	49.92	5.93	9.70
	7-CH ₃	(HCl)	170 170	C ₁₂ 11 ₁₄ 11 ₂ O ₃ 11C1 11 ₂ O	(50.03	5.80	9.71)
401	$5-OCH_3$ $6-CH_2CH=CH_2$	59 (HCl)	170—180	$C_{14}H_{17}NO_2 \cdot HCl$	62.80	6.78	5.23
40m	$5-O(CH_2)_2CH_3$	53	Oil	a)	(62.56	6.76	5.15)
	$6-CH = CH-CH_3$ $5-OCH_2Ph$	46			60.65	6.12	4.06
40n	$6-CH = CH-CH_3$	(HCl)	154—157	$C_{20}H_{21}NO_2 \cdot HCl$	69.65 (69.72	6.43 6.46	4.06 3.96)
40	ÇH ₃	51			61.54	6.36	5.52
40 o	5,6-OCHCH ₂ -	(HCl)	181—184	$C_{13}H_{15}NO_2 \cdot HCl$	(61.39	6.48	5.54)
40p	Ph	74	220	C II NO HOLIO	61.36	5.15	8.42
40p	5,6-N = C-O-	(HCl)	230	$C_{17}H_{14}N_2O_2 \cdot HCl \cdot H_2O$	(61.49	5.01	8.69)
40q	6-NCOOC ₂ H ₅	45 (HC1)	205	$C_{14}H_{17}N_2O_3 \cdot HC1$	56.47	6.09	9.41
	CH-	(HCl)			(56.65	6.13	9.09)
40r	6-N COPh	(HCl)	Oil	<i>a</i>)			
40s	6-N_O	72 (HCl)	> 200	$C_{14}H_{18}N_2O_2\cdot HCl$	59.46 (58.99	6.77 6.78	9.91 9.89)
40t	6-OPh	(HCl)	Oil	<i>a</i>)	` -	- · · -	,
40u	6.S(CH) CH	52	193 104	C II NOS UCI	58.84	7.05	4.90
400	$6-S(CH_2)_3CH_3$	(HCl)	184—184	$C_{14}H_{19}NOS \cdot HCl$	(58.90	7.29	4.68)
40v	6-CN	84	220—225	$C_{11}H_{10}N_2O \cdot HCl$	59.33	4.98	12.58
'		(HCl)		211-10-120 1101	(59.30	5.11	12.42)
40w	6-COOC ₂ H ₅	76 (HCl)	218—220	$C_{13}H_{15}NO_3 \cdot HCl$	57.89	5.98	5.19
		(HCI) 50			(57.96 62.85	5.70 5.28	4.88)
40x	6-Ph	(HCl)	235	$C_{16}H_{15}NO \cdot HCl$	(62.90	5.28 5.35	4.58 4.22)
		()			(02.70		7.22)

TABLE \	٧.	continued.
---------	----	------------

Compd.		R	Yield (%)	mp (~C)	Formula		nalysis (% lcd (Four	
No.			(Form)	dec.		С	Н	N
40 y	6-Br		43 (HCl)	210215	$C_{10}H_{10}BrNO\cdot HCl$	43.42 (42.95	4.01 4.38	5.06 5.30)
40z	6-Cl		74 (HCl)	227	$C_{10}H_{10}CINO \cdot HCI$	51.72 (51.93	5.64 5.65	6.03 6.01)

a) Used for next step without purification.

orless needles, mp 132—134 °C. Anal. Calcd for C₁₃H₁₅NO₂S: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.44; H, 5.85; N, 5.47.

Compound **66** (18.7 g) was heated in an oil bath at 230 °C for 30 min, then cooled and triturated with ether (200 ml) to give 6-(N,N-dimethylcarbamoylthio)-3,4-dihydro-1(2H)-naphthalenone (**67**, 15 g, 80%) as colorless prisms, mp 95—97 °C. *Anal.* Calcd for $C_{13}H_{15}NO_2S$: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.70; H, 6.19; N, 5.38.

Compound 67 (15 g) was hydrolyzed with NaOH (5 g) in MeOH (50 ml) similarly to the case of 54 to give 6-mercapto-3,4-dihydro-1(2H)-naphthalenone (68, 10 g, 93%) as a viscous oil. IR $v_{\text{max}}^{\text{neat}} \text{ cm}^{-1}$: 1690 (C=O).

A mixture of **68** (10 g), butyl bromide (13 g), powdered NaOMe (5 g) and MeOH (50 ml) was stirred for 3 h at room temperature. The mixture was diluted with ice-water (200 ml), acidified with conc. HCl and extracted with AcOEt (200 ml). The extract was concentrated and the residue was purified with silica gel column chromatography (benzene) to give **37u** (8.5 g, 65%) as a colorless liquid.

1-Oxo-1,2,3,4-tetrahydro-6-naphthyl Cyanide (37v) — A solution of NaNO₂ (6.9 g) in water (20 ml) was added dropwise to a solution of **63** (16 g) in 5% HCl (60 ml) with stirring at 0 C. The resulting solution was added to a stirred mixture of CuSO₄ (25 g), KCN (28 g) and water (200 ml) at 0 C. The mixture was stirred for 2 h, poured into water (200 ml) and extracted with AcOEt (200 ml × 2). The extract was washed with water, dried over Na₂SO₄, decolorized with activated carbon and concentrated to give **37v** (10.5 g, 62%) as colorless needles, mp 129—130 °C. *Anal.* Calcd for $C_{11}H_{19}NO$: C, 77.17; H, 5.30; N, 8.18. Found: C, 77.01; H, 5.57; N, 8.05.

Ethyl 1-Oxo-1,2,3,4-tetrahydro-6-naphthoate (37w)——A mixture of 37v (20g), KOH (10g) and 80% EtOH (250 ml) was heated under reflux for 4h. After evaporation of the EtOH, the remaining aqueous solution was acidified with 10% HCl, and the resulting precipitate was collected by filtration to give 1-oxo-1,2,3,4-tetrahydro-6-naphthoic acid (8.5 g, 38%).

This compound (8.5 g) was added to 20% HCl-EtOH (200 ml) and the mixture was refluxed for 3 h. Evaporation of the solvent gave an oily residue, which was purified by silica gel column chromatography with benzene as the eluent to give 37w (6 g, 62%) as a colorless oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1720, 1780 (C=O).

6-Phenyl-3,4-dihydro-1(2H)-naphthalenone (37x)——A solution of NaNO₂ (3.8 g) in water (5 ml) was added dropwise to a solution of 63 (8 g) in conc. HCl (15 ml) at 0 °C. The resulting solution was added dropwise to a vigorously stirred mixture of benzene (200 ml), NaOAc (16 g) and water (40 ml). Stirring was continued overnight, then the benzene layer was washed with water and concentrated *in vacuo*. The residue was chromatographed on a silica gel column with benzene as the eluent to give 37x as an oil, which was crystallized from a mixture of ether and petroleum ether to give colorless prisms (2.3 g, 21%), mp 105 –107 °C. *Anal.* Calcd for C₁₆H₁₄O: C, 86.45; H, 6.35. Found: C, 86.37; H, 6.17.

6-Bromo-3,4-dihydro-1(2H)-naphthalenone (37y)—A solution of NaNO₂ (9.2 g) in water (30 ml) was added dropwise to a solution of **63** (20 g) in 25% HBr (60 ml) at 0 °C. The resulting solution was added to a stirred mixture of CuBr (20 g) and 47% HBr (120 ml) at 0 °C. The whole was stirred for 2 h at room temperature, diluted with water (200 ml) and extracted with AcOEt (200 ml × 2). The extract was washed with water, dried over Na₂SO₄ and concentrated *in vacuo* to give **37y** (20 g, 72%) as a viscous oil. IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1685 (C=O).

3,4-Dihydro-1(2H)-naphthalenone Oximes (38, Table III)—General Procedure: K_2CO_3 (10 g) and $NH_2OH \cdot HCl$ (10 g) were added to a solution of tetralone derivative (37, 10 g) in MeOH (100 ml) and water (10 ml). The mixture was refluxed for 3 h with stirring. After cooling, the mixture was poured into water (500 ml). The resulting precipitate was collected by filtration, washed with water and recrystallized from 50% MeOH to give 38 as colorless prisms. Compound 38q was obtained as an oil, which was used in the next step without purification.

3,4-Dihydro-1(2H)-naphthalenone O-Tosyloximes (39, Table IV)—General Procedure: p-Toluenesulfonyl chloride (15 g) was added portionwise to an ice-cooled solution of 38 (10 g) in pyridine (50 ml). When the addition was complete, the mixture was stirred for 30 min at 5°C and for a further 1 h at room temperature, and then poured into ice-water (1 l). The resulting precipitate was collected by filtration, washed with water and recrystallized from MeOH

TABLE VI. trans-2-Amino-1,2,3,4-tetrahydronaphthalen-1-ols (41)

OH OH	

Compd.	-i	Yield	Form	mp (°C)	Formula	Ca	Analysis (%) Calcd (Found)		NMR C ₁ -H
Ž		(%)		dec.		С	Н	Z	$\delta (J)^{a)}$
1		•	71	103	ON	61.05	7.09	5.48	damme
412	5-0CH ₂ CH = CH ₂	‡	HC	193—198	C ₁₃ H ₁₇ INO ₂ ·HCI	(61.07	7.08	5.52)	
414	HUCHUO	99	HC	133 136	DH. ON H	61.86	8.16	5.15	4.76)
11		3	2	001—001	V14112111V2 11C1	(61.88	8.17	5.35)	(7.5)
410		17	Dogo	130 141	ON	75.81	7.11	5.20	1
410	3-0Cf1 ₂ F11	-	Dasc	139—141	C17H191VO2	(75.79	7.09	5.35)	
717		73	- Cn	020 040	Dn. ON u	98.59	6.22	4.80	4.76)
410	J-Orn	60	7	230—240		(65.59	5.74	4.64)	(7.5)
7		ç	51	021	ON II O	57.46	89.9	5.16	4.70)
416	3-C00C2H5	£)	Э н	168—170	C ₁₃ H ₁₇ INO ₃ ·HCI	(57.40	9.30	5.33)	(8)
717	id	9	511	300 500		89.69	6.58	5.08	$4.8^{b)}$
411	J-rn	80	D#	C07C07		(69.80)	6.73	4.76)	(8)
7		454)	Į.	371 (71		56.09	6.72	9.35	4.76)
4 30	$^{7-1}$ \C00C ₂ H $_5$. 0	5	C+I7+I	C14H19IN2O3.HCI	(55.83	6.57	9.17)	(8)
=		ι,	51	376 776	DINO.UCI	51.30	2.60	5.98	4.76)
4	J-0	70	7	707—407			5.48	6.13)	(8)
11:	n30 ° n30 3	13	Lymoroto	016 306	$C_{12}H_{17}NO_3$.		6.94	4.83	
4	J-OCH ₃ 9-OCH ₃	7.	r umarate	203—210	$1/2C_4H_4O_4 \cdot 1/2H_2O$		6.70	4.70)	
71:		ç	D	051 751	ON II		8.90	7.32	4.30
41)	Э-Сп ₃ /-Сп ₃	70	base	130—139	C12H171NO	(75.37	9.03	7.20)	(7.5)
411,	HJ-Z ON 9 HJ 9	98	Race	156 158	ONHJ	61.00	6.83	11.86	$4.6^{c)}$
Ť	5-(113 0-1102 /-(113	90	Dasc	961-961	C121116112 O3	(61.33	6.50	11.84)	(9)
411	5-OCH, 6-CH ₂ CH = CH ₂	9	HCI	190—195	$C_{14}H_{25}NO_2\cdot HCI$	62.33	7.47	5.19	4.70
					: !	(02.13	7.47	5.05)	

4.4 ^{b)} (7)	1	4.6^{b}	4.7 ^{b)} (8)	4.7^{b} (8)	4.7^{b} (8)	$4.7^{b)}$ (8)	4.6 ^{b)}	$\frac{3}{4.6^b}$	4.7 ^{b)} (8)	$4.6^{b)}$ (8)	4.65 ^{b)}	$\frac{4.6^{b)}}{(7)}$	4.6^{b} (8)
4.49 4.59)	4.53 4.40)	5.48	8.84	9.35 9.09)	8.41 8.63)	8.72 8.73)	4.80 4.67)	4.87 (4.95)	12.47 12.58)	5.16 4.90)	5.06	5.03	5.99
8.40	7.49 7.49	7.10	5.41 5.70	6.72 6.85	6.36	6.90	6.22 6.05	7.71	5.83	6.68	6.58	4.70	5.60
65.48 (65.30	77.64 (77.61	61.06 (61.21	64.45 (64.29	56.07	64.95 (64.78	52.34 (51.92	65.86 (65.73	58.43 (58.27	58.80 (58.71	57.46 (57.66	69.68	43.11 (42.89	51.32 (51.09
$C_{17}H_{25}NO_2\cdot HCI$	$C_{20}H_{23}NO_2$	$C_{13}H_{17}NO_2\cdot HCI$	$C_{17}H_{16}N_2O_2\cdot HCl$	$C_{14}H_{19}N_2O_3\cdot HCI$	$C_{18}H_{20}N_2O_2\cdot HCl$	$C_{14}H_{20}N_2O_2\cdot 2HCl$	$C_{16}H_{17}NO_2\cdot HCl$	$C_{14}H_{21}NOS \cdot HCl$	$C_{11}H_{12}N_2O\cdot HCl$	$C_{13}H_{17}NO_3\cdot HCl$	$C_{16}H_{17}NO \cdot HCI$	C ₁₀ H ₁₂ BrNO·HCl	C ₁₀ H ₁₂ CINO·HCI
120—123	130—133	229—231	280—282	195—197	216—218	195—215	220—222	208—209	> 300	262—264	285—286	217—220	233—235
HCI	Base	HCl	HCI	HCl	HCI	HCI	HCI	HCI	HCI	HCI	HCI	HCI	HCI
13	09	34	71	88	424)	35	454)	78	69	62	\$9	40	92
$5-0(CH_2)_3CH_3$ 6-CH = CHCH ₃	5-0CH ₂ Ph $6-$ CH = CHCH ₃	CH ₃ 5,6-OCHCH ₂ -	$_{5,6-N}^{Ph} = _{C-0-}^{L-0-}$	6-N COOC ₂ H ₅	6-N COPh	O _{N-9}	6-OPh	$6-S(CH_2)_3CH_3$	e-CN	6-СООС2Н5	6-Ph	6-Br	6-CI
41m	41n	410	41p	41 q	41r	41s	41t	41n	41v	41w	41x	41y	41z

a) Expressed in Hz. b) In d_6 -DMSO. c) In CDCl₃. d) Based on O-tosyloxime.

In DMSO- d_6 .

or CHCl₃-petroleum ether to give 39 as colorless prisms. In the cases of 39c, 39g, 39l, 39m, 39n and 39q, where the tosyloximes were not crystallized, the mixture was extracted with AcOEt (200 ml × 2) and the oily residue obtained by evaporation of the extract was used for the subsequent step without further purification.

2-Amino-3,4-dihydro-1(2H)-naphthalenones (40, Table V)——General Procedure: A solution of KOEt in EtOH, prepared from K (0.055 mol) and abs. EtOH (30 ml), was added to a chilled solution of 39 (0.05 mol) in benzene (300 ml) under nitrogen. When the addition was complete, the reaction mixture was stirred for 5 h then allowed to stand for I week in a refrigerator. The deposited insoluble material was removed by filtration, and conc. HCl (25 ml) was added to the filtrate, which was then diluted with ether (200 ml). The resulting crystals were collected by filtration and recrystallized from EtOH (200 ml) to give 40 · HCl as colorless needles. In the cases of 40g, 40m, 40r and 40t, where the hydrochlorides were not crystallized, the conc. HCl layer was separated and the organic layer was extracted with 10% HCl (20 ml × 3). The combined acidic layer was evaporated to dryness and the residue was used for the subsequent step without purification.

trans-2-Amino-1,2,3,4-tetrahydronaphthalen-1-ols (41, Table VI)—General Procedure: NaBH₄ (2 g) was added portionwise to a stirred solution of 40 HCl (2g) in MeOH (50 ml) at room temperature. After being stirred for 30 min, the reaction mixture was diluted with water (300 ml) and extracted with CHCl₃ (50 ml \times 3). The extract was dried over Na₂SO₂ and concentrated in vacuo. In the cases of 41c, 41j, 41k and 41n, the residue was recrystallized from ether-petroleum ether to give colorless prisms. Compound 41i was isolated as colorless crystals of the fumarate. In other cases, the residue was dissolved in ether (50 ml), and 20% ethanolic HCl (5 ml) was added to the solution to deposit the hydrochloride, which was recrystallized from MeOH-ether to give colorless prisms.

trans-2-(N-Substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ols (3-28, Table I)——General Procedure: NaBH₃CN (1 g) was added portionwise to a stirred solution of 41·HCl (1 g) and ketone (2—5 g) in MeOH (30 ml) at 5°C.¹⁷⁾ After standing overnight at room temperature, the reaction mixture was acidified with 10% HCl under cooling, diluted with excess water, made alkaline with NaHCO₃ and extracted with CHCl₃ (30 ml × 3). The extract was dried over Na₂SO₄ and concentrated in vacuo to give the desired compounds (3-28), each as a viscous oil, which was led to the crystalline hydrochloride or fumarate by addition of ethanolic HCl or a saturated ethereal solution of fumaric acid, respectively, in ethereal solution.

trans-2-Benzhydrylamino-6-butylthio-1,2,3,4-tetrahydronaphthalen-1-ol (23c, Table I)——A mixture of 41u HCl (0.6 g), CH₃CN (60 ml), benzhydryl chloride (1.2 g), Et₃N (1 g) and KI (0.5 g) was refluxed for 20 h with stirring. After removal of insoluble material by filtration, the solvent was evaporated off. The residue was chromatographed on silica gel (acetone: benzene = 1:20) to give 23c as an oil, which yielded colorless needles of the hydrochloride (0.24 g) upon treatment with 20% ethanolic HCl (2 ml) followed by dilution with ether.

2-Acetamido-5,8-dimethoxy-3,4-dihydro-1(2H)-naphthalenone (70) — A mixture of 5,8-dimethoxy-2-nitro-3,4 $dihydro-1(2H)-naphthalenone^{3)} \ (\mathbf{69},\,4.3\,\mathrm{g}), \ AcOH \ (50\,\mathrm{ml}) \ and \ Ac_2O \ (25\,\mathrm{ml}) \ was \ subjected \ to \ catalytic \ hydrogenation$ over Raney nickel (wet, 5g) at ambient temperature and pressure. After 11 of hydrogen had been absorbed, the catalyst was removed by filtration and the filtrate was diluted with water (500 ml). The mixture was extracted with $CHCl_3$ (150 ml \times 2) and the extract was washed with water, dried over Na_2SO_4 and concentrated in vacuo. The residue was dissolved in MeOH (100 ml), decolorized with activated carbon, concentrated to half the initial volume and diluted with ether (100 ml) to precipitate 70 (2.5 g. 57%) as colorless needles, mp 185—186 °C (dec.). IR $v_{\text{max}}^{\text{Nujol}} \text{ cm}^{-1}$: 3330 (NH); 1680, 1640 (C = O). Anal. Calcd for $C_{14}H_{17}NO_4$: C, 63.86; H, 6.51; N, 5.32. Found: C, 63.63; H, 6.36; N,

2-Amino-5,8-dimethoxy-3,4-dihydro-1(2H)-naphthalenone (40i, Table V)——A mixture of 70 (2.5 g) and 4 N HCl (90 ml) was heated for 2 h. The reaction mixture was evaporated in vacuo, and the residue was dissolved in MeOH (500 ml) and decolorized with activated carbon. Concentration of the solution gave 40i · HCl (1.8 g, 73%) as colorless needles.

2-Formyl-6-morpholino-3,4-dihydro-1(2H)-naphthalenone (71)—A solution of 37s (2.31 g) in benzene (50 ml) was added to a stirred mixture of powdered NaOMe (2.6 g), HCOOEt (2.96 g) and benzene (200 ml) under nitrogen at 5°C. After being stirred for 1 h at room temperature under nitrogen, the mixture was diluted with water (500 ml), acidified with conc. HCl, and extracted with AcOEt (200 ml). The extract was dried over Na₂SO₄ and evaporated in vacuo. Crystallization of the residue from MeOH gave 71 (2 g, 77%) as yellow prisms, mp 130—132 °C. Anal. Calcd for C₁₅H₁₇NO₃: C, 69.48; H, 6.61; N, 5.40. Found: C, 69.34; H, 6.67; N, 5.41.

2-Hydroxyimino-6-morpholino-3,4-dihydro-1(2H)-naphthalenone (72)—A solution of NaNO₂ (3.08 g) in water (20 ml) was added dropwise to a stirred mixture of 71 (10.5 g), CH₂Cl₂ (100 ml), AcOH (100 ml) and water (10 ml) at 0°C. When the addition was complete, the mixture was stirred for a further 1 h at 0°C, diluted with water (1.5 l), neutralized with NaHCO3 and extracted with AcOEt (500 ml × 3). The extract was washed with water, dried over Na₂SO₄ and concentrated. The deposited yellow prisms were collected by filtration to give 72 (9 g, 85%), mp 160— 190 °C (dec.). IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1680 (C=O). Anal. Calcd for $C_{14}H_{16}N_2O_3$: C, 64.60; H, 6.20; N, 10.76. Found: C, 65.10; H, 6.06; N, 10.39.

2-Amino-6-morpholino-3,4-dihydro-1(2H)-naphthalenone (40s, Table V)——A solution of 72 (9.5 g) in MeOH (200 ml) containing conc. HCl (20 ml) was hydrogenated over 10% Pd-C (2 g) at ambient temperature and pressure until the absorption of hydrogen ceased. The mixture was diluted with water (200 ml) and the catalyst was removed

by filtration. The filtrate was concentrated *in vacuo*, and the residue was dissolved in MeOH (100 ml). After treatment with activated carbon, the solution was concentrated to deposit **40s** (7.4 g) as colorless needles.

trans-5- and 6-Hydroxymethyl-2-isopropylamino-1,2,3,4-tetrahydronaphthalen-1-ol (29 and 36, Table I)—LiAlH₄ (2g) was added portionwise to a stirred solution of $7 \cdot \text{HCl}$ (1g) in tetrahydrofuran (THF, 20 ml) at room temperature and the mixture was stirred for 30 min. Excess LiAlH₄ was decomposed with water, inorganic material was filtered off, and the filtrate was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was treated with a saturated solution of fumaric acid in ether to give 29 fumarate (0.6 g) as colorless needles. ¹H-NMR (DMSO- $d_6 + D_2O$) δ : 1.10—1.30 (6H, m, CH₃ × 2), 4.80 (1H, d, J = 7 Hz, C₁-H), 5.0 (2H, s, C \underline{H}_2 -OH), 7.30—7.85 (3H, m, phenyl protons).

The 6-hydroxymethyl isomer ($36 \cdot \text{fumarate}$, 0.2 g) was obtained as colorless needles from 25 (0.4 g) by the same procedure as that described for the preparation of 29.

trans-5- and 6-Dimethylamino-2-isopropylamino-1,2,3,4-tetrahydronaphthalen-1-ol (30 and 35, Table I) — The 5-dimethylamino compound (30) was prepared from $9 \cdot \text{HCl}(1 \text{ g})$ and LiAlH₄ (2 g) according to a procedure similar to that used for the preparation of 29, and isolated as colorless needles of its hydrogen fumarate (0.5 g). The 6-dimethylamino isomer (35) was obtained from $19 \cdot \text{HCl}(0.8 \text{ g})$ and LiAlH₄ (1.6 g) by the same procedure and isolated as colorless needles of its hydrochloride (0.5 g). ¹H-NMR (DMSO- d_6 + D₂O) δ : 1.20—1.40 (6H, m, CH₃ × 2), 3.10 (3H, s, CH₃), 3.15 (3H, s, CH₃), 4.70 (1H, d, J=7 Hz), 3.10—3.60 (3H, m, phenyl protons).

trans-6-Amino-5,7-dimethyl-2-(N-substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ols (31a and 31b, Table I)
—A solution of 13a·HCl (2.1g) in MeOH (100 ml) was subjected to catalytic hydrogenolysis over 10% Pd-C (1g) at room temperature under atmospheric pressure until the absorption of hydrogen ceased. After removal of the catalyst by filtration, the filtrate was concentrated and diluted with AcOEt (100 ml) to precipitate 31a·HCl (1.4g). By the same procedure, the 2-(1-methyl-3-phenylpropyl)amino analog (31b·HCl) was prepared from 13b·HCl.

trans-5-Alkoxy-6-alkyl-2(N-substituted amino)-1,2,3,4-tetrahydronaphthalen-1-ols (32, 33 and 34, Table I)—Compounds 14b·HCl, 15·HCl and 16·HCl were converted to 32·HCl, 33·HCl and 34·HCl by catalytic hydrogenation in a manner similar to that described for the preparation of 31. These hydrochlorides were crystallized from MeOH-ether to give colorless prisms.

Acknowledgement The authors are grateful to Drs. K. Morita, M. Nishikawa and Y. Sanno for encouragement and helpful advice throughout this work.

References and Notes

- 1) A. Miyake, K. Itoh, N. Tada, M. Tanabe, M. Hirata and Y. Oka, Chem. Pharm. Bull., 31, 2329 (1983).
- 2) R. T. Brittain and G. P. Levy, Brit. J. Clin. Pharmacol., 3, (suppl. 3), 681 (1976).
- 3) C. F. Barfknecht, D. E. Nichols, D. B. Rusterholz, J. P. Long, J. A. Engelbrecht, J. M. Beaton, R. J. Bradley and D. C. Dyer, J. Med. Chem., 16, 804 (1973).
- 4) C. F. Schwender, R. E. Pike and J. Shavel, Jr., J. Med. Chem., 16, 254 (1973).
- 5) D. J. Genzer and A. G. Conrad, Ger. Patent 2219116 (1972) [Chem. Abstr., 78, 43137c (1973)].
- 6) T. Aono, Y. Araki, K. Tanaka, M. Imanishi and S. Noguchi, Chem. Pharm. Bull., 26, 1511 (1978).
- 7) G. Baddeley and R. Williamson, J. Chem. Soc., 1956, 4647.
- 8) A. Miyake, H. Kuriki, N. Tada, M. Nishikawa and Y. Oka, Chem. Pharm. Bull., 25, 3066 (1977).
- 9) J. A. Moore and M. Rahn, J. Org. Chem., 26, 1109 (1961).
- 10) W. L. Mosby, J. Org. Chem., 18, 484 (1953).
- 11) S. Senda and H. Izumi, Yakugaku Zasshi, 81, 964 (1961).
- 12) N. L. Allinger and E. S. Jones, J. Org. Chem., 27, 70 (1962).
- 13) A. Posowsky, M. Chaykovsky, S. A. Yeager, R. A. St. Amand, M. Lin and E. J. Modest, J. Heterocycl. Chem., 8, 809 (1971).
- 14) R. Pappo, U. S. Patent 3322760 (1967) [Chem. Abstr., 67, 73445s (1967)].
- 15) J. A. Durden, Jr., J. Agric. Food Chem., 19, 432 (1971).
- 16) A. Miyake, H. Kuriki, K. Itoh, M. Nishikawa and Y. Oka, Chem. Pharm. Bull., 25, 3289 (1977).
- 17) In the reactions of 41c, 41j, 41k and 41n, the free bases were used instead of the hydrochlorides. In these cases, a few drops of 20% ethanolic HCl were added to the reaction mixture.