Chem. Pharm. Bull. 32(10)4003—4011(1984)

Studies on the Constituents of Palmae Plants. II.¹⁾ The Constituents of *Rhapis exelsa* HENRY²⁾ and *R. humilis* BL.³⁾

Yasuaki Hirai, Shuichi Sanada, Yoshiteru Ida and Junzo Shoji*

School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142, Japan

(Received February 13, 1984)

Further studies have been done on the constituents of the stems, underground parts and leaves of two Palmae plants, Rhapis exelsa HENRY and R. humilis BL. We isolated and identified dioscin, Pb, deltonin, methyl proto-dioscin, methyl proto-Pb and methyl proto-deltonin from the stems, dioscin, methyl proto-dioscin and methyl proto-Pb from the underground parts, and saponaretin (=isovitexin), methyl proto-dioscin, methyl proto-Pb and methyl proto-rhapissaponin from the leaves of R. exelsa. On the other hand, we isolated and identified prosapogenin A of dioscin, dioscin, deltonin, methyl proto-prosapogenin A of dioscin, methyl proto-dioscin and methyl protodeltonin from the stems, dioscin, methyl proto-prosapogenin A of dioscin, methyl proto-dioscin and methyl proto-Pb from the underground parts, and saponaretin, vitexin, isoorientin, methyl proto-prosapogenin A of dioscin, methyl proto-dioscin and methyl proto-Pb from the leaves of R. humilis. Methyl proto-rhapissaponin is a new furostanol saponin and its structure has been established to be 26-O- β -D-glucopyranosyl 22-O-methyl-25(R)-furost-5-en-3 β ,22,26-triol 3-O-[β -D-methyl-25(R)-furost-5-en-3 β - β -D-methyl-25(R)-furost-5-en-3 β - β -D-methyl-25(R)-furost-5-en-3 β - β -D-methyl-25(R)- β -D-methyl-25 $glucopyranosyl(1 \rightarrow 4) - \alpha - L - rhamnopyranosyl(1 \rightarrow 4) - \alpha - L - rhamnopyranosyl(1 \rightarrow 4)] - [\alpha - L - rhamnopyranosyl(1 \rightarrow 4) - \alpha - L$ pyranosyl($1\rightarrow 2$)]- β -D-glucopyranoside. This is the second report of the isolation of steroidal saponins from Palmae plants, and the results are interesting from the standpoint of chemotaxonomy.

Keywords——*Rhapis exelsa*; *Rhapis humilis*; Palmae; steroidal saponin; furostanol oligoside; diosgenin; flavone glycoside; flavone *C*-glycoside; methyl proto-rhapissaponin

In the preceding paper¹⁾ we reported the isolation and structure elucidation of four steroidal glycosides and two flavonoids from the leaves, stems and underground parts of *Trachycarpus fortunei* (HOOK.) H. WENDL. That was the first report of the isolation of the steroidal saponins from Palmae plants and led us to undertake a series of chemotaxonomical studies on plants of the Palmae family. The present paper is mainly concerned with the isolation and structure elucidation of seven steroidal glycosides and one flavonoidal glycoside from *Rhapis exelsa* HENRY and seven steroidal glycosides and three flavonoidal glycosides from *R. humilis* BL.

The fresh stems, underground parts and leaves of R. exelsa and R. humilis were separately chopped and extracted with methanol at room temperature. The methanol extracts were treated by the method described in the experimental section, and six compounds, tentatively named Est_1 , Est_2 , Est_{3-a} , Est_{3-b} , Est_{4-a} and Est_{4-b} , were isolated from the stems, three compounds named Eu_1 , Eu_2 and Eu_3 from the underground parts, and four compounds named El_1 , El_2 , El_3 and El_4 from the leaves of R. exelsa. On the other hand, six compounds named Hst_1 , Hst_2 , Hst_3 , Hst_4 , Hst_5 and Hst_6 were isolated from the stems, four compounds named Hu_1 , Hu_2 , Hu_3 and Hu_4 from the underground parts, and six compounds named Hl_1 , Hl_2 , Hl_3 , Hl_4 , Hl_5 and Hl_6 from the leaves of R. humilis.

Among the constituents of the stems of R. exelsa, Est, was positive in the Liebermann-

Burchard reaction and it showed a strong absorption due to hydroxyl groups and characteristic absorption bands of a 25(R)-spiroketal moiety in the infrared (IR) spectrum.⁴⁾ On hydrolysis with $2\,\mathrm{N}$ hydrochloric acid in 50% dioxane, Est_1 gave diosgenin, glucose and rhamnose. The chemical and physical properties of Est_1 appeared to be identical with those of dioscin,¹⁾ based on comparisons of the thin-layer chromatographic (TLC) behavior, mp and the IR and $^{13}\mathrm{C}$ -nuclear magnetic resonance (NMR) spectra.

Est₂ was positive in the Liebermann–Burchard reaction and in the Ehrlich reaction.⁵⁾ The IR spectrum of Est₂ showed strong absorption due to hydroxyl groups, while the ¹³C-NMR spectrum of Est₂ revealed the presence of an O-methyl group (δ 47.4) and characteristic signals of a furostanol moiety.⁶⁾ On enzymatic hydrolysis with almond emulsin, Est₂ afforded Est₁ (dioscin) and glucose. Accordingly, Est₂ was suggested to be methyl proto-dioscin,¹⁾ and this was confirmed by comparisons of the IR and ¹³C-NMR spectra with those of an authentic sample.

Fraction Est₃ showed one spot on TLC. The IR spectrum of Fr. Est₃ showed strong absorption bands due to hydroxyl and 25(R)-spiroketal groups, while the ¹³C-NMR spectrum indicated that Fr. Est₃ might be a mixture of two spirostanol glycosides. In order to separate the two glycosides, Fr. Est₃ was methylated by Hakomori's method⁷⁾ to afford a mixture of per-O-methyl ethers, which were isolated by column chromatography on Sephadex LH-20 and on silica gel to afford per-O-methyl ethers of Est_{3-a} and Est_{3-b}. Each of the per-O-methyl ether of Est_{3-a} and Est_{3-b} was methanolized to afford diosgenin, per-O-methylrhamnopyranose, per-O-methylglucopyranose and methyl 3,6-di-O-methylglucopyranoside from the former, and diosgenin, per-O-methylrhamnopyranose, methyl 2,3-di-O-methylrhamnopyranoside and methyl 3,6-di-O-methylglucopyranoside from the latter. Based on the chemical data and comparative analysis of the 13C-NMR spectra, the per-O-methyl ethers of Est_{3-a} and Est_{3-b} were suggested to be per-O-methyl ethers of deltonin⁸⁾ and Pb,¹⁾ and this was confirmed by mixed fusion tests and by comparing the ¹H-NMR spectra with those of authentic samples. Accordingly, Fr. Est₃ was concluded to consist of deltonin and Pb. Further confirmation was obtained by comparing the ¹³C-NMR spectra with those of individual authentic samples.

Fraction Est₄ showed one spot on TLC and it was positive in the Liebermann–Burchard reaction and in the Ehrlich reaction. The ¹³C-NMR spectrum indicated that Fr. Est₄ might be a mixture of two furostanol glycosides, which were successively separated by applying triphenylmethylation.⁹⁾ The chloroform-soluble triphenylmethyl derivative afforded Est_{4-a} on treatment with 50% acetic acid, while the water-soluble triphenylmethyl derivative afforded Est_{4-b} on similar treatment. On enzymatic hydrolysis with almond emulsin Est_{4-a} gave glucose and deltonin, while Est_{4-b} afforded glucose and Pb. Based on the chemical and physical properties, Est_{4-a} and Est_{4-b} were suggested to be methyl proto-deltonin⁸⁾ and methyl proto-Pb,¹⁾ and these assignments were confirmed by comparisons of the IR and ¹³C-NMR spectra with those of authentic samples. Thus, it was concluded that Fr. Est₄ is a mixture of methyl proto-Pb (36%) and methyl proto-deltonin (64%).

As regards the constituents of the underground parts of R. exelsa, Eu_1 , Eu_2 and Eu_3 were identified as dioscin, methyl proto-dioscin and methyl proto-Pb, respectively. Furthermore, among the constituents of the leaves of R. exelsa, El_1 and El_2 were identified as methyl proto-dioscin and methyl proto-Pb, respectively.

 El_3 , $C_{64}H_{106}O_{31}$, was positive in the Liebermann–Burchard reaction and in the Ehrlich reaction. The IR spectrum of El_3 showed strong absorption due to hydroxyl groups. The ¹³C-NMR spectrum of El_3 showed characteristic furostanol carbon signals and an O-methyl carbon signal (δ 47.4 ppm). On enzymatic hydrolysis with almond emulsin, El_3 afforded D-glucose and a prosapogenin of El_3 (pro- El_3), $C_{57}H_{92}O_{25}$, which showed characteristic absorption bands due to 25(R)-spiroketal in the IR spectrum and five anomeric carbon signals

at δ 100.5, 102.1, 102.3, 102.7 and 106.5 ppm in the 13 C-NMR spectrum. Consequently, pro-El₃ was suggested to be a 25(R)-spirostanol pentaoside. On acidic hydrolysis, pro-El₃ gave diosgenin, glucose and rhamnose, and the 13 C-NMR signals at δ 18.3, 18.6 and 18.9 ppm indicated the presence of three rhamnose moieties in pro-El₃. Methylation of pro-El₃ by Hakomori's method afforded a per-O-methyl derivative, which was partially methanolyzed with methanolic 0.5 N hydrochloric acid, and the reaction mixture was further methylated by Hakomori's method. The products were isolated by column chromatography to afford four compounds, tentatively named compounds A, B, C and D. Compound A was identified as 3-O-methyldiosgenin and the ¹H-NMR spectra of compounds B, C and D showed one anomeric proton signal at δ 4.32 ppm, two anomeric proton signals at δ 4.35 and 5.24 ppm, and four anomeric proton signals at δ 4.35, 4.62, 5.02 and 5.22 ppm, respectively. On methanolysis with methanolic 1 N hydrochloric acid, diosgenin and per-O-methylglucopyranose were obtained from compound B, diosgenin, per-O-methylrhamnopyranose and methyl 3,4,6-tri-O-methylglucopyranoside from compound C, and diosgenin, per-Omethylglucopyranose, methyl 2,3-di-O-methylrhamnopyranoside and methyl 2,3,6-tri-Omethylglucopyranoside from compound D. Accordingly, compounds B, C and D were deduced to be per-O-methylates of diosgenin 3-O-glucopyranoside, diosgenin 3-O-rhamnopyranosyl($1 \rightarrow 2$)-glucopyranoside and diosgenin 3-O-glucopyranosyl($1 \rightarrow 4$)-rhamnopyran $osyl(1\rightarrow 4)$ -rhamnopyranosyl(1\rightarrow 4)-glucopyranoside, respectively. Consequently, the structure of pro-El₃ was revealed to be diosgenin 3-O-[glucopyranosyl($1\rightarrow 4$)-rhamnopyranosyl- $(1 \rightarrow 4)$ -rhamnopyranosyl $(1 \rightarrow 4)$][rhamnopyranosyl $(1 \rightarrow 2)$]glucopyranoside. constants of anomeric carbon signals of pro-El₃ in the ¹³C-NMR spectrum revealed the configurations of the two glucoses to be all β ($J_{C_1-H_1}=153$ and $155\,\mathrm{Hz}$) and those of the three rhamnoses to be all α ($J_{C_1-H_1}=169$ Hz each). Finally, the structures of pro-El₃ and El₃ were concluded to be diosgenin 3-O-[β -D-glucopyranosyl($1 \rightarrow 4$)- α -L-rhamnopyranosyl($1 \rightarrow 4$)-D-glucopyranosyl 22-O-methyl-25(R)-furost-5-en-3 β ,22,26-triol 3-O-[β -D-glucopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl $(1 \rightarrow 4)$][α -L-rhamnopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranoside, respectively. El₃ and pro-El₃ described above are new steroidal oligosides and we propose the names methyl proto-rhapissaponin for the former and rhapissaponin for the latter.

El₄, pale yellow plates, was positive with ferric chloride reagent and with magnesium-hydrochloric acid reagent. Based on the IR, ultraviolet (UV) and 13 C-NMR spectra, El₄ was considered to be a flavonoidal glycoside. In the 13 C-NMR spectrum of El₄, the chemical shift (δ 79.1 ppm) of the anomeric carbon signal suggested that El₄ is a *C*-glycoside, because the anomeric carbon signal of *C*-glycoside was seen at considerably higher field than that of *O*-glycoside. The 1 H-NMR spectrum of El₄ showed signals at δ 6.78 ppm (1H, s, C₃-H), 6.95 and 7.95 ppm (2H each, d, J=9 Hz, C_{2',3',5',6'}-H) and 6.52 ppm (1H, s, C₈-H). Based on the NMR analyses, El₄ was elucidated to be saponaretin (=isovitexin), 10 and this was confirmed by comparisons of the IR spectrum and the TLC behavior with those of an authentic sample.

Among the constituents of the stems of R. humilis, Hst₁ was suggested to be a 25(R)-spirostanol oligoside on the basis of color reactions, and the IR and ¹H-NMR spectra. On acidic hydrolysis, Hst₁ gave diosgenin, glucose and rhamnose. Hst₁ appeared to be identical with prosapogenin A of dioscin, ¹¹⁾ on the basis of comparisons of the IR and ¹³C-NMR spectra.

Hst₄, $C_{46}H_{76}O_{18}$, gave positive Liebermann–Burchard and Ehrlich reactions, and the ¹³C-NMR spectrum showed characteristic furostanol carbon signals. On enzymatic hydrolysis with almond emulsin, Hst₄ afforded glucose and a prosapogenin, which was identified as Hst₁ (prosapogenin A of dioscin) by comparisons of the IR and ¹³C-NMR spectra. The structure of Hst₄ was concluded to be 26-O- β -D-glucopyranosyl 22-O-methyl-25(R)-furost-5-

en-3 β ,22,26-triol 3-O- α -L-rhamnopyranosyl(1 \rightarrow 2)- β -D-glucopyranoside by comparisons of the IR and ¹³C-NMR spectra with those of an authentic sample.^{5,8,12)} Furthermore, Hst₂, Hst₃, Hst₅ and Hst₆ were similarly identified as dioscin, deltonin, methyl proto-dioscin and methyl proto-deltonin, respectively.

The constituents of the underground parts of R. humilis, Hu_1 , Hu_2 , Hu_3 and Hu_4 were identified by the methods described above as dioscin, methyl proto-prosapogenin A of dioscin, methyl proto-dioscin and methyl proto-Pb, respectively. Furthermore, the constituents of the leaves of R. humilis, Hl_1 , Hl_2 , Hl_3 and Hl_4 , were similarly identified as methyl proto-prosapogenin A of dioscin, methyl proto-dioscin, methyl proto-Pb and saponaretin (=isovitexin), respectively.

Hl₅ and Hl₆ were pale yellow needles, positive with ferric chloride reagent and with magnesium hydrochloric acid reagent. Based on the IR, UV and ¹³C-NMR spectra, Hl₅ and Hl₆ were suggested to be flavonoidal glycosides. In the ¹³C-NMR spectra of Hl₅ and Hl₆, the chemical shifts (δ 78.7 and 79.0 ppm) of the anomeric carbon signals suggested that Hl₅ and Hl₆ are *C*-glycosides as in the case of El₄ (saponaretin) described above. The ¹H-NMR spectrum of Hl₅ showed signals at δ 6.78 ppm (1H, s, C₃-H), 6.90, 8.03 ppm (2H each, d, J=9 Hz, C_{2',3',5',6'}-H) and 6.28 ppm (1H, s, C₆-H), while that of Hl₆ showed signals at δ 6.68 ppm (1H, s, C₃-H), 6.89 ppm (1H, d, J=9 Hz, C_{5'}-H), 7.39 ppm (1H, d, J=2 Hz, C_{2'}-H), 7.42 ppm (1H, dd, J₁=2 Hz, J₂=9 Hz, C_{6'}-H) and 6.49 ppm (1H, s, C₈-H). Based on the NMR analysis, Hl₅ and Hl₆ were elucidated to be vitexin¹³⁾ and isoorientin, ¹⁴⁾ and these identifications were confirmed by comparisons of the IR spectra and the TLC behavior with those of authentic samples.

In this paper the isolation and the structure elucidation are reported of four diosgenin oligosides, namely dioscin, deltonin, Pb and rhapissaponin, four proto-diosgenin bisdesmosides, methyl proto-dioscin, methyl proto-deltonin, methyl proto-Pb and methyl proto-rhapissaponin, and one flavonoidal C-glycoside, saponaretin (=isovitexin) from Rhapis exelsa HENRY, as well as three diosgenin oligosides, namely prosapogenin A of dioscin, dioscin and deltonin, four proto-diosgenin bisdesmosides, methyl proto-prosapogenin A of dioscin, methyl proto-dioscin, methyl proto-deltonin and methyl proto-Pb, and three flavonoidal C-glycosides, saponaretin (=isovitexin), vitexin and isoorientin from R. humilis Bl. Among the diosgenin and proto-diosgenin oligosides described in this paper rhapissaponin and methyl proto-rhapissaponin are novel steroidal oligosides. Our previous paper was the first report of the isolation of steroidal saponins from a Palmae plant, Trachycarpus fortunei (HOOK.) H. WENDL., and this paper is only the second such report. In another preliminary study, a wide distribution of steroidal saponins has been found in Palmae plants and the results will be reported shortly.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus (hot-stage type) and are uncorrected. The optical rotations were measured with a JASCO DIP-140 polarimeter. The IR spectra were recorded with a JASCO IRA-1 instrument, and the UV spectra were measured with a Hitachi 340 spectrometer. The NMR spectra were recorded with a JEOL FX-100 spectrometer (100 MHz for 1 H-NMR and 25 MHz for 13 C-NMR). Chemical shifts are given on a δ (ppm) scale with tetramethylsilane as an internal standard. Gas-liquid chromatography (GLC) was run on a Shimadzu GC-6A unit equipped with a flame ionization detector. TLC was performed on precoated Kieselgel 60 F₂₅₄ plates (Merck) using CHCl₃-MeOH-H₂O (7:3:0.4, v/v), and detection was achieved by spraying 10% H₂SO₄ or the Ehrlich reagent followed by heating.

Extraction and Isolation of the Compounds from the Stems, Underground Parts and Leaves of Rhapis exelsa Henry and R. humilis Bl.—I-1) Stems of R. exelsa: The fresh stems (2.3 kg) were chopped and extracted with MeOH $(5 \text{ l} \times 3)$ at room temperature. The MeOH extract was evaporated to dryness in vacuo. The residue (169 g) was suspended in water (1 l) and partitioned with ether $(500 \text{ ml} \times 3)$. The ether layer was concentrated in vacuo to afford the ether extract (12 g), and the aqueous layer was partitioned with BuOH saturated with water $(500 \text{ ml} \times 3)$. The BuOH

4008 Vol. 32 (1984)

layer was concentrated under reduced pressure to afford the BuOH extract (15 g). The BuOH extract was subjected to column chromatography on Sephadex LH-20 with MeOH to afford a fraction rich in Est₁, Est₂, Est_{3-(a,b)} and Est_{4-(a, b)}. This was subjected to column chromatography on silica gel with CHCl₃-MeOH-H₂O (75:25:3, v/v) to provide five fractions. Among them, the fraction rich in Est₁ and Est_{3-(a,b)} was rechromatographed on silica gel with the same solvent as described above to afford Est₁ (0.3 g) and a mixture of Est_{3-a} and Est_{3-b} (Fr. Est₃; 0.3 g). The Est₂rich fraction was refluxed with MeOH for 2h on a water bath and the solution was evaporated to dryness. The residue was recrystallized from MeOH to afford Est₂ (4.0 g). The fraction rich in Est₂, Est_{4-a} and Est_{4-b} was rechromatographed on silica gel with the same solvent as described above to provide fractions rich in Est₂ and in Est_{4-a} plus Est_{4-b}. Each fraction was refluxed with MeOH and treated as described above to afford Est₂ (0.5 g) from the former, and a mixture of Est_{4-a} and Est_{4-b} (Fr. Est₄; 1.6 g) from the latter. I-2) Underground parts of R. exelsa: The fresh underground parts (2.6 kg) were treated as described above to afford MeOH extract (130 g), ether extract (7 g) and BuOH extract (26 g). The BuOH extract (26 g) was treated by procedure I-1 to afford Eu₁ (0.3 g), Eu₂ (3.0 g) and Eu₃ (1.3 g). I-3) Leaves of R. exelsa: The fresh leaves (1.0 kg) were treated according to procedure I-1 to afford MeOH extract (118 g), ether extract (28 g) and BuOH extract (20 g). The BuOH extract (10.4 g) was subjected to column chromatography on Sephadex LH-20 with MeOH to yield two fractions (Frs. 1 and 2). Fraction 1 was chromatographed on silica gel with CHCl₃-MeOH-H₂O (7:3:0.4, v/v) to provide four fractions. Each fraction was purified by column chromatography on Sephadex LH-20 with MeOH to afford an El₁-rich eluate, an El₂-rich eluate and an El₃-rich eluate. The El₁-rich eluate was treated with MeOH to afford pure El₁ (1.1 g). The El₂-rich eluate and the El₃-rich eluate were individually refluxed with MeOH (50 ml) for 2 h on a water bath, and each solution was concentrated to 5 ml. These concentrates were diluted with AcOEt (200 ml) to form precipitates of El₂ (3.0 g) and El₃ (0.2 g), which were collected by filtration and dried. Fraction 2 (El₄-rich fraction) was purified by column chromatography on Sephadex LH-20 with MeOH followed by recrystallization from MeOH to afford pure El₄ (0.6 g). II-1) Stems of R. humilis: Extraction and isolation of the compounds from the stems (2.4 kg) were carried out according to procedure I-1 to afford MeOH extract (222 g), ether extract (8 g) and BuOH extract (20 g). Hst₁ (0.3 g), Hst₂ (0.1 g), Hst₃ (0.4 g), Hst₄ (0.8 g), Hst₅ (0.7 g) and Hst₆ (1.5 g) were isolated from the BuOH extract. II-2) Underground parts of R. humilis: The fresh underground parts (3.0 kg) were treated according to procedure I-2 to afford MeOH extract (130 g), ether extract (8 g) and BuOH extract (21 g). The BuOH extract was treated according to procedure I-2 to give Hu₁ (0.1 g), Hu₂ (0.8 g), Hu₃ (2.1 g) and Hu₄ (3.1 g). II-3) Leaves of R. humilis: The fresh leaves (0.9 kg) were treated according to procedure I-3 to afford MeOH extract (125 g), ether extract (25 g) and BuOH extract (12 g). The BuOH extract (12 g) was subjected to column chromatography on Sephadex LH-20 with MeOH to provide two fractions, namely a fraction rich in Hl₁, Hl₂ and Hl₃ (8.5 g) and a fraction rich in Hl₄, Hl₅ and Hl₆ (2.5 g). The former fraction was treated according to procedure I-3 to afford Hl₁ (0.2 g), Hl₂ (0.3 g) and Hl₃ (2.1 g). The latter fraction was chromatographed on an Avicel column, which was successively eluted with CHCl3-MeOH-H2O (8:1.5:1, v/v, lower phase), (7:2:1, v/v, lower phase), (7:2.5:1, v/v, lower phase) and MeOH. The fraction eluted with the second solvent was evaporated to dryness, and the residue was crystallized from 50% AcOH to afford Hl₅, which was repeatedly recrystallized from MeOH to afford pure HI₅ (0.1 g). The mother liquor was evaporated under reduced pressure and the residue was repeatedly recrystallized from MeOH to afford Hl₄ (0.04 g). The fraction eluted with the third solvent was evaporated to dryness and the residue was repeatedly recrystallized from MeOH to afford

Properties of the Constituents of Rhapis exelsa and R. humilis—Est₁, Eu₁, Hst₂ and Hu₁: colorless needles from MeOH, mp 243—246 °C (dec.), $[\alpha]_D^{16}$ –110.3 ° (c = 0.55, MeOH). IR (KBr) cm⁻¹: 3600—3200 (OH), 980, 920, 900, 864 (intensity 920 < 900, 25(R)-spiroketal), 13 C-NMR (pyridine- d_5) δ : 18.4 (C₆ of rha), 18.6 (C₆ of rha), 100.4 (C₁ of gle), 101.9 (C₁ of rha), 103.0 (C₁ of rha). Anal. Calcd for C₄₅H₇₂O₁₆·H₂O: C, 59.71; H, 8.46. Found: C, 59.75; H, 8.34. These compounds were identified as dioscin by comparing the TLC behavior, and the IR and ¹³C-NMR spectra with those of an authentic sample. Est₂, El₁, Eu₂, Hl₂, Hst₅ and Hu₃: colorless needles from MeOH, mp 185—189 °C (dec.), $[\alpha]_D^{16} - 102.9^{\circ}$ (c = 1.00, pyridine). IR (KBr) cm⁻¹: 3540—3220 (OH), ¹³C-NMR (pyridine- d_5) δ : 18.5 (C₆ of rha), 18.6 (C₆ of rha), 47.4 (OCH₃), 100.3 (C₁ of glc), 102.0 (C₁ of rha), 102.9 (C₁ of rha), 104.8 (C₁ of glc). Anal. Calcd for C₅₂H₈₆O₂₂: C, 58.74; H, 8.15. Found: C, 58.85; H, 8.15. These compounds were identified as methyl protodioscin by comparing the TLC behavior, and the IR and ¹³C-NMR spectra with those of an authentic sample. El₂, Eu₃, Hl₃ and Hu₄: a white powder from MeOH–AcOEt, (mp 189–190 °C (dec.)), $[\alpha]_D^{16}$ – 86.4 ° (c = 1.03, pyridine), IR (KBr) cm⁻¹: 3600—3250 (OH), ¹³C-NMR (pyridine- d_5) δ : 18.3 (C₆ of rha), 18.5 (C₆ of rha), 18.8 (C₆ of rha), 47.4 (OCH₃), 100.4 (C₁ of glc), 102.3 (C₁ of rha), 103.0 (C₁ of rha), 103.0 (C₁ of rha), 104.7 (C₁ of glc). Anal. Calcd for $C_{58}H_{96}O_{26}$: C, 57.60; H, 8.00. Found: C, 57.28; H, 8.00. These compounds were identified as methyl proto-Pb by comparing the TLC behavior, and the IR and 13C-NMR spectra with those of an authentic sample. El3: a white powder from MeOH–AcOEt, (mp 196—199 °C (dec.)), $[\alpha]_D^{20}$ – 92.4 ° (c = 1.02, pyridine), IR (KBr) cm⁻¹: 3460—3320 (OH), ${}^{13}\text{C-NMR}$ (pyridine- d_5) δ : 18.2 (C₆ of rha), 18.5 (C₆ of rha), 18.8 (C₆ of rha), 47.3 (OCH₃), 100.4 (C₁ of glc), $102.0~(C_1~or~rha),~102.3~(C_1~of~rha),~102.6~(C_1~of~rha),~104.8~(C_1~of~glc),~106.5~(C_1~of~glc).$ Anal. Calcd for C₆₄H₁₀₆O₃₁·2H₂O: C, 54.61; H, 7.88. Found: C, 54.56; H, 7.63. El₄ and Hl₄: pale yellow plates from MeOH, mp 264—266 °C (dec.), $[\alpha]_D^{20}$ +26.1 ° (c = 0.32, MeOH), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 330 (4.18), 268 (4.18), IR (KBr) cm⁻¹: 3500—3300, 1640, 1610, 1 H-NMR (DMSO- d_{6}) δ : 4.60 (1H, d, J=10 Hz, C_{1} -H of glc), 6.52 (1H, s, C_{8} -H), 6.78 (1H,

s, C₃-H), 6.95, 7.95 (2H, each, ABq, J=9 Hz, $C_{2',3',5',6'}$ -H), 13 C-NMR (DMSO- d_6) δ : 79.1 (C₁ of glc). El₄ and Hl₄ were identified as saponaretin (=isovitexin) by comparing the TLC behavior and the IR spectrum with those of an authentic sample. The ¹H- and ¹³C-NMR data of both compounds agreed very closely with the reported values. Hst₁: colorless needles from aqueous MeOH, mp 264—268 °C (dec.), $[\alpha]_D^{20}$ –92.4 ° (c=1.03, pyridine), IR (KBr) cm⁻¹: 3540—3330 (OH), 980, 920, 900, 864 (intensity 920 < 900, 25(R)-spiroketal), 13 C-NMR (pyridine- d_5) δ : 18.6 (C₆ of rha), 100.6 (C₁ of glc), 102.0 (C₁ of rha). Anal. Calcd for C₃₉H₆₂O₁₂·2H₂O: C, 61.71; H, 8.77. Found: C, 61.33; H, 8.67. Hst₁ was identified as prosapogenin A of dioscin by comparing the TLC behavior, and the IR and ¹³C-NMR spectra with those of an authentic sample. Hst₃: colorless needles from *n*-BuOH, mp 297—300 °C (dec.), $[\alpha]_D^{20}$ –88.3 °C (dec.) $(c = 1.00, \text{ pyridine}), IR \text{ (KBr) cm}^{-1}: 3600 - 3200 \text{ (OH)}, 980, 915, 900, 860 \text{ (intensity } 915 < 900, 25(R)-spiroketal)}, ^{13}\text{C-spiroketal}$ NMR (pyridine-d₅) δ: 18.6 (C₆ of rha), 100.2 (C₁ of glc), 101.7 (C₁ of rha), 105.0 (C₁ of glc). Anal. Calcd for C₄₅H₇₂O₁₇·H₂O: C, 59.85; H, 8.26. Found: C, 59.62; H, 8.35. Hst₃ was identified as deltonin by comparing the TLC behavior, and the IR and 13C-NMR spectra with those of an authentic sample. Hst4, Hl1 and Hu2: a white powder from MeOH-AcOEt, (mp 178—180 °C (dec.)), $[\alpha]_D^{20}$ -81.2 ° (c=0.97, pyridine), IR (KBr) cm⁻¹: 3460—3300 (OH), ¹³C-NMR (pyridine-d₅) δ: 18.5 (C₆ of rha), 47.4 (OCH₃), 100.4 (C₁ of glc), 101.8 (C₁ of rha), 104.7 (C₁ of glc). Anal. Calcd for $C_{46}H_{76}O_{18} \cdot 3/2H_2O$: C, 58.52; H, 8.43. Found: C, 58.45; H, 8.13. These compounds were identified as methyl proto-prosapogenin A of dioscin by comparing the TLC behavior, and the IR and ¹³C-NMR spectra with those of an authentic sample. Hl₅: pale yellow needles from MeOH, mp 264—266 °C (dec.), $[\alpha]_D^{20}$ –21.8 ° (c = 0.25, 50% pyridine), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 330 (4.39), 266 (4.39), IR (KBr) cm⁻¹: 3460—3200, 1650, 1610. ¹H-NMR (DMSO- d_6) δ : 4.69 (1H, d, J = 10 Hz, C_1 –H of glc), 6.28 (1H, s, C_6 –H), 6.78 (1H, s, C_3 –H), 6.90, 8.03 (2H each, ABq, J=9 Hz, $C_{2',3',5',6'}$ -H), ¹³C-NMR (DMSO- d_6) δ : 78.7 (C_1 of glc). The ¹H- and ¹³C-NMR data of Hl₅ agreed very closely with the reported values for vitexin, and HI₅ was confirmed to be vitexin by comparing the TLC behavior and the IR spectrum with those of an authentic sample. Hl₆: pale yellow needles from MeOH, mp 237—239 °C (dec.), $[\alpha]_D^{20}$ $+31.5^{\circ}$ (c=0.51, MeOH), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 348 (4.47), 269 (4.42), 254 (4.37). IR (KBr) cm⁻¹: 3550—3300, 1640, 1610, ${}^{1}\text{H-NMR}$ (DMSO- d_{6}) δ : 4.59 (1H, d, J = 10 Hz, C_{1} –H of glc), 6.49 (1H, s, C_{8} –H), 6.68 (1H, s, C_{3} –H), 6.89 (1H, d, J = 9 Hz, $C_5 - H$), 7.39 (1H, d, J = 2 Hz, $C_2 - H$), 7.42 (1H, dd, J = 2, 9 Hz, $C_6 - H$), ¹³C-NMR (DMSO- d_6) δ : 79.6 (C₁ of glc). The ¹H- and ¹³C-NMR data of Hl₆ agreed very closely with the reported values for isoorientin, and Hl₆ was confirmed to be isoorientin by comparing the TLC behavior and the IR spectrum with those of an authentic sample. Hst₆: a white powder from MeOH–AcOEt, (mp 196–199°C (dec.)), $[\alpha]_D^{20}$ – 59.8° (c = 1.00, pyridine), IR (KBr) cm⁻¹: 3480–3260 (OH), ¹³C-NMR (pyidine- d_5) δ : 18.6 (C₆ of rha), 100.2 (C₁ of glc), 101.7 (C₁ of rha), 104.8 $(C_1 \text{ of glc})$, 105.0 $(C_1 \text{ of glc})$. Anal. Calcd for $C_{52}H_{86}O_{23}$: C, 57.87; H, 8.03. Found: C, 57.47; H, 7.95. Hst₆ was identified as methyl proto-deltonin by comparisons of the TLC behavior, and the IR and 13C-NMR spectra with those of an authentic sample.

Isolation of Est_{4-a} and Est_{4-b} from Fr. Est₄—Triphenyl chloromethane (200 mg) was added to a solution of Fr. Est₄ (100 mg) in pyridine (2 ml) and the solution was left at room temperature for 2 d. The reaction mixture was diluted with water (50 ml) and extracted with CHCl₃. The CHCl₃ solution was washed with water, dried over Na₂SO₄ and then evaporated to dryness *in vacuo*. The residue was dissolved in 50% AcOH (10 ml) and the solution was heated for 30 min on a boiling water bath. After cooling, the reaction mixture was neutralized with NaHCO₃ and evaporated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel with CHCl₃—MeOH-H₂O (7:3:0.4, v/v) to afford Est_{4-a} (64 mg). On the other hand, the aqueous layer was treated by a procedure similar to that described for the CHCl₃ solution to afford Est_{4-b} (36 mg). Est_{4-a}: a white powder from MeOH-AcOEt, (mp 196—199 °C (dec.)). This compound was identical with Hst₆ (methyl proto-deltonin) on the basis of comparisons of the IR and ¹³C-NMR spectra. Est_{4-b}: a white powder from MeOH-AcOEt, (mp 189—190 °C (dec.)). This compound was identical with El₂, Eu₃, Hl₃ and Hu₄ (methyl proto-Pb) on the basis of comparisons of the TLC behavior, and the IR and ¹³C-NMR spectra.

Enzymatic Hydrolyses of Est₂, Est_{4-a}, Est_{4-b}, El₃ and Hst₄—An aqueous solution of each of Est₂ (100 mg), Est_{4-a} (50 mg), Est_{4-b} (100 mg), El₃ (50 mg) and Hst₄ (50 mg) was incubated with almond emulsin (50 mg) at 37 °C for 4h. The precipitate was collected by filtration, dried and subjected to column chromatography on silica gel with CHCl₃-MeOH-H₂O (8:2:0.2, v/v). The aqueous filtrate was evaporated to dryness in vacuo and the residue was examined by GLC (column, 5% SE-52 on Chromosorb W 3 mm × 2 m; column temp., 200 °C; injection temp., 220 °C; carrier gas, N_2 1.0 kg/cm²; t_R (min) 8.8, 12.0 (TMS-glucose)). The hydrolysate of each compound was characterized as follows. Hydrolysate of Est₂: the prosapogenin was obtained as colorless needles from MeOH, mp 243—246 °C (dec.), and was found to be identical with Est₁, Eu₁, Hst₂ and Hu₁ (dioscin) by comparing the TLC behavior, and the IR and ¹³C-NMR spectra. Hydrolysate of Est_{4-a}: the prosapogenin was obtained as colorless needles from n-BuOH, mp 297—300 °C (dec.), and was identical with Hst₃ (deltonin) on the basis of comparisons of the TLC behavior, and the IR and ¹³C-NMR spectra. Hydrolysate of Est_{4-b}: the prosapogenin was obtained as colorless needles from MeOH, mp 243—245 °C (dec.), $[\alpha]_D^{16}$ – 104.7 ° (c = 0.55, MeOH), IR (KBr) cm⁻¹: 3600—3240 (OH), 984, 920, 902, 865 (intensity 920 < 902, 25(R)-spiroketal), 13 C-NMR (pyridine- d_5) δ : 18.4 (C₆ of rha), 18.6 (C₆ of rha), 18.8 (C₆ of rha), 100.4 (C₁ of glc), 102.0 (C₁ of rha), 102.3 (C₁ of rha), 103.0 (C₁ of rha). Anal. Calcd for C₅₁H₈₂O₂₀·3/2H₂O: C, 58.77; H, 8.22. Found: C, 58.64; H, 8.25. This compound was identified as Pb by comparisons of the TLC behavior, and the IR and ¹³C-NMR spectra with those of an authentic sample. Hydrolysate of El₃: the prosapogenin (pro-El₃)

was obtained as colorless needles from aqueous MeOH, mp 224—227 °C (dec.), $[\alpha]_{\rm D}^{20}-110.0$ ° $(c=1.04, {\rm pyridine})$, IR (KBr) cm $^{-1}$: 3600—3200 (OH), 980, 920, 900, 867 (intensity 920 < 900, 25(R)-spiroketal), 13 C-NMR (pyridine- d_5) δ : 18.2 (C_6 of rha), 18.5 (C_6 of rha), 18.7 (C_6 of rha), 100.5 (d, $J_{\rm C_1-H_1}=153\,{\rm Hz}$, C_1 of glc), 102.1 (d, $J_{\rm C_1-H_1}=169\,{\rm Hz}$, C_1 of rha), 102.3 (d, $J_{\rm C_1-H_1}=169\,{\rm Hz}$, C_1 of rha), 102.7 (d, $J_{\rm C_1-H_1}=169\,{\rm Hz}$, C_1 of rha), 106.5 (d, $J_{\rm C_1-H_1}=155\,{\rm Hz}$, C_1 of glc). Anal. Calcd for $C_{57}H_{92}O_{25}\cdot H_2O$: C, 57.27; H, 7.92. Found: C, 57.43; H, 8.18. Hydrolysate of Hst₄: the prosapogenin was obtained as colorless needles from aqueous MeOH, mp 264—268 °C (dec.), and was found to be identical with Hst₁ (prosapogenin A of dioscin) by comparing the TLC behavior, and the IR and 13 C-NMR spectra.

Acidic Hydrolyses of Est₁, Rhapissaponin (Pro-El₃), and Hst₁——Est₁ (20 mg), rhapissaponin (5 mg) and Hst₁ (10 mg) were separately hydrolyzed with 2 n HCl-50% dioxane (5 ml) by refluxing for 2 h on a water bath, then each reaction mixture was diluted with water and extracted with CHCl₃. The CHCl₃ extracts were individually washed with water, dried over Na₂SO₄ and evaporated *in vacuo*. Each residue was repeatedly recrystallized from acetone to afford a common aglycone (8 mg from Est₁, 2 mg from rhapissaponin and 4 mg from Hst₁) as colorless needles, mp 205—209 °C, IR (KBr) cm⁻¹: 3400 (OH), 980, 920, 900, 860 (intensity 920 < 900, 25(R)-spiroketal). *Anal.* Calcd for C₂₇H₄₂O₃: C, 78.21; H, 10.21. Found: C, 78.31; H, 10.51. The common aglycone was identified as diosgenin by mixed fusion and by comparing the IR spectrum with that of an authentic sample. Each aqueous layer was neutralized with NaHCO₃ and the neutral solution was evaporated to dryness under reduced pressure. Each residue was derivatized to the trimethylsilyl (TMS) ether and examined by GLC under the same conditions as described above. Sugars from Est₁, rhapissaponin and Hst₁: t_R (min) 3.4, 4.4 (rhamnose), 8.8, 12.0 (glucose).

Methylation of Fr. Est₃ by Hakomori's Method—According to Hakomori's method, NaH (250 mg) was washed with anhydrous benzene followed by petroleum ether, then warmed with dimethylsulfoxide (DMSO, 10 ml) at 65 °C in an oil bath for 1 h with stirring under an N₂ flow. A solution of Fr. Est₃ (100 mg) in a small amount of DMSO was then added and the mixture was stirred for 1 h under an N2 flow. CH3I (2 ml) was then added and the reaction mixture was allowed to stand at room temperature for 1 h with stirring. After dilution with water, the reaction mixture was extracted with CHCl₃ and the organic layer was washed with water, dried and evaporated to dryness. The $residue \ was \ chromatographed \ on \ Sephadex \ LH-20 \ with \ MeOH, \ and \ then \ on \ silica \ gel \ with \ hexane-acetone \ (3:1,v/v)$ to afford two per-O-methylates, per-O-methylate of Est_{3-a} (58 mg) and per-O-methylate of Est_{3-b} (36 mg). Per-Omethylate of Est_{3-a}: colorless needles from aqueous MeOH, mp 101—103 °C, IR (Nujol) cm⁻¹: OH (nil), ¹H-NMR J = 7 Hz, C_1 -H of glc), 5.27 (1H, br s, C_1 -H of rha), 5.31 (1H, m, olefinic H). Per-O-methylate of Est_{3-a} was identified as deltonin per-O-methylate by mixed fusion and by comparing the IR spectrum with that of an authentic sample. Per-O-methylate of Est_{3-b}: colorless needles from aqueous MeOH, mp 126—127 °C, IR (Nujol) cm⁻¹: OH (nil), ¹H-NMR (CDCl₃) δ : 0.79 (3H, s, CH₃), 1.03 (3H, s, CH₃), 3.33—3.50 (OCH₃), 4.40 (1H, d, J = 7 Hz, C₁-H of glc), 5.02 (1H, br s, C_1 -H of rha), 5.21 (2H, br s, $2 \times C_1$ -H of rha), 5.34 (1H, m, olefinic H). Per-O-methylate of Est_{3-b} was identified as Pb per-O-methylate by mixed fusion and by comparing the IR spectrum with that of an authentic

Methanolyses of Per-O-methylates of Est_{3-a} and Est_{3-b} with Methanolic 1 N HCl—Per-O-methylates of Est_{3-a} (5 mg) and Est_{3-b} (5 mg) were individually refluxed with methanolic 1 N HCl (5 ml) for 2 h. After cooling, each reaction mixture was neutralized with Ag₂CO₃ and the resulting precipitate was filtered off. The filtrate was concentrated to dryness and the residue was examined by TLC (solvent: hexane–acetone (3:1, v/v)) and GLC (column, 5% NPGS on Shimalite W 3 mm × 2 m; column temp. 150 °C; injection temp. 170 °C; carrier gas N₂, 1.0 kg/cm²). TLC Rf: per-O-methylates of Est_{3-a} and Est_{3-b} 0.39 (diosgenin). GLC t_R (min) as TMS derivative: Per-O-methylate of Est_{3-a} 2.4 (methyl 2,3,4-tri-O-methylglucopyranoside), 6.4 (methyl 3,6-di-O-methylglucopyranoside); per-O-methylate of Est_{3-b} 2.4 (methyl 2,3,4-tri-O-methylrhamnopyranoside), 6.4 (methyl 3,6-di-O-methylglucopyranoside), 6.6 (methyl 2,3-di-O-methylrhamnopyranoside).

Methylation of Rhapissaponin by Hakomori's Method—Rhapissaponin (12 mg) was methylated according to Hakomori's method, and the reaction mixture was treated by the same procedure as described above. Rhapissaponin per-O-methylate was crystallized from aqueous MeOH to afford colorless needles, mp 104—106 °C, IR (Nujol) cm⁻¹: OH (nil), ¹H-NMR (CDCl₃) δ : 0.79 (3H, s, CH₃), 1.03 (3H, s, CH₃), 3.30—3.58 (OCH₃), 4.40 (1H, d, J=7 Hz, C₁-H of glc), 4.60 (1H, d, J=7 Hz, C₁-H of glc), 5.05 (1H, br s, C₁-H of rha), 5.22 (2H, br s, $2 \times C_1$ -H of rha), 5.35 (1H, m, olefinic H).

Partial Methanolysis of Rhapissaponin Per-O-methylate with Methanolic 0.5 N HCl —A solution of rhapissaponin per-O-methylate (15 mg) in 2 ml of methanolic 0.5 N HCl was refluxed for 15 h. After cooling, the reaction mixture was neutralized with NaHCO₃ and evaporated to dryness *in vacuo*. The residue was methylated by Hakomori's method. The reaction mixture was treated in the usual way. The product was chromatographed on silica gel with hexane–acetone (4:1, v/v) to afford four compounds, tentatively named compounds A (7 mg), B (2 mg), C (3 mg) and D (2 mg). Compound A: a colorless syrup (not crystallized), IR (Nujol) cm⁻¹: OH (nil). This compound was identified as 3-O-methyl diosgenin by comparing the TLC behavior with that of an authentic sample. Compound B: a colorless syrup (not crystallized), IR (Nujol) cm⁻¹: OH (nil), ¹H-NMR (CDCl₃) δ : 4.32 (1H, d, J=7 Hz, C₁-H of glc). Compound C: a colorless syrup (not crystallized), IR (Nujol) cm⁻¹: OH (nil), ¹H-NMR (CDCl₃) δ : 4.35 (1H, d, J=7 Hz, C₁-H of glc), 5.24 (1H, br s, C₁-H of rha). Compound D: a colorless syrup (not crystallized), IR

(Nujol) cm⁻¹: OH (nil), ¹H-NMR (CDCl₃) δ : 4.35 (1H, d, J=7Hz, C₁-H of glc), 4.62 (1H, d, J=7Hz, C₁-H of glc), 5.02 (1H, br s, C₁-H of rha), 5.22 (1H, br s, C₁-H of rha).

Methanolysis of Compounds B, C and D with Methanolic 1 N HCl — Compounds B (2 mg), C (3 mg) and D (2 mg) were individually refluxed with methanolic 1 N HCl (2 ml) for 2 h. After cooling, each reaction mixture was neutralized with Ag_2CO_3 and the resulting precipitate was filtered off. The filtrate was concentrated to dryness and the residue was examined by GLC (under the same conditions as described above). t_R (min): compound B 5.1, 7.0 (methyl 2,3,4,6-tetra-O-methylglucopyranoside); compound C 2.4 (methyl 2,3,4-tri-O-methylglucopyranoside), 13.8 (methyl 3,4,6-tri-O-methylglucopyranoside); compound D 5.1, 7.0 (methyl 2,3,4,6-tetra-O-methylglucopyranoside), 6.6 (methyl 2,3-di-O-methylrhamnopyranoside), 15.0, 19.6 (methyl 2,3,6-tri-O-methylglucopyranoside).

Acknowledgement The authors are grateful to Dr. V. A. Paseshnichenko, Bach Institute of Biochemistry, Moscow, and to Prof. Naokata Morita of Toyama Medical and Pharmaceutical University, for providing authentic samples. Thanks are also due to Mr. Fumio Yamada, the president of Keisei Rose Nursery Co., for supplying the plant material and to the staff of the Analytical Laboratory of this School for elemental analysis and NMR spectral measurement. One of the authors (J. S.) is grateful to the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid for Scientific Research (No. 58570885).

References and Notes

- 1) Part I: Y. Hirai, S. Sanada, Y. Ida and J. Shoji, Chem. Pharm. Bull., 32, 295 (1984).
- 2) This work was presented at the 29th Annual Meeting of the Japanese Society of Pharmacognosy, Sapporo, September 1982.
- 3) This work was presented at the 103rd Annual Meeting of the Pharmaceutical Society of Japan, Tokyo, April 1983.
- a) M. E. Wall, C. R. Eddy, M. L. McClennan and M. A. Klumpp, *Anal. Chem.*, 24, 1337 (1952); b) C. R. Eddy, M. E. Wall and M. K. Scott, *ibid.*, 25, 266 (1953); c) R. N. Jones, K. Katzenellenbogen and K. Dohriner, *J. Am. Chem. Soc.*, 75, 1581 (1953).
- 5) S. Kiyosawa, M. Hutoh, T. Komori, T. Nohara, I. Hosokawa and T. Kawasaki, *Chem. Pharm. Bull.*, 16, 1162 (1968).
- 6) Y. Hirai, T. Konishi, S. Sanada, Y. Ida and J. Shoji, Chem. Pharm. Bull., 30, 3476 (1982).
- 7) S. Hakomori, J. Biochem., 55, 205 (1964).
- 8) a) V. A. Paseshnichenko and A. R. Guseva, *Prikl. Biochim. Microbiol.*, 11, 94 (1975); b) Y. Watanabe, S. Sanada, Y. Ida and J. Shoji, *Chem. Pharm. Bull.*, 31, 3486 (1983).
- 9) L. V. Vargha, Ber., 68, 1382 (1935).
- 10) a) J. Chopin, A. Durix and M. L. Bouillant, *Tetrahedron Lett.*, **1966**, 3657; b) B. G. Aesterdahl, *Acta Chem. Scand.*, Ser. B, **32**, 93 (1978).
- 11) Y. Watanabe, S. Sanada, A. Tada and J. Shoji, Chem. Pharm. Bull., 25, 3049 (1977).
- 12) a) Y. Watanabe, S. Sanada, Y. Ida and J. Shoji, *Chem. Pharm. Bull.*, **31**, 3486 (1983); b) T. Kawasaki, T. Komori, K. Miyahara, T. Nohara, I. Hosokawa and K. Mihashi, *ibid.*, **22**, 2164 (1974).
- 13) L. H. Briggs and R. C. Cambie, Tetrahedron, 3, 269 (1958).
- 14) N. A. M. Saaleh, B. A. Bohm and J. R. Maze, Phytochemistry, 10, 490 (1971).