Chem. Pharm. Bull. **32**(11)4632—4636(1984)

The Synthesis of 9-Substituted p-Mentha-1,8(10)-diene Derivatives

HIROSHI SUEMUNE, GENJI IWASAKI, KOHSHI UENO, and KIYOSHI SAKAI*

Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812, Japan

(Received March 21, 1984)

The chemical conversion of (+)-limonene (1) and (-)-perillyl alcohol (10) into 9-substituted p-mentha-1,8(10)-diene derivatives is described. The lithiated species of 1 and 10 were easily obtained in good yields, by using sec-butyl lithium in N, N, N', N'-tetramethylethylenediamine. The reaction of the lithiated species (A and B) with various electrophiles was completed within 1-2 h to give 9-substituted p-mentha-1,8(10)-diene derivatives. The stereochemistry of the chiral center of the starting material was retained in the products.

9-Hydroxy-p-mentha-1,8(10)-diene (8) was also obtained by another short sequence of steps. Oxidation of the phenylthio derivative (7) gave the sulfoxide (9). Treatment of 9 with trimethyl phosphite afforded 8.

Keywords—synthesis; lithiation; limonene; perillyl alcohol; electrophile

As a part of our synthetic studies on biologically active compounds containing a five-membered ring, such as prostaglandins, brefeldin A and methylenomycin A, we have already reported the Rh-complex-catalyzed stereoselective conversion¹⁾ of (+)-limonene (p-mentha-1,8(10)-diene) derivatives to optically active cis-3,4-disubstituted cyclopentanones. For further work on this conversion, various limonene derivatives, particularly C-9 substituted p-mentha-1,8(10)-diene derivatives were required.

Crawford²⁾ previously reported the selective lithiation at the C-9 position of *p*-mentha-1,8(10)-diene (1) using *n*-butyl lithium (*n*-BuLi) in *N*, *N*, *N'*, *N'*-tetramethylethylenediamine (TMEDA), followed by alkylation. However, their method required a long time for lithiation(overnight), and the yield of alkylation or oxygenation was unsatisfactory. It was found that *sec*-butyl lithium (*sec*-BuLi) in TMEDA was more effective than *n*-BuLi. In this paper, we wish to describe a facile and useful method for the synthesis of 9-substituted-*p*-mentha-1,8(10)-diene and 9-substituted-7-hydroxy-*p*-mentha-1,8(10)-diene derivatives³⁾ based on the use of *sec*-BuLi.

As shown in Table I, alkylations or thioalkylations of lithiated limonene (A) with various electrophiles afforded **2—6** in moderate yields (62—81%), except for the reaction of A with diphenyl disulfide. Compounds **2** and **3** obtained from the reaction of A with aldehydes were considered to be mixtures of diastereoisomers (Table I, entries 1 and 2).

So far, there is no practical method for the synthesis of 9-oxygenated p-mentha-1,8(10)-diene. Previously, Sewata⁴⁾ and Nomura⁵⁾ obtained (+)-9-hydroxy-p-mentha-1,8(10)-diene (8) in 1 and 13% yields by oxidation of 1 with SeO₂ or Pb(OAc)₄, respectively. The reaction of A with oxygen, followed by a reductive work-up, afforded 8 in 48% yield. In this reaction, no racemization at the C-4 position occurred, based on a comparison of the optical rotation of 8 with that of an authentic sample. Thus, this method seems to be more practical for the synthesis of 9-oxygenated p-mentha-1,8(10)-diene. The phenylthio derivative (7) was also converted to 8 in good yield (Chart 1). The sulfoxide (9), derived from 7 by oxidation with NaIO₄, was easily converted to 8 by heating with trimethyl phosphite through a 2,3-

Table I. Yields of 9-Substituted p-Mentha-1,8(10)-diene (2-8)

Entry	Electrophiles	Compd. No.	R	Yield (%)
1	PhCHO	2	PhCH(OH)-	81
2	CH ₃ CH ₂ CHO	3	CH ₃ CH ₂ CH(OH)-	62
3	=0	4	OH	73
4	n-BuBr	5	n-Bu-	79
5	MeSSMe	6	MeS-	72
6	PhSSPh	7	PhS-	25
7	O_2	8	HO-	48

Chart 1

TABLE II. Yields of 9-Substituted 7-Hydroxy-p-mentha-1,8(10)-diene (11-16)

Entry	Electrophiles	Compd. No.	R	Yield (%)
1	PhCHO	11	PhCH(OH)-	45
2	CH ₃ CH ₂ CHO	12	CH ₃ CH ₂ CH(OH)-	25
3	=0	13	OH	72
4	<i>n</i> -BuBr	14	<i>n</i> -Bu-	40
5	PhSSPh	15	PhS-	23
6	O_2	16	HO-	23

sigmatropic process.6)

The direct lithiation of (-)-7-hydroxy-p-mentha-1,8(10)-diene (10) at the C-9 position was performed by the dianion method. The dianion intermediate (B) was prepared by treatment of 10 with sodium hydride, followed by lithiation with sec-BuLi in TMEDA. As shown in Table II, B was converted to compounds 11—16 by a method similar to that used for the alkylation of limonene to compounds 2—8.7 Compounds 11 and 12 were considered to be mixtures of diastereoisomers, like compounds 2 and 3.

Experimental

Infrared (IR) spectra were measured with a JASCO A-202 spectrometer. ¹H-NMR spectra were measured on a JEOL JNM-PS-100 spectrometer using Me₄Si as an internal standard. Mass spectra (MS) were taken on a JEOL JMS-D 300 spectrometer. Optical rotations were measured on a JASCO DIP-SL polarimeter. Sodium hydride (60% in oil suspension) and sec-BuLi (1.1 m in hexane solution, Aldrich Chemical Co.) were used for metallation. For column chromatography, silica gel (Merck, Kieselgel 60, 70—230 mesh) was used. The usual work-up refers to quenching with tert-BuOH, dilution with water, extraction with AcOEt, washing with satd. brine, drying over anhydrous Na₂SO₄, filtration, and evaporation in vacuo.

General Procedure for the Preparation of (R)-9-Substituted-p-mentha-1,8(10)-diene (2—7)—A well-stirred solution of 1 (1.0 g, 7.35 mmol) in TMEDA (1.88 g, 16.2 mmol) was cooled to -60 °C, then sec-BuLi (14.7 ml, 16.2 mmol) was added dropwise. After being stirred for 10-20 min, the mixture was allowed to warm to room temperature during 20 min, then stirred for an additional 1 h. The mixture was cooled to -60 °C again, and the electrophile (18.4 mmol) was added dropwise. The reaction mixture was allowed to warm to 0 °C for 1 h. After the usual work-up, the crude product was purified by column chromatography on silica gel (10 g).

(*R*)-9-[(ξ)-(α-Hydroxybenzyl)]-*p*-mentha-1,8(10)-diene (2)⁸)——1 (1.0 g, 7.35 mmol) and benzaldehyde (1.95 g, 18.4 mmol) were used for the reaction. The fraction eluted with 25% AcOEt in hexane (v/v) from a silica gel column was collected, and removal of the solvent *in vacuo* afforded 2 (1.44 g, 81%) as a colorless oil. IR (neat): 3425, 3040, 1640, 1604, 1500, 900 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.65 (3H, s, C₁-Me), 2.38 (1H, s, OH), 4.74 (1H, m, Ph-CH-), 4.89, 4.92 (1H each, s, =CH₂), 5.38 (1H, m, C₂-H), 7.30 (5H, s, aromatic H). MS m/e: 242 (M⁺), 224, 107. *Anal*. Calcd for C₁₇H₂₂O: C, 84.25; H, 9.15. Found: C, 84.29; H, 9.23.

(*R*)-9-[(ξ)-1-Hydroxypropan-1-yl]-*p*-mentha-1,8(10)-diene (3)⁸)—1 (1.0 g, 7.35 mmol) and propanal (1.07 g, 18.4 mmol) were used for the reaction. The fraction eluted with 20% AcOEt in hexane (v/v) from a silica gel column was collected, and removal of the solvent *in vacuo* afforded 3 (0.89 g, 62%) as a colorless oil. IR (neat): 3375, 3100, 1640, 1450, 1380 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.97 (3H, t, J=7 Hz, $-CH_2CH_3$), 1.65 (3H, s, C_1 -Me), 3.64 (1H, m, -CH(OH)-), 4.85, 4.90 (1H each, s, $=CH_2$), 5.38 (1H, m, C_2 -H). MS m/e: 194 (M⁺), 176. *Anal*. Calcd for $C_{13}H_{22}O$: C, 80.35; H, 11.41. Found: C, 80.59; H, 11.15.

(*R*)-9-(1-Hydroxycyclohexan-1-yl)-*p*-mentha-1,8(10)-diene (4)——1 (1.0 g, 7.35 mmol) and cyclohexanone (1.44 g, 18.4 mmol) were used for the reaction. The fraction eluted with 10% acetone in hexane (v/v) from a silica gel column was collected, and removal of the solvent *in vacuo* afforded 4 (1.0 g, 73%) as a colorless oil. IR (neat): 3400, 3080, 1640 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.65 (3H, s, C₁-Me), 4.86, 4.94 (1H each, s, = CH₂), 5.42 (1H, m, C₂-H). MS m/e: 234 (M⁺), 216, 136. *Anal*. Calcd for C₁₆H₂₆O: C, 81.99; H, 11.18. Found: C, 81.70; H, 11.43.

(R)-9-Butyl-p-mentha-1,8(10)-diene (5)——1 (1.0 g, 7.35 mmol) and butyl bromide (2.52 g, 18.4 mmol) were used for the reaction. The fraction eluted with hexane from a silica gel column was collected, and removal of the solvent in vacuo afforded 5 (1.12 g, 79%) as a colorless oil. [α]_D²¹ +59° (c=1.65, EtOH). IR (neat): 3080, 1642, 1450, 1380 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J=7 Hz, -CH₂CH₃), 1.65 (3H, s, C₁-Me), 4.69, 4.71 (1H each, s, = CH₂), 5.38 (1H, m, C₂-H). MS m/e: 192 (M⁺), 121. Anal. Calcd for C₁₄H₂₄: C, 86.51; H, 13.49. Found: C, 86.75; H, 13.20.

(*R*)-9-Methylthio-*p*-mentha-1,8(10)-diene (6)——1 (1.0 g, 7.35 mmol) and dimethyl disulfide (1.73 g, 18.4 mmol) were used for the reaction. The fraction eluted with hexane from a silica gel column was collected, and removal of the solvent *in vacuo* afforded 6 (0.96 g, 72%) as a colorless oil. [α]_D²¹ + 103° (c = 1.25, EtOH). IR (Nujol): 3075, 3000, 1635, 1430 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.66 (3H, s, C₁-Me), 1.98 (3H, s, SMe), 3.14 (2H, s, -CH₂S-), 4.88 (2H, s, = CH₂), 5.40 (1H, m, C₂-H). MS m/e: 182 (M⁺), 135. *Anal*. Calcd for C₁₁H₁₈S: C, 72.46; H, 9.95. Found: C, 72.18; H, 10.00.

(*R*)-9-Phenylthio-*p*-mentha-1,8(10)-diene (7)——1 (0.80 g, 5.9 mmol) and diphenyl disulfide (3.2 g, 14.7 mmol) were used for the reaction. The fraction eluted with hexane from a silica gel column was collected, and removal of the solvent *in vacuo* afforded 7 (0.36 g, 25%) as a colorless oil. $[\alpha]_D^{21} + 64^\circ$ (c = 0.7, EtOH). IR (neat): 3075, 3010, 1640, 1585, 1438, 903 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.66 (3H, s, C₁-Me), 3.58 (2H, s, -CH₂S-), 4.86, 4.93 (1H each, s, = CH₂), 5.40 (1H, m, C₂-H), 7.24 (5H, m, aromatic H). MS m/e: 244 (M⁺), 135. *Anal*. Calcd for C₁₆H₂₀S: C, 78.63; H, 8.25. Found: C, 78.40; H, 8.20.

(R)-9-Hydroxy-p-mentha-1,8(10)-diene (8)—Metallation of 1 (0.80 g, 5.9 mmol) was performed in the same manner as described above. The solution was cooled to -60 °C, and stirred under an oxygen atmosphere. The

reaction mixture was allowed to warm to $0\,^{\circ}$ C for 1 h. After being quenched with *tert*-BuOH (5 ml), the reaction mixture was diluted with water (50 ml), and then AcOEt (30 ml) and 25% sodium sulfite solution (10 ml) were added. The resulting two-phase mixture was stirred for 24 h at room temperature. The organic layer was separated, and the aqueous solution was extracted with AcOEt (30 ml × 3). The combined extracts were washed with satd. brine and dried over anhydrous Na₂SO₄. After evaporation of the solvent *in vacuo*, the residue was purified by column chromatography on silica gel (10 g). The fraction eluted with 25% AcOEt in hexane yielded 8 (0.43 g, 48%) as a colorless oil. $[\alpha]_{D}^{21} + 103\,^{\circ}$ (c = 1.50, EtOH). lit., $[\alpha]_{D}^{30} + 104\,^{\circ}$ (c = 0.33, EtOH). lit and ¹H-NMR spectra were consistent with those of an authentic sample.

- (*R*)-9-Phenylsulfinyl-*p*-mentha-1,8(10)-diene (9)—Sodium periodate (0.30 g, 1.38 mmol) was added to a solution of 7 (0.24 g, 0.98 mmol), acetone (5 ml) and water (5 ml). After being stirred for 9 h at 40—50 °C, the reaction mixture was diluted with water (30 ml) and satd. brine (10 ml), then extracted with AcOEt (40 ml × 3). The combined extracts were washed with satd. brine (50 ml), and dried over anhydrous Na₂SO₄. After evaporation of the solvent *in vacuo*, the crude product was purified by column chromatography on silica gel (5 g). The fraction eluted with AcOEt yielded 9 (0.23 g, 90%), mp 50—52 °C. IR (neat): 3060, 1630, 1582, 1480, 1440, 1040 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.65 (3H, s, C₁-Me), 3.52 (2H, m, -CH₂SO-), 4.90, 5.05 (1H each, s, = CH₂), 5.37 (1H, m, C₂-H), 7.50 (5H, m, aromatic H). MS m/e: 260 (M⁺), 243, 135. *Anal*. Calcd for C₁₆H₂₂OS: C, 73.80; H, 7.74. Found: C, 73.59; H, 7.72.
- 8 from 9—Freshly distilled trimethyl phosphite $(0.59\,\mathrm{g}, 3.2\,\mathrm{mmol})$ was added dropwise under an argon atmosphere to a mixture of 9 $(0.21\,\mathrm{g}, 0.80\,\mathrm{mmol})$ and MeOH $(5\,\mathrm{ml})$. After being stirred for 9 h at 50 °C, the reaction mixture was poured into water satd. with NaHCO₃ $(40\,\mathrm{ml})$, and extracted with AcOEt $(40\,\mathrm{ml} \times 3)$. The combined extracts were washed with satd. brine $(50\,\mathrm{ml})$, and dried over anhydrous Na₂SO₄. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel $(5\,\mathrm{g})$. The fraction eluted with 25% AcOEt in hexane (v/v) yielded 8 $(0.30\,\mathrm{g}, 81\%)$ as a colorless oil.
- General Procedure for the Preparation of (S)-9-Substituted 7-Hydroxy-p-mentha-1,8(10)-diene (11—15)——10 (0.8 g, 5.3 mmol) was added dropwise to a suspension of sodium hydride (0.32 g, 7.9 mmol) in dry hexane (5 ml) at 5 °C. The mixture was stirred for an additional 1 h at 50 °C to give a pale yellow suspension, and then cooled -60 °C. After addition of TMEDA (1.28 g, 11.6 mmol), sec-BuLi (10.5 ml, 11.6 mmol) was added dropwise. The mixture was stirred for 10—20 min at -60 °C, and allowed to warm to room temperature for an additional 1 h to give a reddishorange suspension. The mixture was cooled to -60 °C again, and the electrophile (13.2 mmol) was added dropwise. The reaction mixture was allowed to warm to 0 °C during 1 h. After the usual work-up, the crude product was purified by column chromatography on silica gel (10 g).
- (S)-7-Hydroxy-9-[(ξ)-(α -hydroxybenzyl)]-p-mentha-1,8(10)-diene (11)⁸—10 (0.8 g, 5.3 mmol) and benzal-dehyde (1.39 g, 13.2 mmol) were used for the reaction. The fraction eluted with 14% acetone in benzene (v/v) from a silica gel column yielded 11 (0.87 g, 45%) as a colorless oil. IR (neat): 3350, 3040, 1640 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.80 (2H, br, OH × 2), 3.89 (2H, s, -CH₂O-), 4.74 (1H, t, J = 6 Hz, -CH(OH)-), 4.89 (2H, s, = CH₂), 5.64 (1H, m, C₂-H), 7.28 (5H, s, aromatic H). MS m/e: 250 (M⁺), 232, 214, 150, 134. *Anal*. Calcd for C₁₇H₂₂O₂: C, 79.03; H, 8.58. Found: C, 78.90; H, 8.56.
- (S)-7-Hydroxy-9-[(ξ)-1-hydroxypropan-1-yl]-p-mentha-1,8(10)-diene (12)⁸—10 (1.0 g, 6.6 mmol) and propanal (0.95 g, 14.5 mmol) were used for the reaction. The fraction eluted with 11% acetone in hexane (v/v) from a silica gel column yielded 12 (0.34 g, 25%) as a colorless oil. IR (neat): 3340, 3080, 1640 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.96 (3H, t, J=7 Hz, -CH₂CH₃), 2.92 (2H, br, OH × 2), 3.64 (1H, m, -CH(OH)-), 3.95 (2H, s, -CH₂O-), 4.87, 4.90 (1H each, s, =CH₂), 5.69 (1H, br s, C₂-H). MS m/e: 210 (M⁺), 192, 134. *Anal*. Calcd for C₁₃H₂₂O₂: C, 74.24; H, 10.54. Found: C, 74.07; H, 10.53.
- (S)-7-Hydroxy-9-(1-hydroxycyclohexan-1-yl)-p-mentha-1,8(10)-diene (13)——10 (0.7 g, 4.6 mmol) and cyclohexanone (1.13 g, 11.5 mmol) were used for the reaction. The fraction eluted with 20% AcOEt in hexane (v/v) from a silica gel column yielded 13 (0.83 g, 72%), mp 85—86 °C. IR (Nujol): 3320, 3080, 1635 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 1.75 (2H, s, OH × 2), 3.98 (2H, s, -CH₂O-), 4.87, 4.93 (1H each, s, = CH₂), 5.70 (1H, m, C₂-H). MS m/e: 250 (M $^{+}$), 232, 214, 150, 134. Anal. Calcd for C₁₆H₂₆O₂: C, 76.75; H, 10.47. Found: C, 76.55; H, 10.41.
- (S)-9-Butyl-7-hydroxy-p-mentha-1,8(10)-diene (14)——10 (0.8 g, 5.3 mmol) and butyl bromide (1.80 g, 13.2 mmol) were used for the reaction. The fraction eluted with 20% AcOEt in hexane (v/v) from a silica gel column yielded 14 (0.606 g, 40%) as a colorless oil. [α] $_D^{21}$ -80° (c=1.5, EtOH). IR (neat): 3325, 3080, 1640 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 0.88 (3H, t, J=7 Hz, -CH₂CH₃), 1.74 (1H, s, OH), 3.98 (2H, s, -CH₂O-), 4.73 (2H, s, -CH₂), 5.70 (1H, m, C₂-H). MS m/e: 208 (M $^+$), 190, 134. Anal. Calcd for C₁₄H₂₄O: C, 80.71; H, 11.61. Found: C, 80.76; H, 11.70.
- (S)-7-Hydroxy-9-phenylthio-p-mentha-1,8(10)-diene (15)—10 (0.8 g, 5.3 mmol) and diphenyl disulfide (2.9 g, 13.2 mmol) were used for the reaction. The fraction eluted with 20% AcOEt in hexane (v/v) from a silica gel column yielded 15 (0.317 g, 23%) as a colorless oil. [α]_D²¹ -46° (c=0.7, EtOH). IR (neat): 3350, 3090, 1640, 1595, 910 cm⁻¹. ¹H-NMR (CDCl₃) δ : 3.58 (2H, s, -CH₂S-), 3.96 (2H, s, -CH₂O-), 4.85, 4.94 (1H each, s, =CH₂), 5.68 (1H, m, C₂-H), 7.25 (5H, m, aromatic H). MS m/e: 260 (M⁺), 242, 150, 133. *Anal*. Calcd for C₁₆H₂₀OS: C, 73.80; H, 7.74. Found: C, 73.54; H, 7.50.
- (S)-7,9-Dihydroxy-p-mentha-1,8(10)-diene (16)—Metallation of 10 (0.8 g, 5.3 mmol) was performed in a manner similar to that described above. The reaction mixture was cooled to -60 °C, and stirred under an oxygen

atmosphere, then allowed to warm to 0 °C during 1 h. After work-up as described for the preparation of **8**, the crude product was purified by column chromatography on silica gel (10 g). The fraction eluted with 20% acetone in hexane (v/v) yielded **16** (0.20 g, 23%) as a colorless oil. [α]_D²¹ -79° (c=0.7, EtOH). IR (neat): 3340, 3100, 1650 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.67 (2H, br s, OH × 2), 3.96, 4.12 (2H each, s, -CH₂O-× 2), 4.89, 5.04 (1H each, s, = CH₂), 5.70 (1H, m, C₂-H). MS m/e: 168 (M⁺), 150, 132. *Anal*. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.95. Found: C, 71.16; H, 9.69.

References and Notes

- 1) a) K. Sakai, J. Ide, O. Oda, and N. Nakamura, *Tetrahedron Lett.*, **1972**, 1287; b) K. Sakai, Y. Ishiguro, K. Funakoshi, K. Ueno, and H. Suemune, *ibid.*, **25**, 961 (1984).
- 2) R. J. Crawford, W. F. Erman, and C. D. Broaduss, J. Am. Chem. Soc., 94, 4298 (1972).
- 3) In the numbering based on limonene, 9-substituted p-mentha-1,8(10)-diene corresponds to 10-substituted limonene.
- 4) K. Sewata, Nippon Kagaku Kaishi, 1940, 16.
- 5) M. Nomura, Y. Fujiwara, and Y. Matsubara, Nippon Kagaku Kaishi, 1978, 1182.
- 6) M. B. Evans, G. M. C. Higgins, C. G. Moore, M. Porter, B. Saville, J. F. Smith, B. R. Trego, and A. A. Watson, *Chem. Ind.* (London), 1960, 897.
- 7) The lithiation of 10 with n-BuLi in TMEDA resulted in the formation of a complex mixture.
- 8) Compounds 2, 3, 11 and 12 were considered to be mixtures of diastereoisomers.