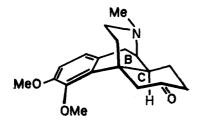
Communications to the Editor

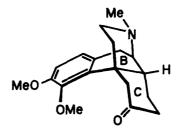
Chem. Pharm. Bull. **32**(11)4670—4673(1984)

THE SYNTHESES OF 3,4-DIMETHOXY-6-MORPHINANONE AND ISOMORPHINANONE.

SPECTRAL INSPECTION OF THE STEREOCHEMISTRY IN CIS AND TRANS B/C RING FUSION


Ikuo Fujii, Masayuki Abe, Kenji Hayakawa, and Ken Kanematsu*
Institute of Synthetic Organic Chemistry, Fuculty of Pharmaceutical
Sciences, Kyushu University 62, Fukuoka 812, Japan

3,4-Dimethoxy trans-6-morphinanone (1) and its cis isomer (2) were prepared stereoselectively from thebaine (3) and dihydrocodeinone (9), respectively. A general way of spectrally differentiating between these two stereoisomers is discussed.


KEYWORDS — 3,4-dimethoxy trans-6-morphinanone; 3,4-dimethoxy-cis-6-morphinanone; tricarbonyliron complex; tristriphenylphosphine rhodium chloride; α -stereoselective hydrogenation

Recently, the 6-keto-N-methylmorphinanes (B/C cis) have been synthesized to evaluate the effect of analgesic potency and especially binding to opioid receptors. (a) Generally, the stereochemistry of the B/C-ring fusion in the morphine skeleton is closely related to its biological activity. Therefore, it is important to develop a new general method of synthesizing unnatural (B/C trans) morphine derivatives. During our studies of the synthesis of 3,4-crowned morphinanones, we have found that the β -dihydrothebaine derivative can be stereospecifically hydrogenated from the α -face to give the B/C-trans fused isomorphinane derivative. (a) In this communication, we describe the stereoselective synthesis of 3,4-dimethoxy trans-6-morphinanone (1), utilizing this new method, as well as the cis-isomer (2), and develop a general way of spectrally differentiating these two stereoisomers.

The synthesis of $\frac{1}{2}$ was performed starting from thebaine $(\frac{3}{2})$ by initially

1: α -H4 (B/C trans)

2: β-H4 (B/C cis)

converting to the tricarbonyliron complex $(4)^3$ (Chart 1). Reductive cleavage of the 4,5-oxide bridge of 4 with Zn-AcOH gave the phenol 5, which was methylated with methyl p-toluensulfonate to afford $6.^4$ Decomplexation of 6 with trimethylamine oxide in dry C_6H_6 gave β -dihydrothebaine-4-methyl ether (7) in 478 yield from 3. The protection of the labile diene moiety of 3 by the tricarbonyliron complex is essential for these smooth transformations. The construction of the B/C trans junction was accomplished by α -face selective catalytic hydrogenation. Thus, hydrogenation of 7 over tristriphenylphosphine rhodium chloride 5 in C_6H_6 afforded the 8,14-dihydro compound 8 in 57% yield as the sole product. Compound 8 was treated in turn with 10% HCl in THF to give 1^6 as a viscous oil in 85% yield.

On the other hand, the cis isomer $\frac{2}{2}$ was synthesized from dihydrocodeinone $(\frac{9}{2})$ whose stereochemistry at C-14 is firmly established (Chart 2). The treatment of

 $\frac{9}{10}$ with $2n-NH_4Cl-n$ -propanol- H_2O gave the phenol $\frac{10}{10}$ in a quantitative yield. Omethylation of $\frac{10}{10}$ with methyl p-toluensulfonate afforded $\frac{2}{10}$ in 20% yield along with a small amount of enolether 11.

The isomeric nature of 1 to 2 was examined by $^1\text{H-NMR}$ and mass spectra. The mass spectra of 1 and 2 show the same molecular ion peak at m/e 315, but the characteristically different fragmentation patterns which serve to elucidate the stereochemistry of the B/C trans and cis fused rings (Fig. 1). While 1 (trans) shows an intense molecular ion peak, 2 (cis) reveals a relatively weak molecular ion peak and the characteristic fragment peak at m/e 59. This fragmentation (m/e 59; $C_3H_9N_7$) is considered to arise from the cis-elimination through the four-membered ring transition state as shown in Chart 3 and is indicative of the cis-fused B/C ring system of 2. Accordingly, the trans-isomer 1 shows no intense peak at m/e 59. The similar difference of intensity of molecular ions in 1 and 2 is generally observed in the other morphine derivatives epimeric at C-14.

In the $^1\text{H-NMR}$ spectra, the best diagnostic features for differentiating $\underline{1}$ and $\underline{2}$ are the chemical shifts of the C-3 and C-4 methoxy groups. While two singlets of the C-3 and C-4 methoxy groups of the trans-isomer (1) appeared at almost the

Fig.1. Mass spectra of $\underline{1}$ and 2

same position (δ 3.80 and δ 3.83), in the cis-isomer ($\underline{2}$) the singlet of the C-4 methoxy group was markedly shifted to a lower field (δ 3.93) compared with that of C-3 methoxy group (δ 3.79). This low-field shift of the C-4 methoxy signal in $\underline{2}$ can be attributed to the deshielding effect of the nearby C-6 carbonyl group. In order to confirm this argument, 3,4-dimethoxy cis-morphinane ($\underline{14}$) which lacks the C-6 carbonyl group was synthesized (Chart 2). The compound $\underline{10}$ was first converted to thicketal $\underline{12}$ (ethandithiol-BF₃·Et₂O-AcOH, 82%) and then methylated with methyl p-toluensulfonate to afford $\underline{13}$ (78%). Desulfurization of $\underline{13}$ with Raney Ni gave $\underline{14}$ in 43% yield. The ${}^1\text{H-NMR}$ spectrum of $\underline{14}$, as expected, shows the signals of the C-3 and C-4 methoxy groups with the similar chemical shifts (δ 3.82 and δ 3.85) as seen in $\underline{1}$.

In contrast to the well-known β -face selectivity of thebaine, the α -face selective reaction of the β -dihydrothebaine derivatives (like $\underline{7}$) is noteworthy for developing new syntheses of a novel series of isomorphinanones. Furthermore, the close examination of the spectral data provides a powerful method for the stereochemically differentiating trans and cis morphinanones.

REFERENCES AND NOTES

- 1) H. Schmidhammer, A.E. Jacobson, and A. Brossi, Med. Res. Reviews, 3, 1 (1983).
- 2) I. Fujii, K. Hayakawa and K. Kanematsu, Tetrahedron Lett., $\underline{25}$, 3335 (1984), and references cited therein.
- 3) A.J. Birch, and H. Fitton, Aust. J. Chem., 22, 971 (1969).
- 4) Satisfactory IR, H-NMR and mass spectra were obtained for all new compounds. Most of the compounds were purified by silica gel chromatography, as evidenced by TLC analysis.
- 5) A.J. Birch, and K.A.M. Walker, J. Chem. Soc. (C), 1966, 1894.
- 6) Compound 1: MS m/e(%): 315 [M⁺] (100), 258 (64), 164 (80), 83 (60); IR (CHCl₃) 1705 cm⁻¹; 1 H-NMR (CDCl₃) δ : 1.8-2.3 (m, 6H), 2.33 (s, 3H, NMe), 2.3-2.8 (m, 6H), 2.8-3.3 (m,2H), 3.80 (s, 3H, OMe), 3.83 (s, 3H, OMe), 6.80 and 6.82 (ABq, 2H, J=9Hz, H-1 and2); $[\alpha]_{D}^{21}$ -53.9° (c=1.2, CHCl₃).
- 7) Compound 2: MS m/e(%): 315 [M⁺] (55), 256 (22), 164 (100), 59 (45); IR (CHCl₃) 1720 cm⁻¹; 1 H-NMR (CDCl₃) δ : 1.40-2.66 (m, 10H), 2.41 (s, 3H, NMe), 2.66-3.16 (m, 4H), 3.79 (s, 3H, OMe), 3.93 (s, 3H, OMe), 6.78 and 6.80 (ABq, 2H, J=9Hz, H-1 and 2); $[\alpha]_{D}^{24}$ -40.9° (c=0.64, CHCl₃).

(Received September 10, 1984)