Communications to the Editor

[Chem. Pharm. Bull.] 32(4)1658—1661(1984)]

KETENE-S,N-ACETALS AS SYNTHETIC INTERMEDIATES FOR HETEROCYCLES. A NOVEL SYNTHESIS OF POLYFUNCTIONALIZED PYRIDINE-2-THIONES $^{1)}$

Hiroki Takahata, Tomoko Nakajima, and Takao Yamazaki*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical

University, Sugitani 2630, Toyama 930-01, Japan

KEYWORDS—— ketene-S,N-acetal; thioamide; enamine; pyridine-2-thione; carbon-carbon bond formation; o-aminonitrile; thioamide dianion

We have been interested in exploring the synthetic utility of ketene-S,N-acetal as the intermediates for hetericyles. ²⁾ Enamines are important synthetic intermediates and their utility for organic synthesis is well documented. ³⁾ Ketene-S,N-acetals derived from tertiary thioamides are α -alkylthio substituted enamines. It is known that they react with a variety of electrophiles. ⁴⁾ The reaction of ketene-S,N-acetals with aryl isothiocyanates as electrophiles gives 1:1 adducts which are interesting β -aminothiocarbonyl- α -methylthioenamines having the character that the α -methylthio substituent is readily replaced by nucleophiles such as amines. ^{2d)} We wish to report here a novel synthesis of polyfunctionalized pyridine-2-thiones by the carbon-carbon bond formation between β -aminothiocarbonyl- α -methylthioenamines and malononitrile as a carbon nucleophile.

Adding aryl isothiocyanates (2a-c) to ketene-S,N-acetal (1) in ether at room temperature gave the β -aminothiocarbonyl- α -methylthioenamines $(3a-c)^{5}$ in high yields. 6) The reaction of 3a-c with malononitrile in boiling ethanol

solution in the presence of sodium ethoxide resulted in the formation of pyridine-2-thiones $(4a-c)^{5}$ in good yields.

The reaction of 3a-c with malononitrile in acetonitrile without base afforded enaminonitriles $(5a-c)^{5}$ in satisfactory yields at room temperature. quently, 5a-c were treated with sodium ethoxide to provide the same pyridine-2-In addition, the alkylation at thiones (4a-c) directly obtained from 3a-c. the carbon atom α to the thiocarbonyl group of dilithio ketene-S,N-acetals (6a-c), generated from 5a-c by treatment with two equivalents of n-BuLi, with one equivalent of alkyl halides (7,8,0,0,0,0,0,0) as electrophiles followed by the ring closure produced 3-alkylpyridine-2-thiones (10a-c, 11a-c, and 12a-c)⁵⁾ respectively in excellent yields. 7) A general procedure for the synthesis of 10a-c, 11a-c, and 12a-c is as follows: To a solution of 5 (1 mmol) in THF (3 ml) was added n-BuLi (1.47 ml of 1.5 M n-hexane, 2.2 mmol) at -78°C. After stirring the mixture at the same temperature for 0.5 h, alkyl halide (1.1 mmol) was added to this mixture. The reaction mixture was stirred for 1 h, during which time the temperature was elevated to the room temperature, and then the stirring was continued for 1 h. The reaction was quenched with saturated NH_AC1 solution and the usual work-up gave the desired product (10a-c la-c la-c or 12a-c).

Product	Yield (%)	mp,(°C)	¹ H-NMR (CDCl ₃)	
4a √∿	82 ^{a)} (98) ^{b)}	230-232	6.61 (1H, s, C ₃ -H)	
4 b	80 ^{a)} (85) ^{b)}	220-221	6.63 (1H, s, C ₃ -H)	
4 €	86 ^{a)} (84) ^{b)}	329-330	6.88 (1H, s, C ₃ -H)	
5a ∿∿	82	119-121	4.10 (2H, s, CH ₂)	
5.b	83	138-140	4.07 (2H, s, CH ₂)	
5¢	89	146-148	4.07 (2H, s, CH ₂)	
10a ~~~	84	184-186	2.32 (3H, s, C ₃ -CH ₃)	
10b	89	223-225	2.33 (3H, s, C ₃ -CH ₃)	
10¢	89	194-196	2.33 (3H, s, C ₃ -CH ₃)	
lla √√	85	172-174	1.26 (3H, t, J=7.5Hz, CH ₂ 0	С <u>Н</u> :
			2.76 (2H, q, J=7.5Hz, CH ₂)	СН
llb	94	167-169	1.30 (3H, t, J=8Hz, CH ₂ CH	3)
			2.78 (2H, q, J=8Hz, CH ₂ CH	3)
11c	99	213-215	1.18 (3H, t, J=7Hz, CH ₂ CH	3)
			2.78 (2H, q, J=7Hz, CH ₂ CH	3)
12a	88	212-215	4.07 (2H, s, $C_6^{H_5}-C_{-2}^{H}$)	
12b	90	118-120	4.02 (2H, s, $C_6^{H_5}-C_{\underline{1}2}$)	
12c	91	133-135	3.90 (2H, s, $C_6H_5-CH_2$)	

antibiotics and chemotherapeutics. The reaction of 3a-c with another carbon nucleophile is now in progress.

REFERENCES AND NOTES

- 1) This work was presented in the 12th symposium on Organic Sulfur and Phosphorous Chemistry, Osaka, January, 1984, Abstract p.138.
- 2) a) H. Takahata, A. Tomiguchi, M. Nakano, and T. Yamazaki, Synthesis, 1982, 156.
 - b) H. Takahata, M. Nakano, A. Tomiguchi, and T. Yamazaki, Heterocycles, 17, 413 (1982).
 - c) H. Takahata, M. Nakano, and T. Yamazaki, Synthesis, 1983, 225.
 - d) H. Takahata, T. Nakajima, and T. Yamazaki, ibid., 1983, 226.
 - e) Idem., ibid., in press.
- 3) Reviews: P. W. Hickmott, Tetrahedron, 38, 1975 and 3363 (1982).
- 4) a) R. Gompper and W. Elser, Justus Liebigs Ann. Chem., 725, 73 (1969).
 - b) T. Mukaiyama, S. Azisawa, and T. Yamaguchi, Bull. Chem. Soc. Jpn., <u>40</u>, 2641 (1967).
- 5) All new compounds were fully characterized spectroscopically (IR, ¹H-NMR, MS spectral) and by combustion and /or high resolution mass spectral analyses.
- 6) The details of preparation will be described in full papers.
- 7) This reaction is formulated as shown below

8) E. C. Taylor and A. McKillop "o-Aminonitriles," in E. C. Taylor (ed.), The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles," Chapter II, in the series "Advances in Organic Chemistry: Methods and Results," 1970, p.79.

(Received February 10, 1984)