Chem. Pharm. Bull. 32(8)3255—3258(1984)

Dioxopyrrolines. XXXII.¹⁾ X-Ray Determination of the Molecular Structure of a Photoadduct of 2-Trimethylsilyloxybutadiene to 3-Ethoxycarbonyl-2-phenyl-△²-pyrroline-4,5-dione

Takehiro Sano,*,a Jun Toda,a Yoshisuke Tsuda,b Keiichi Yamaguchi,c and Shin-ichiro Sakai*,c

Showa College of Pharmaceutical Sciences, Tsurumaki, Setagaya-ku, Tokyo 154, Japan, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan, and Faculty of Pharmaceutical Sciences, Chiba University, Yayoi-cho, Chiba 260, Japan

(Received December 6, 1983)

The stereochemistry of the photocycloadduct of 2-trimethylsilyloxybutadiene to 3-ethoxycarbonyl-2-phenyl- Δ^2 -pyrroline-4,5-dione (1) was established as 5-ethoxycarbonyl-1-phenyl-7-*endo*-trimethylsilyloxy-7-*exo*-vinyl-2-azabicyclo[3.2.0]heptane-3,4-dione (2) by X-ray analysis.

Keywords— Δ^2 -pyrroline-4,5-dione; 2-trimethylsilyloxybutadiene; photocycloaddition; 2-azabicyclo[3.2.0]heptane-3,4-dione; X-ray analysis; stereochemistry

Photocycloaddition of a substituted olefin to 3-ethoxycarbonyl-2-phenyl- Δ^2 -pyrroline-4,5-dione (1) proceeds in regio- and stereo-selective manner to give a single 2+2 adduct, 5-ethoxycarbonyl-1-phenyl-7-substituted-2-azabicyclo[3.2.0]heptane-3,4-dione.²⁾ Interestingly, the stereochemistry of the product varies depending on the nature of the substituent on the olefin; olefins carrying a moderately polar substituent such as a vinyl or phenyl group (polar olefins) give the *exo*-adduct (3), while olefins carrying a very polar O-substituent (very polar olefins) such as ethyl vinyl ether or vinyl acetate give the *endo*-adduct (4) as a major product.^{2b)} 2-Trimethylsilyloxybutadiene also undergoes smooth cycloaddition to 1 in a highly site-, regio-, and stereo-selective manner to give a 7-trimethylsilyloxy-7-vinyl cyclobutane (2) as a single product, whose structure except for the stereochemistry has already been established.³⁾ The stereochemistry was tentatively assigned as *exo*-vinyl and *endo*-trimethylsilyloxy (OTMS).

3256 Vol. 32 (1984)

However, there are several chemical findings regarding the stereochemistry of 2 which appear to be conflicting. Thermolysis of 2 gave a hydroindole (6) exclusively,³⁾ which is the product expected from the *exo*-vinyl isomer, since it had already been shown that on pyrrolysis of 7-hydrogen-7-vinyl derivatives the *exo* isomer (8) yields the hydroindole (9), while the *endo* isomer (10) gives a Cope rearrangement product (11).⁴⁾ On the other hand, acidic treatment of 2 produced 7, which arises from intramolecular Prins-type cyclization between the vinyl group and C₄ carbonyl with concomitant skeletal 1,2-rearrangement, thus suggesting the *endo*-vinyl configuration of the intermediary hydroxy compound, as shown in the structure 5.⁵⁾ Thus, we carried out an X-ray analysis to determine the stereochemistry unambiguously. A suitable single crystal of the 7-OTMS-7-vinyl derivative was obtained, and used for the analysis.

Experimental

Photocycloaddition of 2-Trimethylsilyloxybutadiene to the Dioxopyrroline (1) — The dioxopyrroline (1) (2.0 g) and 2-trimethylsilyloxybutadiene (2.3 g, 2 eq) in dimethoxyethane (300 ml) were irradiated for 1 h under stirring at 0 °C using a 300 W high pressure mercury lamp with a Pyrex filter. After evaporation of the solvent, the residue was dissolved in CH_2Cl_2 and passed through a short column of Florisil. Concentration of the eluate gave 2 (2.2 g; 70%), which crystallized on trituration with Et_2O . Single crystals were grown from Et_2O -acetone as colorless prisms, mp 176—178 °C. IR (Nujol) cm⁻¹: 3190, 3100 (NH), 1780, 1760, and 1730 (C=O). ¹H-NMR (100 MHz in CDCl₃) δ :

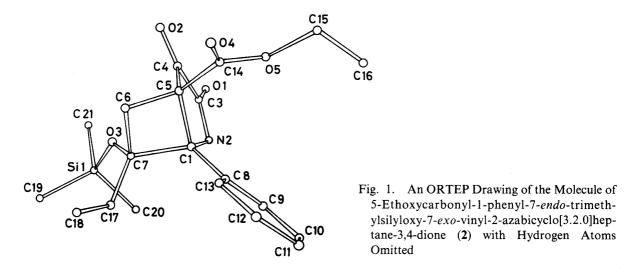


Table I. Positional Parameters (×10⁴) with Their Estimated Standard Deviations (in Parentheses) and Equivalent Isotropic Thermal Parameters (Å²) of 5-Ethoxycarbonyl-1-phenyl-7-endo-trimethylsilyloxy-7-exo-vinyl-2-azabicyclo[3.2.0]heptane-3,4-dione (2)

$$B_{\rm eq} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \boldsymbol{a}_{i} \boldsymbol{a}_{j}$$

	X	Y	Z	$B_{ m eq}$
N 2	4857 (4)	6198 (4)	1243 (4)	4.62
O 1	3720 (4)	6191 (4)	-1060 (4)	6.04
O 2	2467 (4)	8607 (4)	-469 (4)	6.54
O 3	2453 (3)	5453 (4)	619 (3)	5.36
O 4	4991 (5)	10983 (4)	3499 (5)	8.17
O 5	5878 (4)	10028 (4)	2522 (4)	6.59
Si 1	1819 (2)	3596 (2)	-295(2)	5.62
C 1	4840 (4)	6919 (5)	2359 (5)	4.36
C 3	3986 (5)	6687 (5)	68 (5)	4.81
C 4	3379 (5)	8019 (5)	380 (5)	4.80
C 5	4110 (5)	8384 (5)	1949 (5)	4.72
C 6	3166 (5)	7962 (5)	2218 (6)	5.38
C 7	3487 (5)	6267 (5)	2089 (5)	4.87
C 8	6242 (5)	7144 (5)	3834 (5)	4.66
C 9	7307 (5)	6460 (7)	4028 (6)	6.26
C 10	8619 (6)	6704 (8)	5394 (7)	7.77
C 11	8859 (6)	7648 (8)	6587 (6)	7.43
C 12	7761 (6)	8308 (7)	6368 (6)	7.02
C 13	6461 (5)	8057 (6)	5018 (5)	5.92
C 14	5034 (5)	9970 (5)	2765 (5)	5.54
C 15	6941 (7)	11460 (8)	3321 (9)	9.29
C 16	8209 (8)	11002 (12)	3858 (11)	12.93
C 17	3688 (5)	5364 (6)	3028 (5)	5.94
C 18	3306 (7)	5786 (8)	3798 (6)	7.77
C 19	813 (8)	2719 (9)	51 (9)	9.52
C 20	3216 (8)	2470 (7)	100 (10)	9.61
C 21	661 (9)	3718 (9)	2167 (7)	10.57

TABLE II. Bond Lengths of 2 with Their Estimated Standard Deviations (in Parentheses)

Bond	Length Å	Bond	Length Å
C ₁ -N ₂	1.452 (19)	C ₈ -C ₁₃	1.401 (26)
C_1-C_5	1.572 (26)	$C_9 - C_{10}$	1.402 (50)
$C_1 - C_7$	1.632 (21)	$C_{10}-C_{11}$	1.398 (28)
C_1-C_8	1.510 (53)	$C_{11}-C_{12}$	1.395 (21)
N_2-C_3	1.343 (34)	$C_{12}-C_{13}$	1.386 (50)
C_3-C_4	1.526 (21)	$C_{14}-O_{4}$	1.181 (21)
C_3-O_1	1.223 (19)	$C_{14} - O_5$	1.317 (12)
C_4-C_5	1.523 (32)	$C_{15}-C_{16}$	1.389 (27)
C_4-O_2	1.184 (32)	$C_{15}-O_{5}$	1.490 (46)
C_5-C_6	1.542 (16)	$C_{17}-C_{18}$	1.352 (18)
$C_5 - C_{14}$	1.517 (44)	Si_1-C_{19}	1.859 (22)
$C_6 - C_7$	1.558 (14)	Si_1-C_{20}	1.855 (31)
$C_{7}-C_{17}$	1.486 (21)	Si_1-C_{21}	1.865 (22)
$C_7 - O_3$	1.423 (52)	Si_1-O_3	1.653 (40)
C_8-C_9	1.375 (20)		

$$\begin{array}{c} \text{CH}_{3} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{5} \\ \text{CH$$

Fig. 2. Bond Angles (°) with Maximum Standard Deviation 2°

0.08 (9H, s, Me_3Si -), 0.77 (3H, t, J=7 Hz, $-O-CH_2-\underline{CH_3}$), 2.37 and 3.53 (each 1H, d, J=14 Hz, C_6 -methylene), 3.88 (2H, q, $J=\overline{7}$ Hz, $-OCH_2CH_3$), 5.05—5.57 (3H, m, vinyl H), 7.32 (5H, s, PhH). High resolution MS, Calcd for $C_{20}H_{25}NO_5Si$: m/z (\overline{M}^+) 387.1502. Found: m/z 387.1538.

Crystallographic Measurement—A computer-controlled Rigaku Denki AFC-5 four-circle auto-diffractometer was used for all measurements. The intensities of all the reflections in the range of $3^{\circ} < 2\theta < 55^{\circ}$ were measured using the $\omega - 2\theta$ scan method with a scan speed of 2° /min in 2θ . Of the total of 5194 independent reflections obtained by the use of monochromated Mo- $K\alpha$ radiation, 3729 reflections had intensities above the $3\sigma(\pm)$ level, and they were used in the calculation. No absorption correction was made.

Crystal Data— $C_{20}H_{25}NO_5Si$. M = 387.5. Triclinic. a = 12.870 (4), b = 8.926 (2), c = 12.909 (5) Å, $\alpha = 103.18$ (3) °, $\beta = 130.77$ (2) °, $\gamma = 88.45$ (3) °, U = 1078.5 Å³, $U_c = 1.19$ g/cm³, $U_c = 1.19$ g/cm³, $U_c = 1.19$ g/cm³. Space group $U_c = 1.19$ g/cm³. Crystal size, $U_c = 1.19$ g/cm³.

Structure Analysis and Refinement—The structure was solved by the direct method using MULTAN and refined by the block-diagonal least-squares procedure with the assumption of positional anisotropic thermal parameters for all non-hydrogen atoms. The final R-value was 0.079. The atomic parameters, an ORTEP drawing of the molecule, bond lengths, and bond angles are given in Tables I and II, and Figs. 1 and 2, respectively.

Results and Discussion

The result of X-ray analysis rigidly established the stereochemistry of the adduct (2) as 7-exo-vinyl and 7-endo-OTMS, in agreement with our expectation. The results also showed that the cyclobutane ring is abnormally distorted, elongating the C_1 – C_7 bond (1.632 Å) as compared to the other bonds of the cyclobutane ring. This suggests high reactivity of this bond as exemplified in the thermal⁴⁾ or tetra-n-butylammonium fluoride (TBAF)-induced [1,3]shift⁶⁾ of the compound to a hydroindole.

The rearrangement of the compound (2) to a 2-azatricyclo[4.3.0.0^{4,9}]nonane-3,7-dione (7)⁵⁾ therefore must involve an epimerization at C-7 under acidic conditions, probably at the stage of the alcohol (5). An intramolecular Prins reaction is otherwise impossible. Although an analogous epimerization under basic conditions was reported previously,⁷⁾ details of this rearrangement will be fully discussed in a future communication.

References and Notes

- 1) Part XXXI: See ref. 5. This paper also constitutes Part 8 of our series on 2-azabicyclo[3.2.0]heptane-3,4-diones.
- 2) a) T. Sano and Y. Tsuda, *Heterocycles*, 7, 1229 (1976); b) T. Sano, Y. Horiguchi, and Y. Tsuda, *ibid.*, 16, 359 (1981).
- 3) T. Sano, J. Toda, Y. Horiguchi, K. Imafuku, and Y. Tsuda, Heterocycles, 16, 1463 (1981).
- 4) T. Sano, Y. Horiguchi, S. Kambe, J. Toda, J. Taga, and Y. Tsuda, Heterocycles, 16, 893 (1981).
- 5) T. Sano, J. Toda, and Y. Tsuda, Heterocycles, 22, 53 (1984).
- 6) T. Sano, J. Toda, and Y. Tsuda, Chem. Pharm. Bull., 31, 2960 (1983).
- 7) T. Sano, Y. Horiguchi, and Y. Tsuda, Heterocycles, 16, 355 (1981).