Chem. Pharm. Bull. 32(8)3271-3272(1984)

A Novel Synthesis of cis-15,16-Dimethoxyerythrinan-3-one

HITOSHI TANAKA, MASAYOSHI SHIBATA, and KAZUO ITO*

Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468, Japan

(Received December 22, 1983)

Birch reduction of a dibenzazonine base (1) with sodium produced the desired diene (2) in a good yield. The diene (2) was heated with 10% sulfuric acid and cyclized readily to provide the erythrina base (3) as a sole product, which was subsequently converted by treatment with excess diazomethane to the known base, cis-15,16-dimethoxyerythrinan-3-one (4).

Keywords—erythrina alkaloid; dibenzazonine alkaloid; Birch reduction; *cis*-15,16-dimethoxyerythrinan-3-one; acid cyclization

2,12-Dimethoxy-5,6,8,9-tetrahydro-7H-dibenz[d,f]azonine-3,11-diol plays¹⁾ an important role *in vivo* in the synthesis of erythrina alkaloids. It is well-known²⁾ that most syntheses from dibenzazonine alkaloids to Erythrina alkaloids have involved the phenolic oxidation of dibenzazonine bases. Recently, we have reported³⁾ the synthesis of 3-demethoxyerythratidinone, which was prepared by phenolic oxidation of 2,3-dimethoxy-5,6,8,9-tetrahydro-7H-dibenz[d,f]azonin-11-ol with various oxidizing reagents.

We have now found a novel route from a dibenzazonine base (1) to an erythrina base (3). In this paper, we wish to describe the synthesis of cis-15,16-dimethoxyerythrinan-3-one (4) by Birch reduction of the dibenzazonine base (1). The compound (4) was first synthesized from homoveratrylamine and α -(3-chloro-buten-2-yl)- γ -butyrolactone by Prelog $et\ al.^{4}$ and later prepared by annelation using methyl vinyl ketone and endocyclic enamine by Stevens $et\ al.^{5}$ Finally, Oh-ishi $et\ al.^{6}$ reported that 4 was readily synthesized from 2,3,3a,4,5,6-hexahydroindole-2,6-dione and 3,4-dimethoxyphenethyl bromide.

The starting material, 2,12-dimethoxy-5,6,8,9-tetrahydro-7H-dibenz[d,f]azonin-3-ol (1), for our synthesis of 4 was prepared as described in the previous report.⁷⁾

Chart 1

Treatment of 1 with sodium and methanol in liquid ammonia produced the expected diene (2) in 96.0% yield. The nuclear magnetic resonance (NMR) spectrum of this diene (2) showed a broad singlet signal due to an olefinic proton at δ 4.07 and a signal due to a methoxyl group of the enol methylether portion at δ 3.59. This compound (2) was heated with 10% sulfuric acid, and readily underwent hydrolysis and cyclization to give 16-hydroxy-15-

methoxyerythrinan-3-one (3) as a sole product in 79.4% yield. The infrared (IR) spectrum of 3 exhibited a saturated ketone absorption at $1710\,\mathrm{cm}^{-1}$ along with a hydroxyl group absorption at $3545\,\mathrm{cm}^{-1}$. The NMR spectrum showed the disappearance of a signal in the olefinic proton region, and furthermore the observed aromatic proton signal at δ 6.54 revealed that the ring A/B of the compound (3) must be *cis*-fused.⁸⁾ Furthermore, methylation of 3 with excess diazomethane gave the known O-methyl product (4), which was identical with an authentic sample.

Thus, we achieved the synthesis of an erythrinan base (3) via the Birch reduction product (2) of a dibenzazonine base (1). This reaction seems to represent a useful route for the synthesis of Erythrina alkaloids.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus, and are uncorrected. Mass spectra (MS) were recorded on a Hitachi M-52 spectrometer and high resolution MS on a JEOL JMS-D-300 spectrometer. IR spectra were obtained on a JASCO IRA-3 spectrophotometer and NMR spectra were recorded on a JEOL JNM-PS-100 NMR spectrometer with tetramethyl silane as an internal standard. Abbreviations used: s = singlet, br = broad.

Birch Reduction of 2,12-Dimethoxy-5,6,8,9-tetrahydro-7*H*-dibenz[d,f]azonin-3-ol (1)⁷⁾ (Formation of 2)—Sodium (2 g) was added during 1 h with stirring to 1⁷⁾ (150 mg) in a mixture of methanol (4 ml), ether (2 ml), tetrahydrofuran (2 ml), and liquid ammonia (20 ml) at -60 to -70 °C. After cautious addition of ether, water, and NH₄Cl, the ammonia was allowed to evaporated off and the mixture was extracted with CHCl₃. The CHCl₃ layer was washed with water, dried over Na₂SO₄, and evaporated to afford 2.⁹⁾ Colorless oil. (145 mg) (96.0%). IR $v_{max}^{CHCl_3}$ cm⁻¹: 3540 (OH), NMR (CDCl₃) δ : 3.59, 3.83 (6H, 2×s, 2×OCH₃), 4.07 (1H, br s, olefinic H), 6.55, 6.67 (2H, 2×s, 2×arom. H). MS m/z: 301 [M⁺], 286, 258 (100%), 239, 225. *Anal*. Calcd for C₁₈H₂₃NO₃: m/z 301.1677. Found: m/z 301.1671.

cis-16-Hydroxy-15-methoxyerythrinan-3-one (3)—A solution of 2 (103 mg) in 10% sulfuric acid (3 ml) and dimethylformamide (2 ml) was heated with stirring at 60 °C for 2 h. After cooling of the mixture, water (20 ml) was added. The mixture was neutralized with NH₄OH and extracted with CHCl₃. The CHCl₃ layer was washed with water, dried over Na₂SO₄, and evaporated to give 3. The solid residue was recrystallized from EtOH and ether. Colorless needles. mp 79—80 °C (78 mg) (79.4%). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3545 (OH), 1710 (CO). NMR (CDCl₃) δ : 3.84 (3H, s, OCH₃), 6.54 (2H, s, 2×arom. H). MS m/z: 287 [M⁺], 230 (100%), 228, 215, 192. *Anal*. Calcd for C₁₇H₂₁NO₃: m/z 287.1520. Found: m/z 287.1509.

cis-15,16-Dimethoxyerythrinan-3-one (4)—An ethereal solution of excess diazomethane was added to a solution of 3 (31 mg) in methanol (10 mg), and the mixture was stirred for 6 h. The solvent was evaporated off and the residue was extracted with CHCl₃. The CHCl₃ extract was dried over Na₂SO₄ and evaporated to yield 4. The solid was recrystallized from isopropyl ether. Colorless needles. mp 140—142 °C (lit.⁵⁾ 143—144 °C) (23 mg) (70.7%). IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1720 (CO). NMR (CDCl₃) δ : 3.88 (6H, s, 2 × OCH₃), 6.49, 6.59 (2H, 2 × s, 2 × arom. H). MS m/z: 301 [M⁺], 258, 244 (100%), 230. Its picrate; yellow needles. mp 143—146 °C (lit.⁴⁾ 144—146 °C). Spectral (IR and NMR) properties of this product were indistinguishable from those of an authentic sample.⁶⁾

Acknowledgement The authors are grateful to Dr. T. Oh-ishi and Dr. T. Iwakuma of the Organic Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd., for providing the NMR and IR spectra of cis-15,16-dimethoxyerythrinan-3-one.

References and Notes

- 1) D. H. R. Barton, R. B. Boar, and D. A. Widdowson, J. Chem. Soc. (C), 1970, 1213.
- 2) a) D. H. R. Barton, R. James, G. W. Kirby, D. W. Turner, and D. A. Widdowson, J. Chem. Soc. (C), 1968, 1529; b) B. Franck and V. Teetz, Angew. Chem., Int. Ed. Engl., 10, 411 (1971).
- 3) H. Tanaka, M. Shibata, and K. Ito, Chem. Pharm. Bull., 32,1578 (1984).
- 4) V. Prelog, A. Langemann, O. Rodig, and M. Ternbah, Helv. Chim. Acta, 42, 1301 (1959).
- 5) R. V. Stevens and M. P. Wentland, J. Chem. Soc., Chem. Commun., 1968, 1104.
- 6) T. Oh-ishi, I. Iijima, N. Itoh, and S. Sugasawa, Chem. Pharm. Bull., 23, 2573 (1975).
- 7) K. Ito, H. Tanaka, and M. Shibata, Heterocycles, 9, 485 (1978).
- 8) A. Mondon and P-R. Seidel, Chem. Ber., 104, 2937 (1971).
- 9) This compound is unstable.