Chem. Pharm. Bull. 32(9)3403—3409(1984)

Sesquiterpene Lactones from Ixeris tamagawaensis KITAM. III¹⁾

HIDEHISA ASADA,* TOSHIO MIYASE, and SEIGO FUKUSHIMA

Shizuoka College of Pharmacy, 2-2-1, Oshika, Shizuoka 422, Japan

(Received December 26, 1983)

Two new germacranolides, ixerins H and I, and three new melampolides, ixerins J, K and L were isolated from the polar and less polar fractions of *Ixeris tamagawaensis* KITAM., respectively. The structures and stereochemistry were established partly by chemical transformations and mainly by the use of ¹H- and ¹³C- nuclear magnetic resonance spectroscopy.

Keywords—*Ixeris tamagawaensis*; Compositae; sesquiterpene; ixerin H; ixerin I; ixerin J; ixerin K: ixerin L

As a continuation of our search for sesquiterpene glycosides with potential biological activity in Compositae plants, we have examined *Ixeris tamagawaensis* KITAM. A chemical investigation of this rare plant led to the isolation of thirteen cytotoxic and antitumor-active sesquiterpene lactones, of which eight have already been reported. We now report the structure elucidation of these compounds by means of spectrometry; two of the compounds are the first sesquiterpenes bearing a germacranolide type skeleton to be isolated from this plant.

We will discuss first the structure elucidation of ixerin H (I), $C_{21}H_{32}O_8$. Its infrared (IR) spectrum showed strong absorptions at $3400\,\mathrm{cm^{-1}}$ (hydroxyl) and $1740\,\mathrm{cm^{-1}}$ (lactone). The 1H -nuclear magnetic resonance (1H -NMR) spectrum showed a doublet methyl signal at δ 1.21 (J=7 Hz) and a broad singlet methyl signal at δ 1.35. On the other hand, in the ^{13}C -nuclear magnetic resonance (^{13}C -NMR) spectrum, signals due to a glucosyl group were observed. Hydrolysis with hesperidinase gave the corresponding aglycone (II). The 1H -NMR spectrum of II was more informative as it showed an olefinic proton signal at δ 4.88 (br t, J=8 Hz), which was assigned to H-1 and furthermore there was an AB-type quartet signal (J=13 Hz) at δ 3.95 and 4.35, which was deduced to be due to the C-15 hydroxymethyl group. This aglycone moiety was identical with β -11,13-dihydro-8-desoxysalonitenolide [comparison of 1H -NMR, IR and mp]. Acid hydrolysis of ixerin H gave glucose. The anomeric structure of ixerin H was determined to be β from the $J_{C_1-H_1}$ value (154 Hz).

Ixerin I (III) has the molecular formula $C_{29}H_{36}O_{11}\cdot H_2O$ and its IR spectrum showed strong absorption at 3400 cm⁻¹ (hydroxyl), 1755 cm⁻¹ (lactone) and 1725 cm⁻¹ (ester). In the ¹H-NMR spectrum, two characteristic doublets of exocyclic methylene were observed at δ 5.45 (J=3.1 Hz) and 6.32 (J=3.7 Hz). The signals of *para*-substituted A_2B_2 -type aromatic protons appeared at δ 7.10 and 7.32 (J=9 Hz).

Because of the high polarity of ixerin I, we considered that it was a sesquiterpene glycoside, so that ixerin I (III) was hydrolyzed with crude hesperidinase in order to give the aglycone (IV). Detailed analysis of the ¹H-NMR spectrum of IV and extensive spin-decoupling experiments enabled us to establish that ixerin I was a germacranolide-type sesquiterpene lactone. The stereochemistry of ixerin I was determined as follows. If the assumption is made that the absolute configuration of the C-7 side chain is β , as in all naturally occurring sesquiterpene lactones of authenticated stereochemistry, the large coupling constants ($J_{7-13}=3.1$ and 3.7 Hz) show that the lactone fusion is *trans* and that H-6 is β -oriented.⁴⁾ The configurations of the two double bonds were determined mainly from the ¹³C

3404 Vol. 32 (1984)

chemical shifts of C-2, C-3 and C-9. In the ¹³C-NMR spectrum, allylic methylene usually resonates at higher field in the cis isomer than in the trans isomer. In the case of a germacranolide-type sesquiterpene, which has a trans 1,10-double bond, the C-9 methylene carbon usually resonates below 30 ppm. In contrast, in the melampolide series compounds, having a cis-1,10-double bond, the C-9 carbon signal never appears below 30 ppm. On the other hand, the C-2 carbon atom was unaffected whether the 1,10-double bond was trans or not. This rule was adaptable to 4,5-double bond, that is to say, when the 4,5-double bond was trans, the C-3 carbon signal was observed at lower than 30 ppm. The C-9 and C-3 carbon signals were both observed below 30 ppm, so that ixerin I has a 1,10-trans-4,5-trans germacradiene type skeleton. The ¹H-NMR chemical shifts supported this assumption. ⁵⁾ The allylic alcohol cis and trans isomers can be distinguished in the ¹H-NMR spectrum by the chemical shift of the β -vinyl proton because the β -vinyl proton is more sensitive to environmental changes than other protons and is thus preferred for stereochemical assignment. The H-1 signal in IV appeared at δ 5.08 (br t, J=8 Hz), but in compound V, which was derived from 8-desoxyurospermal A (XV), $^{6)}$ the H-1 signal was observed at δ 5.65. Thus, the partial structure of ixerin I was established.

On the other hand, from the 13 C-NMR and IR spectra, the existence of an ester carbonyl group was deduced. Saponification with 2% NaOH afforded p-hydroxyphenylacetic acid. Acid hydrolysis gave glucose and the anomeric structure was determined to be β from the $J_{\text{C}_1-\text{H}_1}$ value (J=156Hz). The alternative structure (VI) was excluded by the 1 H-NMR chemical shift of the C-15 hydroxymethyl group. In the acetylated derivative (VII), the C-15 hydroxymethyl signal was shifted downfield, so that the glucose moiety was attached to C-15 and not to C-14.

Ixerin J (VIII) was obtained from the more polar fraction of the *n*-butanol extract and it has the molecular formula $C_{21}H_{30}O_9 \cdot H_2O$, mp 113.5—115.5 °C. Its IR spectrum showed absorptions at 3370 cm⁻¹ (hydroxyl), 1750 cm⁻¹ (lactone) and 1672 cm⁻¹ (aldehyde). The ¹H-NMR spectrum was nearly the same as that of ixerin B (IX), which was previously isolated in this laboratory, ⁶⁾ but the most prominent difference was the absence of two doublets assigned to the exomethylene protons in the γ -lactone ring and the presence of a characteristic doublet methyl signal at δ 1.15 required the structure to be VIII. Subsequently, ixerin J was hydrolyzed with hesperidinase to afford an aglycone (X) and this was found to be identical with ixerin A which was previously isolated in this laboratory [comparison of ¹H-NMR, ¹³C-NMR and IR]. Acid hydrolysis of ixerin J gave glucose. The anomeric structure of ixerin J was determined to be β from the J value of the anomeric proton (J=8 Hz).

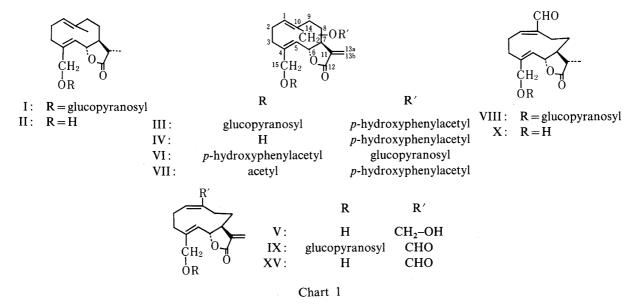


Table I. ¹H-NMR Data for II, IV, V, VII, X in CDCl₃ (90 MHz)

Proton	II	IV	$\mathbf{V}^{a)}$	VII	$X^{a)}$
1	4.88 (brt, J = 8 Hz)	5.08 (br t, J = 8 Hz)	5.65 (br t, J = 8 Hz)	5.12 (br t, J=8 Hz)	6.41 (br t, $J = 8.5$ Hz)
2	1.4—2.7 (m)	1.2—2.7 (m)	1.2—2.8 (m)	1.3—2.6 (m)	1.2—3.0 (m)
3		1.2—2.7 (m)			
5	4.75 (m)	4.83 (d, J = 10 Hz)		5.95 (d, J = 10 Hz)	
6	4.75 (m)	4.47 (t, J = 10 Hz)	5.1—5.2 (m)	4.41 (t, J = 10 Hz)	
7	1.4—2.7 (m)	1.2—2.7 (m)	1.2—2.8 (m)	1.3—2.6 (m)	1.2—3.0 (m)
8		1.2—2.7 (m)		1.3—2.6 (m)	
9	1.4—2.7 (m)	1.2—2.7 (m)			1.2—3.0 (m)
13a	1.24 (d, $J = 7 \text{ Hz}$)		5.31 (d, $J = 3.0 \mathrm{Hz}$)		· ·
13b	1.27 (d, 3 - 7112)	6.27 (d, J = 3.7 Hz)	6.16 (d, $J = 3.3 \text{ Hz}$)	6.26 (d, J = 3.7 Hz)	1.02 (d, $J = 7 \text{ Hz}$)
14	1.35 (br s)	4.35 (AB-type, 4.50 q, $J = 13 \text{ Hz}$)	4.2—4.7 (m)	4.2—4.4 (m)	9.58 (br s)
15	3.95 (AB-type, 4.35 q, $J=13 \text{ Hz}$)	3.86 (AB-type, 4.10 q, $J=13 \text{ Hz}$)	4.2—4.7 (m)	4.2—4.4 (m)	4.43 (AB-type, 4.67 q, $J = 14 \text{ Hz}$)
Ac	•	* ,		2.12, 2.30 (s)	(i) q, v = 1 (112)
p-Hydrox	yphenylacetic acid m	oiety			
β		3.57 (br s)			
2,6		6.73 (d, $J=9$ Hz)			
3,5		7.09 (d, J=9 Hz)			

a) In pyridine- d_5 .

Ixerin K (XI) was obtained from the less polar fraction and has the molecular formula $C_{15}H_{22}O_4 \cdot 1/4H_2O$. Its IR spectrum showed absorptions at $3350\,\mathrm{cm}^{-1}$ (hydroxyl) and $1750\,\mathrm{cm}^{-1}$ (lactone) and the ¹H-NMR spectrum exhibited a characteristic doublet methyl signal at δ 1.22 ($J=7\,\mathrm{Hz}$) as well as two olefinic protons at δ 5.10 (d, $J=10\,\mathrm{Hz}$) and δ 5.54 (br t, $J=8\,\mathrm{Hz}$). The former was coupled with the signal at δ 4.84 (t, $J=10\,\mathrm{Hz}$) which was assigned to H-6. The signals observed in the region of δ 4.0—4.6 (m) were assigned to C-14 and C-15 hydroxymethyl groups. From these spectral data, the structure of ixerin K was elucidated to be XI. Authentic ixerin A (X) was reduced with NaBH₄ to the corresponding alcohol (XI), which was identical with ixerin K [¹H-NMR, ¹³C-NMR, IR].

Ixerin L (XII) has the molecular formula $C_{15}H_{22}O_4 \cdot 1/4H_2O$ and the spectral data were similar to those of ixerin K, so that ixerin L is closely related with ixerin K. In the ¹H-NMR spectrum, a doublet methyl signal was observed at δ 1.07 (J=7 Hz) and olefinic proton signals at δ 5.15 (d, J=9.8 Hz) and 5.69 (br t, J=8.5 Hz). A triplet signal which was assigned to H-6 was observed at δ 5.41 (J=10.1 Hz). At δ 4.34 and 4.41, AB-type signals were seen (J= 13.4 Hz), in addition to AB-type signals at δ 4.49 and 4.73 (J=13.4 Hz), and these signals were assigned to C-14 and C-15 hydroxymethyl groups. The presence of two primary hydroxyl groups was supported by the transformation to the acetate (XIII). These data indicated that ixerin L had the germacradiene type skeleton and next we determined the configuration of the double bonds. Oxidation with activated MnO₂ afforded a dialdehyde (XIV), whose ¹H-NMR spectrum enable us to conclude that the 1,10-double bond has (E)-configuration and the 4,5double bond has (Z)-configuration because of the chemical shifts of the newly produced aldehydic protons, δ 9.48 and 10.17, which were assigned to H-14 and H-15 respectively, on the basis of nuclear Overhauser effect (NOE) experiments. Irradiation of the H-14 aldehydic proton signal increased the intensity of the H-1 signal about 9%, and irradiation of the H-15 aldehydic proton signal produced a positive response at the H-6 proton (about 18%). On the other hand, the solvent shift of the H-13 methyl signal for a pseudo-axial methyl group should be considerably greater than that for a pseudo-equatorial methyl group, which enables us to

TABLE II.	¹³ C-NMR	Data	for	I. III.	. V.	VIII	in	Pyridine-d5

Carbon	I	III	V	VIII
Aglycone moiety				
1	126.8	133.2	123.6	153.1
	$28.1^{a)}$	28.1 ^{a)}	$25.3^{a)}$	25.2^{a}
2 3	35.9	35.7	34.5	33.5
4	139.9	141.0	142.3	136.9
5	130.3	130.5	126.8	130.3
6	79.6	80.2	79.4	79.2
7	54.8	50.8	45.9	41.4
8	$26.9^{a)}$	27.1^{a}	26.0^{a}	27.0^{a}
9	41.1	36.9	24.1 ^{a)}	22.4^{a}
10	137.3	135.6	141.4	145.3
11	42.0	140.7	142.5	49.8
12	178.1	170.1	170.3	178.5
13	13.3	119.2	117.6	12.7
14	16.1	62.1	65.6	195.9
15	67.6	67.7	60.6	67.7
Glucose moiety				
1	105.0	104.6		105.1
2	75.0	74.9		75.0
3	78.3	78.3		78.5
4	71.6	71.6		71.6
5	78.2	78.3		78.5
6	62.8	62.8		62.7
p-Hydroxyphenylace	tic acid moiety			
α		172.1		
$oldsymbol{eta}$		41.0		
1		125.0		
2		116.3		
3		130.9		
4		157.9		
5		130.9		
6		116.3		

a) May be interchangeable in each column.

Chart 2

determine the orientation of the C-11 methyl group. In the present instance, the upfield shifts of H-13 for XI and XII were 0.25 and 0.40 ppm, respectively, so that the methyl group was β -oriented if Narayanan's empirical rule holds in the case of ixerin L.⁷⁾ The stereochemistry of the γ -lactone ring was determined by extensive NOE experiments. Irradiation at the H-13 methyl signal produced an 11% enhancement in the intensity of the H-6 signal and irradiation at the H-7 signal, which overlapped with two unassignable proton signals, resulted in 20% enhancement of the signal intensity of H-5. These results clearly indicate that the C-4 methyl group, H-6 proton and C-11 methyl group have the same direction in space, and that the H-5

Proton	XI	$XII^{a)}$	XIII	XIV
1	5.54 (br t, J = 8 Hz)	5.69 (br t, J = 8.5 Hz)	5.54 (br t, J = 8 Hz)	6.55 (br t, $J = 8$ Hz)
2	1.4—2.7 (m)	1.5—2.7 (m)	1.5—2.7 (m)	1.3—2.8 (m)
3	1.4—2.7 (m)	1.5—2.7 (m)	1.5—2.7 (m)	1.3—2.8 (m)
5	5.10 (d, J = 10 Hz)	5.15 (d, J=9.8 Hz)	5.22 (d, J = 10 Hz)	6.13 (d, J = 10 Hz)
6	4.84 (t, J=10 Hz)	5.41 (t, $J = 10.1 \text{ Hz}$)	4.88 (t, J=10 Hz)	5.45 (t, J=10 Hz)
7	1.4-2.7 (m)	2.25 (m)	1.5—2.7 (m)	1.3—2.8 (m)
8	1.4—2.7 (m)	1.5—2.7 (m)	1.5—2.7 (m)	1.3—2.8 (m)
9	1.4—2.7 (m)	1.5—2.7 (m)	1.5—2.7 (m)	1.3—2.8 (m)
13	1.22 (d, $J = 7 \text{ Hz}$)	1.07 (d, J = 7.0 Hz)	1.20 (d, $J = 7 \text{ Hz}$)	1.08 (d, J=7 Hz)
14	4.0—4.6 (m)	4.49 (AB-type, 4.73 q, $J = 13.4 \text{ Hz})^{b}$	4.76 (br s)	9.48 (d, <i>J</i> < 1 Hz)
15	4.0—4.6 (m)	4.34 (AB-type, 4.41 q, $J = 13.4 \text{ Hz}$) ^{b)}	4.40 (AB-type, 4.65 q, <i>J</i> = 13 Hz)	10.17 (s)
Ac		**	2.08, 2.12 (s)	

TABLE III. ¹H-NMR Data for XI, XII, XIII, XIV in CDCl₃ (90 MHz)

- a) In pyridine- d_5 at 400 MHz.
- b) May be interchangeable.

TABLE IV. ¹³C-NMR Data for XI, XII in Methanol-d₄

Carbon	XI	XII
1	126.2	126.0
2	26.3	26.3
3	34.7	34.7
4	142.4	142.6
5	128.5	128.9
6.	80.4	80.7
7	42.8	41.1
8	27.0	23.5
9	24.8	24.9
10	141.4	141.0
11	50.6	45.4
12	181.5	182.6
13	13.0	10.9
14	66.4	66.2
15	60.8	60.7

olefinic proton and H-7 proton are on the same side of the plane, which can be rationalized only if the stereochemistry is as shown in XII.

Experimental

Melting points were determined on a Yanaco MP-500 micro melting point apparatus and are uncorrected. Optical rotations were determined on a JASCO DIP-140 digital polarimeter and circular dichroism (CD) spectra were determined with a JASCO J-40 spectropolarimeter. IR spectra were run on a JASCO A-202 grating infrared spectrophotometer, and mass spectra (MS) were measured on a JEOL JMS-D 100 mass spectrometer. Field desorption (FD) MS were measured on a JEOL JMS-D 300 instrument with a MS-FD 03 ion source. NMR spectra were recorded on JEOL FX 90 Q and JEOL GX 400 spectrometers (¹H-NMR 89.55 MHz and 399.65 MHz, ¹³C-NMR 22.5 MHz); chemical shifts are given in ppm based on tetramethylsilane as an internal standard.

Isolation—Whole plants of *Ixeris tamagawaensis* (7.2 kg) were extracted with methanol under reflux. The extract was concentrated *in vacuo* and the residue was suspended in water. This suspension was extracted with ethyl acetate and with *n*-butanol to give gums, 106 and 46 g, respectively. The *n*-butanol extract was chromatographed

repeatedly on a silica gel column mainly with a chloroform-methanol system so as to give the following sesquiterpenes.

Ixerin H (I)—Amorphous powder (50 mg). $[\alpha]_D^{25}$ +43.6° (c=0.51, MeOH). IR v_{max}^{KBr} cm⁻¹: 3400, 1740. ¹H-NMR (pyridine- d_5) δ : 1.21 (3H, d, J=7 Hz, H-13), 1.35 (3H, br s, H-14). FD-MS m/z: 414 (M⁺ +2, 100), 413 (M⁺ +1, 25), 250 (M⁺ -162, 45).

Ixerin I (III) — Amorphous powder (100 mg). [α]_D²⁵ +8.9 ° (c = 0.36, MeOH). IR ν ^{KBr}_{max} cm⁻¹: 3400, 1755, 1725. Anal. Calcd for C₂₉H₃₆O₁₁·H₂O: C, 60.36; H, 6.55. Found: C, 60.26; H, 6.31. ¹H-NMR (pyridine- d_5) δ: 3.72 (2H, s, Ar-CH₂), 5.45 (1H, d, J = 3.1 Hz, H-13a), 6.32 (1H, d, J = 3.7 Hz, H-13b), 7.10 (2H, d, J = 9 Hz, H-2, H-6 of ester), 7.32 (2H, d, J = 9 Hz, H-3, H-5 of ester). CD (c = 1.8 × 10⁻³, MeOH) [θ] (nm): +5400 (259); (c = 1.8 × 10⁻⁴, MeOH) [θ] (nm): -123000 (222). FD-MS m/z: 561 (M⁺ + 1).

Ixerin J (VIII)—Colorless prisms (15 mg). mp 113.5—115.5 °C (MeOH–AcOEt). [α]_D²⁵ – 54.0 ° (c = 0.68, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3370, 1750, 1672. *Anal.* Calcd for C₂₁H₃₀O₉·H₂O: C, 56.75; H, 7.26. Found: C, 56.90; H, 7.30. ¹H-NMR (pyridine- d_5) δ : 1.15 (3H, d, J = 7 Hz, CH₃), 4.97 (1H, d, J = 8 Hz, anomeric H), 6.36 (1H, br t, J = 8.5 Hz, H-1), 9.54 (1H, br s, H-14). FD-MS m/z: 427 (M⁺ + 1).

Ixerin K (XI)—Amorphous powder (8 mg). $[\alpha]_D^{25}$ -40.6° (c=0.62, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 1750. Anal. Calcd for C₁₅H₂₂O₄·1/4H₂O: C, 66.52; H, 8.37. Found: C, 66.47; H, 8.20. MS m/z: 266 (M⁺), 262 (M⁺-4), 248 (M⁺-H₂O), 235 (M⁺-CH₂OH), 230 (M⁺-2H₂O). CD (c=1.3×10⁻⁴, MeOH) [θ] (nm): -124000 (206). ¹H-NMR: Table III.

Ixerin L (XII) — Amorphous powder (5 mg). [α]_D²⁵ +23.5° (c =0.37, MeOH). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3370, 1750. Anal. Calcd for C₁₅H₂₂O₄·1/4H₂O: C, 66.52; H, 8.37. Found: C, 66.25; H, 8.24. MS m/z: 264 (M⁺ – 2), 248 (M⁺ – H₂O), 235 (M⁺ – CH₂OH), 230 (M⁺ – 2H₂O). ¹H-NMR: Table III.

Enzymic Hydrolysis of I—Ixerin H (25 mg) was dissolved in water (3 ml) and treated with crude hesperidinase for 5 h at 35 °C with stirring. This solution was extracted with ethyl acetate 3 times and the product was purified by silica gel column chromatography to afford an aglycone (12 mg), which was recrystallized from hexane–ether (colorless needles, mp 146—147 °C, 6 mg). CD ($c = 7.2 \times 10^{-4}$, MeOH) [θ] (nm): +22000 (233). ¹H-NMR: Table I. MS m/z: 250 (M⁺), 232 (M⁺ - H₂O), 219 (M⁺ - CH₂OH).

Enzymic Hydrolysis of III—Ixerin I (III) (15 mg) was dissolved in water and treated with crude hesperidinase (10 mg) for 2 h at 35 °C with stirring. The solution was extracted with ethyl acetate 3 times and the product was purified by silica gel column chromatography to give an aglycone (IV) (amorphous powder, 8 mg). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1755, 1725. MS m/z: 398 (M⁺), 380 (M⁺ – H₂O), 362 (M⁺ – 2H₂O). ¹H-NMR: Table I.

Acetylation of IV—IV (4 mg) was dissolved in acetic anhydride and pyridine (0.5 ml, each) and the mixture was left for 12 h, then concentrated *in vacuo* to give the acetate VII (5 mg). This product was purified by silica gel column chromatography (amorphous powder, 3 mg). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1763, 1740, 1725, 1660. MS m/z: 482 (M⁺), 440 (M⁺ - CH₂ = C = O), 423 (M⁺ - 2CH₂ = C = O), 289 [M⁺ - (ester side chain)].

Saponification of III—A solution of ixerin I (2 mg) in aqueous 2% NaOH was stirred for 3 h at room temperature under a nitrogen atmosphere. The solution was acidified with diluted HCl and extracted with ethyl acetate 3 times. The extract was concentrated to give *p*-hydroxyphenylacetic acid, which was shown by high performance liquid chromatography (HPLC) to be identical with a standard sample. HPLC conditions: column, Lichrosorb RP-8, $4 \text{ mm} \times 25 \text{ cm}$; eluent, H_2O -CH₃CN (75:25); detector, UV 240 nm.

Reduction of XV——8-Desoxyurospermal A (XV) (10 mg) was dissolved in dry tetrahydrofuran (2 ml) and the solution was stirred with LiAl(tert-BuO)₃H (3 mg) for 17 h at room temperature. The residual reagent was destroyed with ethanol and the reaction mixture was diluted with excess water then extracted with AcOEt. The product was purified on a silica gel column to give V (3 mg). CD ($c = 6.32 \times 10^{-4}$, MeOH) [θ] (nm): -3090 (257).

Enzymic Hydrolysis of VIII—Ixerin J (VIII) (15 mg) was dissolved in water and treated with hesperidinase (3 mg) for 3 h at 35 °C with stirring. The solution was extracted with ethyl acetate 3 times and purified by silica gel column chromatography to afford the aglycone (X) (7 mg), which was recrystallized from methanol (colorless prisms, mp 135—136 °C). This product was identical with ixerin A [¹H-NMR, IR, mp]. ¹H-NMR: Table I.

Reduction of X—Ixerin A (X) (7 mg) was dissolved in methanol (3 ml) and the solution was stirred with NaBH₄ (5 mg) for 10 min at room temperature. A small amount of acetic acid was added to destroy the reagent and excess water was added. This reaction product was passed through an Amberlite XAD-2 column, which was washed with water, then eluted with methanol. The methanol was evaporated off *in vacuo* and the residue was purified by silica gel column chromatography to afford the product (XI) (5 mg). This was identical with ixerin K [¹H-NMR, IR].

Acetylation of XII—Ixerin L (XII) (2 mg) was dissolved in pyridine and acetic anhydride (0.5 ml, each) and the mixture was left for 12h at room temperature, then concentrated *in vacuo* to afford the acetate XIII (amorphous powder, 2 mg). ¹H-NMR: Table III.

Oxidation of XIII—Ixerin L (XIII) (3 mg) was dissolved in chloroform (1 ml) and activated MnO₂ (50 mg) was added. The mixture was stirred for 24h at room temperature. The reagent was filtered off and the filtrate was concentrated to give the dialdehyde (XIV) (amorphous powder, 3 mg). ¹H-NMR: Table III.

Acid Hydrolysis of Glycosides—A solution of a glycoside (ca. 1 mg) in 10% H₂SO₄ (1 ml) was heated in a boiling water bath for 1 h. The solution was passed through an Amberlite IR-45 column and concentrated to give a

residue, which was reduced with NaBH₄ (ca. 1 mg) for 30 min. The reaction mixture was passed through an Amberlite IR-120 column and concentrated to dryness. Boric acid was removed by distillation with methanol and the residue was acetylated with acetic anhydride (1 drop) and pyridine (1 drop) at $100\,^{\circ}$ C for 1 h. The reagents were evaporated off in vacuo. From each glycoside, glucitol acetate was detected by gas chromatography. Conditions: column, 1.5% OV-17, $3\,\text{mm} \times 1\,\text{m}$; column temperature, $230\,^{\circ}$ C; carrier gas, N_2 ; t_R , $3.8\,\text{min}$.

Acknowledgement We thank Prof. F. Bohlmann, Technical University of Berlin, for providing ¹H-NMR data. We are also grateful to Prof. S. Arihara, Institute of Pharmacognosy, Tokushima-Bunri University, for measurement of 400 MHz ¹H-NMR spectra, to Dr. Y. Sakamoto, Hiroshima Prefectural Institute of Public Health, for measurement of FD-MS to Dr. M. Uchida for measurement of EI-MS and to Mrs. H. Kitamura for elemental analyses.

References and Notes

- 1) Part II: H. Asada, T. Miyase and S. Fukushima, Chem. Pharm. Bull., 32, 3036 (1984).
- 2) F. Bahlmann and C. Zdero, Phytochemistry, 16, 1832 (1977).
- 3) K. Bock, I. Lundt and C. Pedersen, Tetrahedron Lett., 13, 1037 (1973).
- 4) Z. Samek, Collect. Czech. Chem. Commun., 43, 3210 (1978).
- 5) K. C. Chan, R. A. Jewell, W. H. Nutting and H. Rapoport, J. Org. Chem., 33, 3382 (1968).
- 6) H. Asada, T. Miyase and S. Fukushima, Chem. Pharm. Bull., 32, 1724 (1984).
- 7) C. R. Narayanan and N. K. Vekatasubramanian, J. Org. Chem., 33, 3156 (1968).