Chem. Pharm. Bull. 32(9)3579-3583(1984)

Studies on the Constituents of *Picrasma quassioides* BENNET. III.¹⁾ The Alkaloidal Constituents

TAICHI OHMOTO* and KAZUO KOIKE

School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274, Japan

(Received December 9, 1983)

A new β -carboline alkaloid, named picrasidine E (I), was isolated from the wood of *Picrasma quassioides* Bennet (Simaroubaceae) together with seven known alkaloids, 1-methoxycarbonyl- β -carboline (II), 1-ethoxycarbonyl- β -carboline (III), 1-formyl- β -carboline (IV), 1-hydroxymethyl- β -carboline (V), β -carboline-1-propionic acid (VI), 4,5-dimethoxy-canthin-6-one (VII), and 5-hydroxy-4-methoxycanthin-6-one (VIII). These structures were elucidated on the basis of spectroscopic and chemical evidence.

Keywords—*Picrasma quassioides*; Simaroubaceae; wood; picrasidine E; β -carboline type alkaloid; canthin-6-one type alkaloid

In the previous papers,^{1,2)} we reported the isolation and structural elucidation of five new alkaloids, β -carbolin-1-yl 4,8-dimethoxy- β -carbolin-1-yl-ethyl ketone (named "picrasidine A"), 1-(2-methoxy)ethyl-4,8-dimethoxy- β -carboline (named "picrasidine B"), and 3-methyl-canthine-2,6-dione from the root-wood of *Picrasma quassioides* BENNET (Simaroubaceae, Japanese name "Nigaki")²⁾ and β -carbolin-1-yl 3-(4,8-dimethoxy- β -carbolin-1-yl)-1-methoxypropyl ketone (named "picrasidine C") and 4,9-dimethoxy-1-vinyl- β -carboline (named "picrasidine D") from the wood of this plant.¹⁾ Further chemical examination of the alkaloids of the wood has resulted in the isolation of a new alkaloid (I), named picrasidine E. In addition, we isolated and characterized seven known alkaloids (III—VIII). This paper deals with the isolation and structure elucidation of these compounds.

Picrasidine E (I), yellow needles, mp 220 °C, showed a positive Dragendorff test, and its molecular formula was determined as $C_{18}H_{16}N_2O_5$ by high-resolution mass spectrometry (Calcd. m/z 340.1059. Found. m/z 340.1077). The ultraviolet (UV) spectrum [λ_{max}^{EtOH} nm (log ε):

Vol. 32 (1984)

240 (4.85), 280 (sh, 4.25), 310 (4.35), and 410 (4.35)] was characteristics of a β -carboline type alkaloid, 1,2) and its infrared (IR) spectrum showed absorption bands due to an amino group $(3470 \,\mathrm{cm}^{-1})$, ester group $(1722 \,\mathrm{and}\, 1290 \,\mathrm{cm}^{-1})$, conjugated carbonyl group $(1660 \,\mathrm{cm}^{-1})$, and ether linkage (1260, 1175, and 1085 cm⁻¹). There were two carbonyl carbon signals at δ 166.36 and 188.81 in the carbon-13 nuclear magnetic resonance (13C-NMR) spectrum. The proton nuclear magnetic resonance (1H-NMR) spectrum of picrasidine E showed three methoxyl signals at δ 3.88, 4.04, and 4.27, a pair of AX-type proton signals due to trans olefin (-CH= CH-) at δ 7.04 and 8.78 (each d, J=16 Hz), and ABX-type proton signals at δ 7.02 (d, J= 8 Hz), 7.26 (t, J=8 Hz), and 7.87 (d, J=8 Hz) attributed to 7-H, 6-H, and 5-H, respectively, the last proton being deshielded by the B and C rings. A sharp one-proton singlet at δ 8.22 could be assigned to a lone aromatic proton (3-H), and a lowest field singlet of indolic NH at δ 10.42 which disappeared on treatment with D₂O. From these spectral data, we concluded that picrasidine E has a -CO-CH=CH-COOCH₃ grouping. The ¹H-NMR and ¹³C-NMR signals in the aromatic region are very similar to those of 4,8-dimethoxy-1-vinyl- β -carboline (IX), which suggested that picrasidine E has the same disposition as regards the location of two methoxyl groups and the -CO-CH = CH-COOCH₃ grouping. The assignment of two aromatic methoxyl signals was confirmed by the ¹H-¹H two dimensional nuclear Overhauser effect (2D NOE) NMR spectrum of picrasidine E, which showed the presence of NOE between 3-H (δ 8.22) and 4-OCH₃ (δ 4.27) and also 7-H (δ 7.02) and 8-OCH₃ (δ 4.04). On the basis of the above data, picrasidine E should be represented by formula I.

Compounds II—VI all gave a positive Dragendorff test, and their UV spectra exhibited typical absorptions of a β -carboline skeleton.^{1,2)} Compounds II—VI were identified as 1-methoxycarbonyl- β -carboline,³⁾ 1-ethoxycarbonyl- β -carboline,⁴⁾ 1-formyl- β -carboline,⁵⁾ 1-hydroxymethyl- β -carboline,³⁾ and β -carboline-1-propionic acid,⁶⁾ respectively, by direct comparison with synthetic samples [thin-layer chromatography (TLC), IR, spectra, and mixed melting point determination]. This is the first time that compounds V and VI have been isolated from *Picrasma quassioides* BENNET.

Compound VII and VIII gave a positive Dragendorff test, and their UV spectra exhibited typical absorptions of a canthin-6-one skeleton.⁷⁾ The ¹H-NMR spectrum of VII showed two methoxyl signals at δ 4.09 and 4.49 (each 3H, s), and that of VIII showed a methoxyl signal at δ 4.27 (3H, s). The IR spectrum of VIII showed a band due to a hydroxyl group (3270 cm⁻¹). Compounds VII and VIII were oxidized with KMnO₄, affording 1-methoxycarbonyl- β -

Proton	I		IX
3H	8.22 (s)		8.03 (s)
5H	7.87 (d, J = 8 Hz)		7.86 (d, J = 8 Hz)
6H	7.26 (t, J = 8 Hz)		7.15 (t, J = 8 Hz)
7H	7.02 (d, J = 8 Hz)		6.87 (d, J = 8 Hz)
NH	$10.42 \; (br s)^{a)}$		$9.85 (br s)^{a)}$
2′H	7.04 (d, J = 16 Hz)		
3′H	8.78 (d, J = 16 Hz)		
\mathcal{H}_{M}		$H_{\mathbf{A}}$	$7.15 / J_{AM} = 17.5 \text{ Hz}$
$-\mathbf{C} = \mathbf{C}$		H_{M}	$7.15 \mid J_{AM} = 17.5 \text{ Hz} $ $6.22 \mid J_{AX} = 11.0 \text{ Hz} \mid$
H_A H_X		$H_{\mathbf{x}}$	$5.40 \ J_{\rm MX} = 2.0 \ {\rm Hz} \ J$
4-OCH ₃	4.27 (s)		4.08 (s)
8-OCH ₃	4.04 (s)		3.92 (s)
4′-OCH ₃	3.88 (s)		•

TABLE I. 1H-NMR Spectral Data for I and IX

I and IX in CDCl₃ solution. a) Disappeared with D₂O.

Carbon	I	IX
 C-1	137.64	134.44
C-3	121.84	120.81
C-4	155.18	151.32
C-4a	119.08	118.96
C-4b	121.19	122.08
C-5	116.12	116.26
C-6	122.18	121.39
C-7	108.15	107.13
C-8	146.19	145.81
C-8a	130.90	134.29
C-9a	130.49	130.02
C-1′	188.81	132.83
C-2′	136.38	116.65
C-3′	130.55	
C-4′	166.36	
4-OCH ₃	56.61	56.01
S-OCH ₃	55.66	55.39
4′-OCH ₃	52.20	

TABLE II. 13C-NMR Spectral Data for I and IX

I and IX in CDCl₃ solution.

carboline (II). Methylation of VIII with diazomethane gave VII. On the basis of these results, VII and VIII were identified as 4,5-dimethoxycanthin-6-one⁸⁾ and 5-hydroxy-4-methoxycanthin-6-one,⁹⁾ respectively.

Experimental

All melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. The UV and IR spectra were recorded with Hitachi 340 and Hitachi 260-30 spectrophotometers, respectively. The 1 H-NMR spectra were recorded with JEOL JNM-4H-100 and JEOL GX-400 spectrometers, and 13 C-NMR spectra were recorded with a JEOL GX-400 spectrometer; chemical shifts are given on the δ scale (ppm) with tetramethylsilane as an internal standard, and coupling constants are given in Hz. The following abbreviations are used: s=singlet, d=doublet, t=triplet, and sh=shoulder. Mass spectra (MS) were measured with a JEOL JMS-01SG-2 mass spectrometer. Column chromatography was carried out on Wako gel C-200 (Wako Pure Chemical Ind., Ltd.). TLC and preparative TLC were performed on precoated Silica gel 60 plates (Merck) and Wako gel B-5 (Wako Pure Chemical Ind., Ltd.), respectively, and the developing solvents were detected with Dragendorff reagent or by UV irradiation.

Extraction—Dried wood (6 kg) of *Picrasma quassioides* collected at the Medicinal Plant Garden, School of Pharmaceutical Sciences, Toho University, in December 1980 was extracted with MeOH (60 l) at 35—40 °C for 48 h. The extract was evaporated to dryness and the residue was partitioned between water and CHCl₃. The CHCl₃ solution was dried over Na₂SO₄ and concentrated to give a CHCl₃-soluble fraction (90 g) which was passed through a column of silica gel (2 kg). The column was eluted successively with CHCl₃ and MeOH. 4,5-Dimethoxycanthin-6-one (VII, 3 g) and 5-hydroxy-4-methoxycanthin-6-one (VIII, 25 g) were eluted with CHCl₃. Elution with CHCl₃-MeOH (19:1) afforded 1-methoxycarbonyl-β-carboline (II, 1.0 g) and 1-ethoxycarbonyl-β-carboline (III, 0.5 g), then elution with CHCl₃-MeOH (9:1) afforded 1-hydroxymethyl-β-carboline (IV, 20 mg), 1-formyl-β-carboline (V, 25 mg), and β-carboline-1-propionic acid (VI, 6 mg).

Picrasidine E (I)—The fraction (690 mg) eluted with CHCl₃–MeOH (19:1) was repeatedly chromatographed on silica gel and the product was separated by preparative TLC developed with CHCl₃, then crystallized from acetone to give picrasidine E (I, 25 mg) as yellow needles, mp 220 °C. UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ε): 240 (4.85), 280 (sh, 4.25), 310 (4.35), 410 (4.35). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3465, 2930, 1725, 1660, 1620, 1575, 1565, 1420, 1315, 1290, 1260, 1175, 1085. ¹H-NMR and ¹³C-NMR: Tables I and II, respectively. MS m/z (%): 340 (M⁺, 32), 282 (23), 281 (100), 266 (20), 251 (7), 228 (5), 223 (5), 212 (3), 197 (2). High-resolution MS, Calcd for C₁₈H₁₆N₂O₅, m/z 340.1059. Found, m/z 340.1077.

1-Methoxycarbonyl-β-carboline (II)—Compound II was obtained as colorless needles (acetone), mp 163 °C

(lit., 3) mp 163 °C). MS m/z: 226 (M⁺). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 240 (4.26), 258 (4.26), 275 (4.31), 301 (4.07), 370 (3.83). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1685, 1630, 1550, 1469, 1250, 1210, 1075. This compound was identified as 1-methoxycarbonyl- β -carboline by direct comparison with a synthetic sample (TLC, IR spectra, and mixed melting point determination).

Synthesis of H— β -Carboline-1-carboxylic acid (500 mg)¹⁰⁾ was suspended in 5% H₂SO₄ methanol solution, and the mixture was refluxed under moisture-free conditions for 2 h, then cooled in an ice-bath. The reaction mixture was basified with saturated Na₂CO₃ solution. The ester (520 mg) that precipitated was crystallized from acetone, mp 163 °C, MS m/z: 226 (M⁺). Anal. Calcd for C₁₃H₁₀N₂O₂: C, 69.02; H, 4.46; N, 12.38. Found: C, 69.35; H, 4.35; N, 12.42.

1-Ethoxycarbonyl-β-carboline (III)—Compound III was obtained as colorless needles (acetone), mp 123 °C.⁴⁾ MS m/z: 240 (M⁺). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 218 (4.90), 247 (4.52), 258 (4.52) 288 (4.56), 302 (4.31), 368 (4.06). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420, 1682, 1630, 1210, 1180, 1075. This compound was identified as 1-ethoxycarbonyl-β-carboline by direct comparison with a synthetic sample (TLC, IR spectra, and mixed melting point determination).

Synthesis of III— β -Carboline-1-carboxylic acid (500 mg)¹⁰⁾ was suspended in 5% H_2SO_4 ethanol solution, and the mixture was refluxed under moisture-free conditions for 2 h, then cooled in an ice-bath. The reaction mixture was basified with saturated Na₂CO₃ solution. The ester (530 mg) that precipitated was crystallized from acetone, mp 123 °C. MS m/z: 240 (M⁺). Anal. Calcd for $C_{14}H_{12}N_2O_2$: C, 69.70; H, 5.01; N, 11.61. Found: C, 71.05; H, 5.09; N, 11.75

1-Formyl-\beta-carboline (IV)—Compound IV was obtained as yellow needles (acetone), mp 202 °C (lit.,⁵⁾ mp 198—200 °C). MS m/z: 196 (M⁺). UV $\lambda_{\text{max}}^{\text{EiOH}}$ nm (log ε): 268 (4.93), 304 (4.35), 366 (3.89). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3200, 2880, 1655, 1600, 1335. This compound was identified as 1-formyl- β -carboline by direct comparison with a synthetic sample (TLC, IR spectra, and mixed melting point determination).

Synthesis of IV—Benzylidene harman was prepared from harman¹¹⁾ and benzaldehyde by the method of Snyder $et~al.^{11)}$ Benzylidene harman (200 mg) was dissolved in acetic acid—water (4:1) and OsO₄ (25 mg) and paraperiodate (600 mg) were added. The mixture was stirred for 72 h at room temperature. The solvents were removed under reduced pressure, then the residue was suspended in 10% Na₂CO₃ solution (15 ml) and extracted with CHCl₃. The CHCl₃ solution was dried over Na₂SO₄, and the solvent was removed under reduced pressure to give a yellow product, which was crystallized from MeOH to give IV (50 mg). MS m/z: 196 (M⁺). Anal. Calcd for C₁₂H₈N₂O: C, 73.46; H, 4.11; N, 14.28. Found: C, 73.76; H, 4.18; N, 14.41.

1-Hydroxymethyl- β -carboline (V)—Compound V was obtained as pale yellow needles (acetone), mp 229 °C (lit.,3) mp 228—230 °C). MS m/z: 198 (M⁺). UV λ_{max}^{EtOH} nm (log ε): 215 (4.62), 240 (4.70), 285 (4.50), 340 (3.80), 352 (3.80). IR ν_{max}^{KBr} cm⁻¹: 3420, 2850, 1630, 1580, 1430. This compound was identified as 1-hydroxymethyl- β -carboline by direct comparison with a synthetic sample (TLC, IR spectra, and mixed melting point determination).

Synthesis of V——A stirred solution of II (500 mg) in THF (20 ml) was treated with LiAlH₄. The mixture was stirred for 5 h at room temperature, then excess LiAlH₄ was destroyed by addition of ethyl acetate. The resulting solution was extracted with CHCl₃. The CHCl₃ solution was dried over Na₂SO₄, then concentrated under reduced pressure. The residue was crystallized from MeOH to give IV (280 mg) as pale yellow needles, mp 229 °C. MS m/z: 198 (M⁺). Anal. Calcd for C₁₂H₁₀N₂O: C, 74.32; H, 4.23; N, 14.41. Found: C, 74.89; H, 4.34; N, 14.66.

β-Carboline-1-propionic Acid (VI)——Compound VI was obtained as colorless needles (CHCl₃–MeOH), mp 215 °C (lit., 6) mp 216 °C). MS m/z: 240 (M⁺). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 238 (4.98), 292 (4.51), 336 (4.38), 350 (4.41). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420, 1680, 1620, 1550, 1390. This compound was identified as β-carboline-1-propionic acid by direct comparison with a synthetic sample (TLC, IR spectra, and mixed melting point determination).

Synthesis of VI—Canthin-6-one⁷⁾ (100 mg) in acetic acid (2 ml) was boiled with granulated zinc for 15 min, then the solution was diluted with water, neutralized by addition of 5% Na_2CO_3 solution, and extracted with CHCl₃. Evaporation of the CHCl₃ and crystallization of the residue from light petroleum ether gave 4,5-dihydrocanthin-6-one (85 mg), which was dissolved in a little MeOH. A mixture of this solution with 5% NaOH solution was warmed at 50 °C, then acidified with acetic acid. The liberated acid (85 mg) was crystallized from water as colorless needles, mp 215—216 °C, (lit.,⁶⁾ mp 216 °C). MS m/z: 240 (M⁺). Anal. Calcd for $C_{14}H_{12}N_2O_2$: C, 66.66; H, 4.79; N, 11.10. Found: C, 66.57; H, 4.81; N, 11.19.

4,5-Dimethoxycanthin-6-one (VII)—Compound VII was obtained as pale yellow needles (acetone), mp 146 °C (lit., 8) mp 145—146 °C). MS m/z: 280 (M+). UV $\lambda_{\max}^{\text{EtOH}}$ nm (log ε): 240 (4.54), 248 (4.59), 290 (4.02), 300 (3.99), 349 (3.95), 357 (4.01), 373 (3.92). IR ν_{\max}^{KBr} cm⁻¹: 1670, 1635, 1270, 1110, 1090. ¹H-NMR (CDCl₃) δ (ppm): 4.09, 4.49 (each 3H, s, C₄, C₅–OCH₃), 7.50 (1H, t, J = 8 Hz, 10-H), 7.68 (1H, t, J = 8 Hz, 9-H), 7.88 (1H, d, J = 5 Hz, 1-H), 8.06 (1H, d, J = 8 Hz, 11-H), 8.65 (1H, d, J = 8 Hz, 7-H), 8.82 (1H, d, J = 5 Hz, 2-H).

Conversion of 4,5-Dimethoxycanthin-6-one (VII) to 1-Methoxycarbonyl- β -carboline (II)—VII (500 mg) was dissolved in acetone, and oxidized with KMnO₄. The resulting product, 1-methoxycarbonyl- β -carboline, was crystallized from acetone to give pale yellow needles (250 mg). The product was identical with the natural product (II) by direct comparison (TLC, IR spectra, and mixed melting point determination).

5-Hydroxy-4-methoxycanthin-6-one (VIII)—Compound VIII was obtained as pale yellow needles (acetone), mp 225 °C (lit., 9) mp 224—225 °C). MS m/z: 266 (M⁺). UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ε): 246 (4.60), 262 (sh, 4.50), 286 (4.25), 340 (4.01), 356 (4.05), 374 (4.00). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3270, 1670, 1635, 1270, 1100, 1070. ¹H-NMR (CDCl₃) δ (ppm : 4.27 (3H,

s, C_4 -OCH₃), 7.48 (1H, t, J=8 Hz, 10-H), 7.65 (1H, t, J=8 Hz, 9-H), 8.02 (1H, d, J=5 Hz, 1-H), 8.10 (1H, d, J=8 Hz, 11-H), 8.61 (1H, d, J=8 Hz, 7-H), 8.74 (1H, d, J=5 Hz, 2-H).

Methylation of 5-Hydroxy-4-methoxycanthin-6-one (VIII)—Methylation of VIII (20 mg) with diazomethane-ether at room temperature for 10 h gave 4,5-dimethoxycanthin-6-one (20 mg), mp 146 °C, MS m/z: 280 (M⁺), which was identical with the natural product by direct comparison (TLC, IR spectra, and mixed melting point determination).

Conversion of 5-Hydroxy-4-methoxycanthin-6-one (VIII) to 1-Methoxycarbonyl- β -carboline (II)—VIII (500 mg) was dissolved in acetone, and oxidized with KMnO₄. The resulting product, 1-methoxycarbonyl- β -carboline, was crystallized from acetone to give pale yellow needles, mp 168 °C. The product was identical with the natural product by direct comparison (TLC, IR spectra, and mixed melting point determination).

Acknowledgement The authors wish to thank the following members of this school: Miss Y. Sakamoto for measuring the NMR spectra, Dr. T. Morikawa for the elemental analysis, and Mr. M. Takayama for the MS.

References and Notes

- 1) Part II: T. Ohmoto and K. Koike, Chem. Pharm. Bull., 31, 3198 (1983).
- 2) T. Ohmoto and K. Koike, Chem. Pharm. Bull., 30, 1204 (1982).
- 3) Y. Kondo and T. Takemoto, Chem. Pharm. Bull., 21, 837 (1973).
- 4) J-S. Yang, S-R. Luo, X-Y. Shen, and Y-X. Li, Yao Hsueh Hsueh Pao, 14, 167 (1979).
- 5) A. Jordaan, L. M. Du Plessis, and V. P. Joynt, J. S. Afr. Chem. Inst., 21, 22 (1968).
- 6) H. F. Haynes, E. R. Nelson, and J. R. Price, Aust. J. Sci. Res., Ser. A, 5, 387 (1952).
- 7) T. Ohmoto, K. Koike, and Y. Sakamoto, Chem. Pharm. Bull., 29, 390 (1981).
- 8) N. Inamoto, S. Masuda, O. Shimamura, and T. Tsuyuki, Bull. Chem. Soc. Jpn., 34, 888 (1961).
- 9) Y. Kimura, M. Takido, and S. Koizumi, Yakugaku Zasshi, 87, 1371 (1967).
- 10) Y-I. Sung, K. Koike, T. Nikaido, T. Ohmoto, and U. Sankawa, Chem. Pharm. Bull., 32, 1872 (1984).
- 11) H. R. Snyder, C. H. Hansch, I. Kortz, S. M. Parmenter, and E. C. Speth, J. Am. Chem. Soc., 70, 219 (1948).