Chem. Pharm. Bull. 32(9)3683—3685(1984)

New Methods and Reagents in Organic Synthesis. 43.¹⁾ A New Synthesis of *tert*-Butyl Peroxycarboxylates Using Diethyl Phosphorocyanidate (DEPC)

Yasumasa Hamada, Akira Mizuno,²⁾ Tomoyasu Ohno, and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

(Received January 5, 1984)

Condensation of carboxylic acids with *tert*-butyl hydroperoxide has been smoothly achieved by the use of diethyl phosphorocyanidate and triethylamine under mild reaction conditions, giving *tert*-butyl peroxycarboxylates in good yields.

Keywords—*tert*-butyl peroxycarboxylate; diethyl phosphorocyanidate; *tert*-butyl hydroperoxide; carboxylic acid; triethylamine; α -effect

Peroxycarboxylic acid esters are utilized as initiators for radical polymerization and are interesting as intermediates for the decarboxylation of carboxylic acids.³⁾ They are generally prepared by the acylation of hydroperoxides with acid chlorides, acid anhydrides, or imidazolides in the presence of a base. To our knowledge, no report has described the direct condensation of carboxylic acids with hydroperoxides.

We have already shown that diethyl phosphorocyanidate (DEPC, $(C_2H_5O)_2P(O)CN)$, in combination with carboxylic acids and bases, can be efficiently used for N-acylation, S-acylation, and C-acylation, giving carboxylic acid amides,⁴⁾ peptides,⁵⁾ thiol esters,⁶⁾ acylmalonate derivatives,⁷⁾ α -nitroketones,⁸⁾ and oxazoles.⁹⁾ However, O-acylation of alcohols with carboxylic acids using DEPC under similar reaction conditions does not proceed efficiently,⁴⁾ possibly because of the weaker nucleophilicity of alcohols. Since hydroperoxides in the presence of a base seemed to be more reactive toward carbon electrophiles because of the α -effect,¹⁰⁾ we thought the O-acylation of hydroperoxides with carboxylic acids using DEPC in the presence of a base might proceed much more smoothly, giving synthetically useful

Reaction Run Method^{a)} Yield (%) solvent C₆H₅CH₃ Α 62 C₆H₅CH₃ В 55 3 CH₂Cl₂ Α 56 4 CH₃CN Α 61

CH₃CN

 $HCON(CH_3)_2$

HCON(CH₃)₂

5

6

7

TABLE I. Condensation of *m*-Chlorobenzoic Acid with *tert*-Butyl Hydroperoxide

В

Α

75

61

92

a) Order of addition of reagents: Method A, (1) m-chlorobenzoic acid, (2) DEPC, (3) triethylamine, (4) tert-butyl hydroperoxide; Method B, (1) m-chlorobenzoic acid, (2) tert-butyl hydroperoxide, (3) triethylamine, (4) DEPC.

Preparation of tert-Butyl Peroxycarboxylates (RCO₂O-C(CH₃)₃) by the Direct Condensation of Carboxylic Acids with tert-Butyl Hydroperoxide TABLE II.

Yield Annearance	Annearance	IR a)	NMR ^{b)} Sprim	Molecular	Analysis (%)	MS M + (m/o)
(mp, °C)	(mp, °C)	VC=0	(9H, s, (CH ₃) ₃ C)	formula	C H	Calcd (Found)
October 5 Colorless oil		1750	1.38	$C_{12}H_{16}O_4$	l	224.10486
CH ₃ CONH(🔘)- 88 Colorless cryst. ^{c)} 1740		2	1.39	$C_{13}H_{17}NO_4{}^{d)}$	62.14 6.82	(10101:122) —
Colorless oil 1750		0	1.39	$C_{12}H_{14}O_5$	1	238.08412
Colorless oil 1760			1.41	$C_{11}H_{13}ClO_3$		(228.08333) 228.05532 (228.05539)
$O_2N-\bigcirc$ 70 Yellow cryst.*) 1755 (77.5–78) f		8	1.45	$C_{11}H_{13}NO_5$	ł	(Caccosta)
M_{NO_2} 60 Colorless oil 1772		~	1.38	$C_{11}H_{13}NO_5{}^{g)}$	55.23 5.48 (54.96 5.44)	1
Colorless oil 1755		10	1.46	$C_{15}H_{16}O_3$	1	244.10994
$CH_3(CH_2)_{16}$ 64 Colorless cryst. 1780		_	1.31	$C_{22}H_{44}O_3$		
→ Colorless oil 1765		ς.	1.31	$C_{15}H_{24}O_3$	71.39 9.59 (71.89 10.05)	I

Determined in Nujol or as a film. Determined in deuteriochloroform using tetramethylsilane as an internal standard. Recrystallized from diethyl ether-hexane. a Analysis of N, 5.57 (5.46). Recrystallized from hexane. f Lit. mp 79 °C (ref. 12). g Analysis of N, 5.85 (5.77).

peroxycarboxylic acid esters in higher yields.

In fact, carboxylic acids have been smoothly condensed with *tert*-butyl hydroperoxide by the use of DEPC and triethylamine under mild reaction conditions to give *tert*-butyl peroxycarboxylates in good yields:

$$RCO_2H + (CH_3)_3COOH \xrightarrow{(C_2H_5O)_2P(O)CN} RCO_2OC(CH_3)_3$$

Suitable reaction conditions have been explored for the condensation of m-chlorobenzoic acid with tert-butyl hydroperoxide as a model reaction. As summarized in Table I, N, N-dimethylformamide is the solvent of choice. A slight excess (1.5 eq) of DEPC and triethylamine is necessary to conduct the reaction smoothly. The order of addition of reagents significantly affects the yield, and method B (Table I), in which DEPC is finally added to a mixture of the carboxylic acid, tert-butyl hydroperoxide, and triethylamine, gives the best result. The use of diphenyl phosphorazidate (DPPA, $(C_6H_5O)_2P(O)N_3)^{5,6,11}$) in place of DEPC under similar reaction conditions was disappointing, and only the formation of the carboxylic acid azide was observed.

Method B is a general one for the preparation of tert-butyl peroxycarboxylates, as summarized in Table II. Various aromatic acids are efficiently used for O-acylation of tert-butyl hydroperoxide. Condensation of aliphatic or alicyclic acids with tert-butyl hydroperoxide seems to proceed less efficiently than that of aromatic acids.

Experimental

Commercial *tert*-butyl hydroperoxide (80%) was used without purification. Silica gel (70—230 mesh ASTM, Merck Art. 7734) was used for column chromatography.

General Procedure for Preparation of tert-Butyl Peroxycarboxylates (Table II)—tert-Butyl hydroperoxide (180 mg, 2 mmol) in N, N-dimethylformamide (5 ml) was added to a carboxylic acid (2 mmol) cooled in an ice-methanol bath, followed by the addition of triethylamine (304 mg, 3 mmol) in N, N-dimethylformamide (5 ml). DEPC (489 mg, 3 mmol) in N, N-dimethylformamide (5 ml) was slowly added, and the mixture was stirred in the ice-methanol bath for 1.5 h, then at room temperature for 2 h (in the preparations of VI and VIII, the mixture was stirred overnight). Ethyl acetate-benzene (2:1, 120 ml) was added to the reaction mixture, and the organic layer was successively washed with 40 ml each of water, saturated aqueous sodium bicarbonate, water, 10% aqueous citric acid, water, and saturated aqueous sodium chloride, then dried over sodium sulfate. The mixture was concentrated in vacuo below 30 °C, and the residue was purified by column chromatography with diethyl ether-hexane (for I, II, IV, and VIII), benzene-hexane (for III, VI, and VIII), or benzene (for V and IX), giving the peroxycarboxylate.

References and Notes

- 1) Part 42: Y. Hamada, M. Kokuryu, and T. Shioiri, "Peptide Chemistry 1983," ed. by E. Munekata, Protein Research Foundation, Osaka, 1984, p. 173.
- 2) Present address: Suntory Institute for Biomedical Research, Wakayamadai 1, Shimamoto-cho, Mishima-gun, Osaka 618, Japan.
- 3) Y. Ogata (ed.), "Chemistry of Organic Peroxides," Nankodo Inc., Tokyo, 1971, Chapter 7.
- 4) T. Shioiri, Y. Yokoyama, Y. Kasai, and S. Yamada, Tetrahedron, 32, 2211, 2854 (1976).
- 5) S. Takuma, Y. Hamada, and T. Shioiri, Chem. Pharm. Bull., 30, 3147 (1982), and references cited therein.
- 6) Y. Yokoyama, T. Shioiri, and S. Yamada, Chem. Pharm. Bull., 25, 2423 (1977).
- 7) T. Shioiri and Y. Hamada, J. Org. Chem., 43, 3631 (1978).
- 8) Y. Hamada, K. Ando, and T. Shioiri, Chem. Pharm. Bull., 29, 259 (1981).
- 9) Y. Hamada, S. Morita, and T. Shioiri, Heterocycles, 17, 321 (1982).
- J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc., 84, 16 (1962). For a recent discussion on the α-effect, see
 C. H. DePuy, E. W. Della, J. Filley, J. J. Grabowski, and V. M. Bierbaum, J. Am. Chem. Soc., 105, 2481 (1983).
- 11) Y. Hamada and T. Shioiri, Tetrahedron Lett., 23, 1193 (1982), and references cited therein.
- 12) A. T. Blomquist and I. A. Bernstein, J. Am. Chem. Soc., 68, 642 (1946).