Chem. Pharm. Bull. 36(1) 398-400 (1988)

Studies on Fungal Products. XVI.¹⁾ New Metabolites Related to 3-Methylorsellinate from *Aspergillus silvaticus*

Nobuo Kawahara,^a Koohei Nozawa,^a Shoichi Nakajima,^a Shun-ichi Udagawa^b and Ken-ichi Kawai*,^a

Faculty of Pharmaceutical Sciences, Hoshi University,^a Ebara 2–4–41, Shinagawa-ku, Tokyo 142, Japan and National Institute of Hygienic Sciences,^b Kamiyoga 1–18–1, Setagaya-ku, Tokyo 158, Japan

(Received June 24, 1987)

Aspergillus silvaticus grown on Raulin-Thom medium produced a series of new fungal metabolites: ethyl 3-methylorsellinate (1), 6-hydroxy-4-methoxy-5-methylphthalimidine (2), and 3,6-dimethyl-4-hydroxy-2-methoxybenzaldehyde (3), along with quadrilineatin (4). These metabolites may be precursors in the biogenesis of silvaticol (6), which has been isolated previously as a metabolite of the same fungus.

Keywords—Aspergillus silvaticus; 3-methylorsellinate; phthalimidine; quadrillineatin; versiol; silvaticol

Aspergillus silvaticus FENNELL et RAPER, strain IFO 8173, produces a nitrogencontaining "secoanthraquinone," silvaticamide,²⁾ and phthalides, silvaticol (6) and nidulol (7).³⁾ Recently we reported the isolation of dioxopiperazine derivatives, dithiosilvatin and silvathione,⁴⁾ and arugosins,¹⁾ from the same fungus. Compound 2 was also isolated from the culture filtrate as a minor component. In all cases, Czapek-Dox or modified Czapek-Dox medium was employed as a substrate for the production of these metabolites.

When cultivated in Raulin-Thom medium, which contains ammonium ion instead of the nitrate ion used in Czapek-Dox medium as a nitrogen source, however, this fungus produces a further series of secondary metabolites 1, 3, 4, and 5 as main components of the culture filtrate, as well as compound 2. Compounds 4 and 5 were identical with quadrilineatin originally isolated from *Emericella quadrilineata* (THOM et RAPER) C. R. BENJAMIN (anam. Aspergillus tetrazonus SAMSON et GAMS)⁵⁾ and versiol isolated from Aspergillus versicolor (VUILL.) TIRABOCHI⁶⁾ and Sporormia affinis SACC., BOMM. et ROUSS (later transferred to the genus Sporormiella).⁷⁾

The spectra of compound 1, mp 124—126 °C, $C_{11}H_{14}O_4$, are almost superimposable on those of methyl 3-methylorsellinate (8), with the exceptions that the parent peak shows a mass number 14 units higher than that of 8 in the mass spectra (MS) and the appearance of proton nuclear magnetic resonance (1H -NMR) signals at δ 1.41 (3H, t) and 4.39 (2H, q), which were assigned to the ethyl group of the carboxylate (Table I). Compound 1 was identified as ethyl

HO Me COOR Me OMe OMe OMe OMe
$$\frac{1}{1}$$
: R = Et $\frac{1}{1}$: R = Me $\frac{1}{1}$: R = Me $\frac{1}{1}$: R = CHO $\frac{1}{1}$: R = CHO $\frac{1}{1}$: R = CHO $\frac{1}{1}$: R = CHO

Proton ^{a)}	1 ^{b)}	$2^{c)}$	3	4	6	7	8^{d}
1-CH ₂		4.47			5.39		
1-CHO			10.35	10.37			
2-OH	12.11						12.04
2-OMe		3.89	3.83	3.93	3.91	4.08	
3-Me	2.10	2.16	2.18	2.23	2.23	2.19	2.10
4-OH	5.12	e)	6.97				5.23
5-H	6.20	6.91	6.52	7.14	7.04	6.59	6.20
6-Me	2.48		2.54				2.45
6-CH ₂						5.15	
6-CHO				10.37			

TABLE I. ¹H-NMR Chemical Shifts of 3-Methylorsellinate and Related Compounds in CDCl₃

2,4-dihydroxy-3,6-dimethylbenzoate (ethyl 3-methylorsellinate), which had been prepared as a synthetic intermediate by Elix and Norfolk.⁸⁾ Recently Aldridge and Moore isolated this compound along with quadrilineatin (4) from the same fungus but they could not determine the exact structure.⁹⁾ Though the methyl ester (8) has already been reported from *Aspergillus terreus* THOM,¹⁰⁾ etc., this is the first time that the ethyl ester (1) of 3-methylorsellinic acid has been isolated as a natural product.

The molecular formula of 2, mp 217 °C (subl.), was determined from the high-resolution MS as $C_{10}H_{11}NO_3$, which corresponds to the replacement of the lactonic oxygen atom of silvaticol (6) or nidulol (7) with a nitrogen atom. The ¹H-NMR chemical shifts of 2 are correspond well to those of 6 rather than 7 (Table I). The upfield shift of the signal at δ 5.39 in 6 to the signal at δ 4.47 in 2 indicates that the lactone moiety is replaced with a lactam moiety. From the above results, the structure of 2 was assumed to be 6-hydroxy-4-methoxy-5-methylphthalimidine. It is very interesting that 2 was isolated from A. silvaticus, considering that a nitrogen-containing compound, silvaticamide, has been isolated from the same fungus.

Compound 3, mp 151—153 °C, $C_{10}H_{12}O_3$, was considered to be a benzaldehyde derivative, because the ¹H-NMR signal at δ 10.35 can be assigned to the aldehyde conjugated with the benzene ring. The signals of two aromatic methyl groups were observed at δ 2.18 and 2.54. The latter signal was assigned to the methyl group at the *ortho* position of the aldehyde because of its downfield shift compared to the normal aromatic methyl group. The other functional groups of 3 were one methoxyl, one hydroxyl, and one aromatic proton (Table I). In order to determine the exact structure, heteronuclear long-range selective decoupling experiments on 3 were carried out. When the methyl protons adjacent to the aldehyde (δ 2.54, 6-Me) were irradiated, the carbon-13 nuclear magnetic resonance (13 C-NMR) signals at δ 114.57 (Dq, C-5), 121.01 (Sdm, C-1), and 141.39 (Sm, C-6) were changed to D, Sdd, and Sd, respectively. On the other hand, the 13 C-NMR signals at δ 159.93 (Sm, C-4) and 165.30 (Sm, C-2) were changed into Sd and Sqd, respectively, by selective irradiation of the other methyl protons (δ 2.18, 3-Me). From the above results and the chemical shifts and multiplicity of the 13 C-NMR signals, compound 3 was confirmed to be 3,6-dimethyl-4-hydroxy-2-methoxybenz-aldehyde.

Prior to this study, epidithiodioxopiperazine, dithiosilvatin,⁴⁾ "seco-anthraquinone," arugosins,¹⁾ and phthalides, silvaticol (6) and nidulol (7)³⁾ had been found as secondary

a) Numberings of the above compounds correspond to that of 1. b) The signals of the ethyl group of the carboxylate were observed at δ 1.41 and 4.39. c) This compound was measured in CD₃OD. d) The signal of the methyl group of the carboxylate was observed at δ 3.92. e) Lines indicate that the signals were not observed.

400 Vol. 36 (1988)

metabolites of A. silvaticus in Czapek-Dox medium. Although factors affecting silvaticol (6) production, especially in Czapek-Dox medium, have not yet been studied, its biogenesis is presumably as follows. 3-Methylorsellinate (1 or a corresponding compound), formed via the acetate-malonate pathway followed by cyclization and introduction of a C_1 unit at the C-3 position, would be transformed into the aldehyde (3) by O-methylation at C-2 followed by reduction of the carboxylate. Then the oxidation of the methyl group at C-6 in 3 gives quadrilineatin (4), which is the key intermediate to 6 and 7.

Experimental

Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-181 spectrometer. Infrared (IR) and ultraviolet (UV) spectra were recorded on a Hitachi 215 spectrophotometer and a Hitachi 124 spectrophotometer, respectively. MS were obtained on a JEOL JMS-D 300 spectrometer. 1 H- and 13 C-NMR spectra were measured with a JEOL JNM-FX 100 at 99.60 MHz and a JEOL JNM-GX 400 at 100.43 MHz, respectively, using tetramethylsilane as an internal standard. The coupling patterns are indicated as follows: singlet=S or s, doublet=D or d, triplet=t, quartet=Q or q, multiplet=m, and broad=br. Capital letters refer to the pattern resulting from directly bonded coupling $(^{1}J_{C,H})$.

Isolation of Metabolites from Aspergillus silvaticus.—A. silvaticus, strain IFO 8173, was incubated at 27 °C for 14 d in Raulin-Thom medium $[(NH_4)_2HPO_4\ 0.6\,g,\ (NH_4)_2SO_4\ 0.25\,g,\ K_2CO_3\ 0.6\,g,\ MgCO_3\ 0.4\,g,\ FeSO_4\cdot 7H_2O\ 0.07\,g,\ ZnSO_4\cdot 7H_2O\ 0.07\,g,\ tartaric acid 4.0\,g,\ ammonium tartarate 4.0\,g,\ glucose 75\,g,\ water 1500\,ml].$ The culture filtrate (22.5 l) was extracted with dichloromethane at pH 2. The evaporated residue (5.3 g) was chromatographed on silica gel. Elution with chloroform afforded 1 (50 mg), 3,6-dimethyl-4-hydroxy-2-methoxybenzaldehyde (3) (40 mg), and versiol (5) (100 mg), elution with chloroform—methanol (50:1, v/v) gave quadrilineatin (4) (20 mg), and elution with chloroform—methanol (20:1, v/v) provided 2 (5 mg). Compounds 4 and 5 were identified by comparison of the spectral data, including optical rotation, with those of authentic samples.

Ethyl 3-Methylorsellinate (1): Colorless needles, mp 124—126 °C. IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3450 (OH), 1620 (COO). UV $\lambda_{\rm max}^{\rm MeoH}$ nm (log ε): 217 (4.40), 268 (4.31), 295 (3.79). MS m/z: 210 (31%, M+), 164 (97), 136 (100). 1 H-NMR (CDCl₃) δ: 1.41 (3H, t, J=7.1 Hz, $^{-}$ CC $_{\rm H}_{\rm 2}$ CH₃), 2.10 (3H, s, Me), 2.48 (3H, s, Me), 4.39 (2H, q, J=7.1 Hz, $^{-}$ CC $_{\rm H}_{\rm 2}$ CH₃), 5.12 (1H, s, OH), 6.20 (1H, s), 12.11 (1H, s, OH). Compound 1 was identified by comparison of the IR, 1 H-NMR, and MS with those of an authentic sample.

6-Hydroxy-4-methoxy-5-methylphthalimidine (2): Colorless crystalline powder, mp 217 °C (subl.). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3190 (OH), 1710, 1660. UV $\lambda_{\rm max}^{\rm EIOH}$ nm (log ε): 212 (3.95), 252 (3.29), 295 (2.98). MS m/z: 193 (100%, M $^+$), 178 (56), 162 (46), 149 (30). High-resolution MS m/z: 193.0682 (Calcd for C₁₀H₁₁NO₃: 193.0737). 1 H-NMR (C₅D₅N) δ: 2.50 (3H, s, Me), 3.84 (3H, s, OMe), 4.55 (2H, s), 7.61 (1H, s), 9.27 (1H, s, NH or OH); (CD₃OD) δ: 2.16 (3H, s, Me), 3.89 (3H, s, OMe), 4.47 (2H, s), 6.91 (1H, s).

3,6-Dimethyl-4-hydroxy-2-methoxybenzaldehyde (3): Colorless crystalline powder, mp 151—153 °C. IR $v_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3100 (OH), 1660 (COO). UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ε): 232 (4.11), 284 (4.15). MS m/z: 180 (100%, M $^{+}$), 165 (35), 163 (85), 149 (16), 135 (35), 120 (37), 107 (14), 91 (31), 77 (26). High-resolution MS m/z: 180.0788 (Calcd for $C_{10}H_{12}O_3$: 180.0787). 1 H-NMR (CDCl₃) δ : 2.18 (3H, s, Me), 2.54 (3H, s, Me), 3.83 (3H, s, OMe), 6.52 (1H, s), 6.97 (1H, br s, OH), 10.35 (1H, s, CHO). 13 C-NMR (CDCl₃) δ : 8.12 (Q, 3-Me), 21.43 (Qd, 6-Me), 63.10 (Q, 2-OMe), 114.57 (Dq, C-5), 115.41 (Sm, C-3), 121.01 (Sdm, C-1), 141.39 (Sm, C-6), 159.93 (Sm, C-4), 165.30 (Sm, C-2), 191.48 (D, 1-CHO).

Acknowledgement The authors are grateful to Dr. D. C. Aldridge of Pharmaceutical Division, Imperial Chemical Industries, for providing spectral data of ethyl 3-methylorsellinate and quadrilineatin and to Mr. A. Nagakura and Dr. Y. Suzuki of R & D Institute, Takasago Corporation, for an authentic sample of methyl 3-methylorsellinate. We thank Mrs. T. Ogata of this university for elemental analysis and Mrs. M. Yuyama and Miss T. Tanaka of this university for NMR and mass spectral measurements.

References

- 1) Part XV: N. Kawahara, K. Nozawa, S. Nakajima and K. Kawai, J. Chem. Soc., Perkin Trans. 1, accepted.
- 2) M. Yamazaki, H. Fujimoto and Y. Ohta, Heterocycles, 15, 889 (1981).
- 3) M. Fujita, M. Yamada, S. Nakajima, K. Kawai and M. Nagai, Chem. Pharm. Bull., 32, 2622 (1984).
- 4) N. Kawahara, K. Nozawa, S. Nakajima and K. Kawai, J. Chem. Soc., Perkin Trans. 1, 1987, 2099.
- 5) J. H. Birkinshaw, P. Chaplen and R. Lahoz-Oliver, Biochem. J., 67, 155 (1957).
- 6) K. Fukuyama, T. Tsukihara, Y. Katsube, T. Hamasaki and Y. Hatsuta, Tetrahedron Lett., 1976, 189.
- 7) W. J. McGahren, G. A. Ellestad, G. O. Morton and M. P. Kunstmann, J. Org. Chem., 41, 66 (1976).
- 8) J. A. Elix and S. Norfolk, Aust. J. Chem., 28, 1113 (1975).
- 9) D. C. Aldridge and R. B. Moore, personal communication.
- 10) S. Takenaka, N. Ojima and S. Seto, J. Chem. Soc., Chem. Commun., 1972, 391.